Roll No. \square
Total No. of Questions: 07

BCA(2009 to 2010 Batch) (Sem.-2)
 MATHEMATICS-I (DISCRETE)
 Subject Code : BC-203
 Paper ID : [B0207]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write short notes on :
(a) Define disjoint sets. Give an example.
(b) Write the power set of the set $\mathrm{A}=\{\mathrm{r}, \mathrm{s}\}$.
(c) If R and S are two relations on a set A , then show that $\mathrm{R} \cap \mathrm{S}$ is also a relation on A .
e a HASH function whdteUletcdnsists of two digit addresses
$00,01,02, \ldots .49$. Find H (12304) using Division Method.
(e) Define a Regular Graph.
(f) Find the degree of the recurrence relation:

$$
S^{4}(K)+3 S^{3}(K-1)+6 S^{2}(K-2)+4 S(K-3)=0 .
$$

(g) Find the minimum spanning tree of the graph shown below the weighted graph.

by weight.
(h) Define chromatic number of a graph G.
(i) Define a directed graph.
(j) Find the truth set of $p(x)=x+5<3$ defined on the set N of positive integers.

SECTION-B

2. A set has three elements and set B has six elements. What can be the maximum number of elements in the set $\mathrm{A} \cup \mathrm{B}$ if $\mathrm{A} \cap \mathrm{B}=\phi$.
3. If $\frac{\underline{n}}{\lfloor 2 \underline{n}-2}$ and $\frac{\underline{n}}{\boxed{4 n}-4}$ are in the ratio $2: 1$, find value of n.
4. Prove De Morgan law : $(\mathrm{A} \cup \mathrm{B})^{\mathrm{C}}=\mathrm{A}^{\mathrm{C}} \cap \mathrm{B}^{\mathrm{C}}$.
5. Consider the sets $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Let R be a relation from set A to B, where $R=\{(1, a),(1, b),(2, b),(2, c),(3, b),(4, b)\}$ find the complement $\overline{\mathrm{R}}$ of R .
6. Construct the Truth table of :

$$
(p \wedge q) \vee(q \wedge R) \vee(r \wedge p)
$$

7. Let $A=\{1,2,3,4,5,6\}$ and R be an equivalence relation on A defined by $\mathrm{R}=\{(1,1),(1,5),(2,2),(2,3),(2,6),(3,2),(3,3),(3,6),(4,4),(5,1)$, $(6,2),(6,3),(6,6)\}$

Find the equivalence classes of R and the quotient $\operatorname{set} \mathrm{A} / \mathrm{R}$.

