

.

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
 (Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

B.Sc.(Data Science)

Semester I

Head Quarter: C/28, The Lower Mall, Patiala-147001
Website: www.psou.ac.in

The Motto of Our University

(SEWA)

SKILL ENHANCEMENT

EMPLOYABILITY

WISDOM

ACCESSIBILITY

A
L

L
 C

O
P

Y
R

IG
H

T
S

 W
IT

H
 J

G
N

D
 P

S
O

U
,
P

A
T

IA
L

A

SE
LF

-I
N

ST
R

U
C

TI
O

N
A

L
ST

U
D

Y
 M

A
TE

R
IA

L
FO

R
 J

G
N

D
 P

SO
U

The Study Material has been prepared exclusively under the guidance of Jagat

Guru Nanak Dev Punjab State Open University, Patiala, as per the syllabi

prepared by Committee of experts and approved by the Academic Council.

The University reserves all the copyrights of the study material. No part of this

publication may be reproduced or transmitted in any form.

COURSE COORDINATOR AND EDITOR:

Dr. Amitoj Singh

Associate Professor

School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University

Code Subject Nature of Course Credits

BSDB31101T Problem Solving using Computer CC-1 4

BSDB31102T Fundamental of IT DSC-1 4

BSDB31103T Introduction Data Science DSC-2 4

BSDB31101P Problem Solving using Computer Lab CC-1 2

BSDB31102P Fundamental of IT Lab DSC-3 2

BSDB31103P Introduction Data Science Lab DSC-4 2

AE1B31104T Effective Communication in English AECC-1 4

.

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
 (Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

B.Sc.(Data Science)

Semester I

BSDB31103T

Introduction to Data Science

Head Quarter: C/28, The Lower Mall, Patiala-147001
Website: www.psou.ac.in

The Motto of Our University

(SEWA)

SKILL ENHANCEMENT

EMPLOYABILITY

WISDOM

ACCESSIBILITY

A
L

L
 C

O
P

Y
R

IG
H

T
S

 W
IT

H
 J

G
N

D
 P

S
O

U
,
P

A
T

IA
L

A

SE
LF

-I
N

ST
R

U
C

TI
O

N
A

L
ST

U
D

Y
 M

A
TE

R
IA

L
FO

R
 J

G
N

D
 P

SO
U

The Study Material has been prepared exclusively under the guidance of Jagat

Guru Nanak Dev Punjab State Open University, Patiala, as per the syllabi

prepared by Committee of experts and approved by the Academic Council.

The University reserves all the copyrights of the study material. No part of this

publication may be reproduced or transmitted in any form.

COURSE COORDINATOR AND EDITOR:

Dr. Amitoj Singh

Associate Professor

School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University

LIST OF CONSULTANTS/ CONTRIBUTORS

Sr. No. Name

1 Dr. Preety Dubey

2 Dr. Chetan Dudhagara

3 Mr. Sandeep Kumar

JAGAT GURU NANAK DEV PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

PREFACE

Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in December

2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open University

of the State, entrusted with the responsibility of making higher education accessible to all,

especially to those sections of society who do not have the means, time or opportunity to

pursue regular education.

In keeping with the nature of an Open University, this University provides a flexible

education system to suit every need. The time given to complete a programme is double the

duration of a regular mode programme. Well-designed study material has been prepared in

consultation with experts in their respective fields.

The University offers programmes which have been designed to provide relevant, skill-based

and employability-enhancing education. The study material provided in this booklet is self-

instructional, with self-assessment exercises, and recommendations for further readings. The

syllabus has been divided in sections, and provided as units for simplification.

The University has a network of 10 Learner Support Centres/Study Centres, to enable

students to make use of reading facilities, and for curriculum-based counselling and

practicals. We, at the University, welcome you to be a part of this instituition of knowledge.

 Prof. Anita Gill

Dean Academic Affairs

B.Sc. (Data Science)

Core Course (CC)

Semester I

BSDB31103T: Introduction to Data Science

Total Marks: 100

External Marks: 70

Internal Marks: 30

Credits: 4

Pass Percentage: 35%

Objective

To provide strong foundation for data science and application area related to it and

understand the underlying core concepts and emerging technologies in data science.

Understand data analysis techniques for applications handling large data.

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

1. The syllabus prescribed should be strictly adhered to.

2. The question paper will consist of three sections: A, B, and C. Sections A and B will

have four questions from the respective sections of the syllabus and will carry 10

marks each. The candidates will attempt two questions from each section.

3. Section C will have fifteen short answer questions covering the entire syllabus. Each

question will carry 3 marks. Candidates will attempt any ten questions from this

section.

4. The examiner shall give a clear instruction to the candidates to attempt questions only

at one place and only once. Second or subsequent attempts, unless the earlier ones

have been crossed out, shall not be evaluated.

5. The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the

question paper and any ten short questions from Section C. They have to attempt questions

only at one place and only once. Second or subsequent attempts, unless the earlier ones have

been crossed out, shall not be evaluated.

Section A

Unit I: Data Science-a Discipline, Landscape-Data to Data science, Data Growth-issues and

challenges, data science process. foundations of data science. Messy data, Anomalies and

artefacts in datasets. Cleaning data.

Unit II: Data Acquisition and Processing: introduction, Structured Vs Unsructured data,

data preprocessing techniques including data cleaning, selection, integration, transformation

and reduction, data mining, interpretation.

Unit III: Representation of Data: Special types-acoustic, image, sensor and network data.

Problems when handling large data – General techniques for handling large data, Distributing

data storage and processing with Frameworks

Unit IV: Data Science Ethics – Doing good data science – Owners of the data - Valuing

different aspects of privacy - Getting informed consent - The Five Cs – Diversity – Inclusion

– Future Trends.

Section B

Unit V: Data Wrangling Combining and Merging Data Sets – Reshaping and Pivoting –

Data Transformation – String manipulations – Regular Expressions

Unit VI: Data Aggregation and Group Operations Group By Mechanics – Data

Aggregation – GroupWise Operations – Transformations – Pivot Tables – Cross Tabulations

– Date and Time data types.

Unit VII: Data Modeling: Basics of Generative modeling and Predictive modeling. Charts-

histograms, scatter plots, time series plots etc. Graphs, 3D Visualization and Presentation.

Unit VIII: Applications of Data Science: Business, Insurance, Energy, Health care,

Biotechnology, Manufacturing, Utilities, Telecommunication, Travel, Governance, Gaming,

Pharmaceuticals, Geospatial analytics and modeling

Suggested Readings

1. Sinan Ozdemir, Principles of Data Science, Packt Publishing, 2016

2. Joel Grus: Data Science from Scratch, O’Reilly, 2016

3. Foster Provost & Tom Fawcett: Data Science for Business O’Reilly, 2013

4. Roger D. Peng & Elizabeth Matsui: The Art of Data Science, Lean Publishing, 2015

5. Peter Bruce, Andrew Bruce, Peter Gedeck, Practical Statistics for Data Scientists, 2e:

50+ Essential Concepts Using R and Python, O′Reilly

JAGAT GURU NANAK DEV PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

BSDB31103T: INTRODUCTION TO DATA SCIENCE

COURSE COORDINATOR AND EDITOR: DR. AMITOJ SINGH

UNIT NO. UNIT NAME

UNIT 1 DATA SCIENCE-A DISCIPLINE

UNIT 2 DATA ACQUISITION AND PROCESSING

UNIT 3 REPRESENTATION OF DATA

UNIT 4 DATA SCIENCE ETHICS

UNIT 5 DATA WRANGLING COMBINING AND MERGING DATA

UNIT 6 DATA AGGREGATION AND GROUP OPERATIONS GROUP BY MECHANICS

UNIT 7 DATA MODELING

UNIT 8 APPLICATIONS OF DATA SCIENCE

1

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT I: FOUNDATION OF DATA SCIENCE

STRUCTURE

1.0 Objectives

1.1 Data Science-A discipline

1.2 Data to Data Science

1.3 Data Growth Issues and Challenge

1.4 Foundation of Data Science

1.5 Tools for Data Science

1.6 Applications of Data Science

1.7 Data Science Process

1.8 Messy Data

1.9 Anomalies and Artefacts in Datasets

1.10 Cleaning Data

1.11 Summary

1.12 Practice Questions

2

1.0 OBJECTIVES

1. Introduction to Data Science

2. Familiarize with the issues and challenges in Data Growth

3. Familiarize with data Science Process

4. Familiarize with the concepts of data like clean and messy data, data artifacts and

anomalies in data.

1.1 DATA SCIENCE-A DISCIPLINE

Data Science is a blend of various tools, algorithms and machine learning principles with the

goal to discover hidden patterns from raw data. It is related to data mining, machine learning

and Big Data It is an area that manages, manipulates, extracts, and interprets knowledge from

tremendous amount of data. Data science (DS) is a multidisciplinary field of study with a

goal to address the challenges in big data. Big Data has given rise to Data Science and is a

therefore, a multidisciplinary field of study with goal to address the challenges in big data.

1.2 DATA TO DATA SCIENCE

The growth of data has been seen since 2010, due to the growth in the number of data

generating devices like smart phones, wearables, Internet of things, etc. The availability of

more data publicly from social media sites like Facebook, YouTube, twitter etc, business

transactions, sensors, audio, video, photos etc. This enormous growth of data led to the

concept of Big data, which is a term used for collection of large and complex data sets. As the

data has increased, so did the need for its storage. Until 2010, the main focus was building

framework and solutions to store data, which was successfully solved by HADOOP and other

frameworks. In the present time, it has become difficult to process this large and complex

data using traditional data management techniques such as, for example, the RDBMS

(relational database management systems). This rise in the use of data, sparked the use of

Data Science. Data science makes this possible, as it is a multidisciplinary study of data

collection for analysis, prediction, learning and prevention. Data Science involves using

methods to analyse massive amounts of data and extract the knowledge from the raw data.

1.3 DATA GROWTH ISSUES AND CHALLENGES

Big Data is characterized by five V‘s namely volume, variety, velocity, veracity and value.

Consequently, the challenges these characteristics bring are being seen in data capture,

curation, storage, search, sharing, transfer, and visualization.

i. Volume refers to the enormous size of data. Big data refers to data volumes in the

range of exabytes and beyond e.g. In the year 2016, the estimated global mobile

traffic was 6.2 Exabytes (6.2 billion GB) per month. Also, by the year 2020 we will

have almost 40000 Exabytes of data. Such volumes exceed the capacity of current

on-line storage systems and processing systems. Traditional database systems is not

able to capture, store and analyse this large amount of data. Storage solutions have

been provided by HADOOP framework, but represent long term challenges that

require research and new paradigms.

ii. Velocity refers to the high speed of accumulation of data. There is a massive and

continuous flow of data from sources like machines, networks, social media, mobile

3

phones etc. This determines the potential of data that how fast the data is generated

and processed to meet the demands e.g. there are more than 3.5 billion searches per

day are made on Google. Also, FaceBook users are increasing by 22%(Approx.) year

by year. Data is streaming in at unprecedented speed and must be dealt with in a

timely manner. RFID tags, sensors and smart metering are driving the need to deal

with torrents of data in near-real time. The data has to be available at the right time to

mske business decisions accurately. Reacting quickly enough to deal with data

velocity is a challenge for most organizations

iii. Variety refers to nature of data. Data is available in varied formats and heterogenous

sources. It can be structured, semi-structured and unstructured data. It is a challenge

to find ways of governing, merging and managing these diverse forms of data.

iv. Veracity here means quality of data. It refers to inconsistencies and uncertainty in

data. The available data may be messy and thus controlling the quality and accuracy

becomes another challenge.

v. Variability: In addition to the increasing velocities and varieties of data, data flows

can be highly inconsistent with periodic peaks. Big Data is also variable because of

the multitude of data dimensions resulting from multiple disparate data types and

sources e.g. Data in bulk could create confusion whereas less amount of data could

convey half or Incomplete Information. Variability of data can be challenging to

manage.

vi. Value: The bulk Data having no Value is of no good to the company, unless you

turn it into something useful. Data in itself is of no use or importance but it needs to

be converted into something valuable to extract Information. The ability to

transform the bulk data into business and make this enormous data of use to

business to monetize. It is a challenge to connect and correlate relationships,

hierarchies and multiple data linkages of the big data.

1.4 FOUNDATION OF DATA SCIENCE

Data science involves using methods to analyse massive amounts of data and extract the

knowledge it contains. Data Science is an interdisciplinary field focused on extracting

knowledge from datasets which are large in size, applying the knowledge from data to solve

problems in a wide range of application domains. Mathematics, statistics, computer science,

and domain knowledge are the foundations of Data Science.

The main components of Data Science are given below:

1. Statistics: To analyse the large amount numerical data and to find the meaningful insights

from it, knowledge of statistics is required.

4

2. Domain Expertise: Data is available and applicable in various domains, therefore domain

expertise or specialized knowledge of a specific area is required to get best results.

3. Data engineering: Data engineering is a part of data science, which involves acquiring,

storing, retrieving, and transforming the data. Data engineering also includes metadata (data

about data) to the data.

4. Visualization: Data visualization is meant by representing data in a visual context so that

people can easily understand the significance of data. Data visualization makes it easy to

access the huge amount of data in visuals.

5. Advanced computing: Advanced computing involves designing, writing, debugging, and

maintaining the source code of computer programs. Machine Learning and Deep learning

techniques are required for modelling and to make predictions about unforeseen/future data.

1.5 TOOLS FOR DATA SCIENCE

Some tools required for data science are as follows:

 Data Analysis tools: R, Python, Statistics, SAS, Jupyter, R Studio, MATLAB, Excel,

RapidMiner.

 Data Warehousing: ETL, SQL, Hadoop, Informatica/Talend, AWS Redshift

 Data Visualization tools: R, Jupyter, Tableau, Cognos.

 Machine learning tools: Spark, Mahout, Azure ML studio.

1.6 APPLICATIONS OF DATA SCIENCE

Data Science is used by most organizations for predictive analysis, price optimization, and

customer satisfaction. Some areas where data science is being used are Health Care, Finance,

Security, Airline Routing, Manufacturing, Speech Recognition, Advertisement, Security,

Fraud detection, Banking, Internet of Things etc. Some use cases are given below:

 Genomic Data provides deeper understanding of Genetic issues and reactions to

particular drugs and diseases.

 Logistics companies like DHL,Fedex have discovered the best time and routes to

ship cost effectively.

 Predict employee attrition and understand the variables that influence employee

turnover.

 Airline companies can now easily predict flight delays and notify the passengers

before time.

 Banks can make better decisions by predict risk analysis, fraud detection and

better customer management

5

1.7 DATA SCIENCE PROCESS

The structured approach to data science helps in maximizing the chances of success in a data

science project at the lowest cost. The data science process typically consists of the following

steps:

I. Business Understanding: The main purpose here is making sure all the

stakeholders understand the what, how, and why of the project. It involves two

main steps namely defining research goals and preparing a project charter.

i. Defining Research Goals: It is very essential to understand the

business goals to be able to define the research goal that states the purpose of

assignment in a clear and focused manner. The data by for the same can be gathered

by repeatedly asking questions and enquiring about business expectations, identifying

the research goals so that everybody knows what to do and can agree on the best

course of action. The outcome should be a clear research goal, a good understanding

of the context, well-defined deliverables, and a plan of action with a timetable. This

information is then best placed in a project charter

ii. Creating Project Charter: A project charter has the information gathered

while setting the research goal. The project charter must contain a clear research goal,

the project mission and context, method for analysis, information about the resources

required for project completion, proof that the project is achievable, or proof of

concepts, deliverables and a measure of success and also a timeline for the project.

This information is useful to make an estimation of the project costs and the

data and people required for the project to become a success.

II. Data Acquisition or Data Collection or Data Retrieval: This phase involves

data gathering from various sources like webservers, logs, databases, API‘s and online

repositories. It involves acquiring data from all the identified internal & external

sources. One should start with data collection from internal sources. The data may be

available in many forms ranging from simple text to database records. The data may

be structured as well as unstructured. Data may be acquired from sources outsise the

organization also. Some sources may be available free of cost or some may be paid.

Data collection is a tiresome and time-consuming task.

III. Data preparation: Data collection is an error-prone process; in this phase you

enhance the quality of the data and prepare it for use in subsequent steps. This phase

consists of three subphases: data cleansing, data integration data transformation.

i) Data Cleansing involves cleansing of data collected in the previous phase. It

involves removing false values from a data source, removing inconsistencies

across data sources, checking misspelled attributes, missing and duplicate

values and typing errors, fixing capital letter mismatches as most programming

6

languages are case sensitive (e.g India and india), removing redundant white

spaces, sanity checks (check for impossible values like six-digit phone number

etc) and outliers (an outlier is an observation that seems to be distant from

other observations). It should be ensured that most errors are corrected in this

phase to make the data usable and get better results.

ii) Data Integration enriches data sources by combining information from

multiple data sources. Data comes from several sources and in this sub step the

focus is on integrating these different sources. The data can be combined in the

following ways:

 Joining Tables: To combine information about some data in one table with

the information available in another table. e.g a table may contain information

about purchase of a particular product and the other table may contain

information about people who have purchased that product. This can be done

using join command in SQL.

 Appending or Stacking: To add observations from one table to another table

e.g. a table may contain the information about the purchase of a particular

product in the year 2000 and the other contains the similar data in the year

2001, then appending means to add the records of 2001 to the table containing

the records of 2000. This can be done using the union function in SQL.

 View: View in SQL can be used to virtually combine two tables. This saves

on the space requirement

 Aggregate Functions: Aggregate functions may be used as per requirement

for combining data.

iii) Data transformation ensures that the data is in a suitable format to be used in

the project model. Sometimes, the number of variables may have to be

reduced, It involves modification of data so that it takes a suitable shape. Tools

like talend and informatica can be used for transformation.

IV. Exploratory Data Analysis (EDA) or Data exploration: Data exploration is

concerned with building a deeper understanding of the data. It involves the

understanding of how variables interact with each other, the distribution of the data,

and whether there are outliers. It involves defining and refining the selection of

feature variables that will be used in model development. This is the most important

step as it involves understanding of the data which will further be used for

modelling. Various techniques like visualization, tabulation, clustering, and other

modelling techniques can be used for exploratory analysis.

V. Data Modelling or Model building: Model building is an iterative process. In this

phase, domain knowledge, and insights about the data are used for modelling. It

involves identifying the data model that best fits the business requirement. For this,

various machine learning techniques like KNN, Naïve‘s, decision tree etc may be

applied on data. The model is trained on the data set and the testing of the selected

7

model is done. Data modelling can be done using Python, R, SAS. Most models

consist of the following main steps:

i. Selection of a modelling technique and variables to enter in the model:

After the exploratory analysis, the variables to be used are known, so in

this phase, the variables can be used to build the model. A model that

suits the project requirement has to be chosen.

ii. Execution of the model: The chosen model has to be implemented by

coding. Python is most used language for coding as it has many inbuilt

libraries.

iii. Diagnosis and model comparison: In this step, the best performing

model or the model with lowest errors is chosen from among the

multiple models that are built.

VI. Presentation and automation: In this stage, the results are presented. These results

can take many forms, ranging from presentations to research reports.

VII. Deployment & Maintenance: Before the final deployment in the production

environment, testing is done in preproduction environment. After deployment, the

reports are used for real time analysis.

The Data Science life cycle is an Iterative process, there is often a need to step back and

rework certain findings. If the step 1(business understanding) is performed dedicatedly,

rework can be prevented. The figure 1 below describes the Data Science model.

Fig1source: https://livebook.manning.com/book/introducing-data-science/chapter-2/8

https://livebook.manning.com/book/introducing-data-science/chapter-2/8

8

1.8 MESSY DATA

Data that is not in usable form or it is impossible to obtain clearly interpretable information

from it is messy data. Data science and its algorithms are clean and precise, but the data on

which they operate come from the real world, are inherently messy i.e. the data which

requires some preparation before you can use them effectively and it is not easy to find

clean data. The quality of insights you derive from data depends on the validity of that data,

so some preparation is required. Some examples of messy data are missing data,

unstructured data, multiple variables in one column, variables stored in wrong places,

observations split incorrectly or left together against normalization rules, switched columns

and rows, extra spaces etc.

1.9 ANOMALIES AND ARTEFACTS IN DATASETS

Anomaly is a deviation in data from the expected value for a metric at a given point in

time. Anomaly detection is any process that finds the outliers (items that do not belong to

the dataset) of a dataset. The term anomaly is also referred to as outlier. Outliers are the

data objects that stand out among other objects in the data set and do not conform to the

normal behaviour in a data set. There are three kinds of anomalies namely: point anomaly,

contextual anomaly, and collective anomalies.

 Point Anomaly: If a single instance in a given dataset is different from others with

respect to its attributes, it is called a point anomaly i.e. when a single instance of

data is anomalous, it deviates largely from the rest of the set e.g. detecting credit

card fraud based on ―amount spent.‖

 Contextual anomaly: If the data is anomalous in some context, it is called

contextual anomaly. This type of anomaly is common in time-series data. In the

absence of a context, all the data points look normal. E.g. if the context of the

temperature is recorder in December and a high temperature reading is seen in

December month, which is an abnormal phenomenon.

 Collective anomalies can be formed due to a combination of many instances i.e. a

set of data instances collectively helps in detecting anomalies. For example,

sequence data in network log or an attempt to copy data form a remote machine to a

local host unexpectedly, an anomaly that would be flagged as a potential cyber-

attack.

Anomaly detection refers to the problem of finding patterns in data that do not conform to

expected behaviour. It is a technique for finding an unusual point or pattern in a given set.

These nonconforming patterns are often referred to as anomalies, outliers, discordant

observations, exceptions, aberrations, surprises, peculiarities, or contaminants in different

application domains. Anomaly detection is commonly used for:

 Data cleaning

 Intrusion detection

 Fraud detection

 Systems health monitoring

9

 Event detection in sensor networks

 Ecosystem disturbances

Artifact It is a data flaw caused by equipment, techniques or conditions. Common sources

of data flaws include hardware or software errors, conditions such as electromagnetic

interference and flawed designs such as an algorithm prone to miscalculations. Some

common data artifacts are:

 Digital Artifacts: Flaws in digital media, documents and data records caused by

data processing errors e.g a distorted camera recording.

 Visual Artifacts: Flaws in visualizations such as user interfaces.

 Compression Artifacts: Flaws in data due to lossy compression.

 Statistical Artifacts: Flaw such as a bias in statistical data.

 Sonic Artifacts: Unwanted sound in a recording.

1.10 CLEANING DATA

Data cleaning is a key part of data science. Clean data increases overall productivity and

allows for the highest quality information in decision-making. Data cleaning is the process of

fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data

within a dataset. If data is messy, the outcomes and algorithms are unreliable. It can lead to

poor business strategy and decision-making. The data can have many irrelevant and missing

parts. To handle this part, data cleaning is done. It involves handling of missing data, noisy

data etc. During cleansing, missing values may either be filled or removed depending on the

data. Data cleaning is discussed in detail in Unit -II

1.11 SUMMARY

This chapter introduces the concept of data science as a discipline. The various issues faced

due to the growth in data are discussed. The importance of cleaning data and the anomalies

found in data are also discussed.

1.12 PRACTICE QUESTIONS

Q1. What are the foundations of data science?

Q2. Discuss the areas where data science is applicable?

Q3. Discuss the various challenges due to growth in data.

Q4. Explain briefly the data Science Process.

Q5. Define Messy data.

10

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT II: DATA ACQUISITION AND PROCESSING

STRUCTURE

2.0 Objectives

2.1 Introduction to Data Acquisition

2.2 Data Preprocessing and Techniques

 2.2.1 Data Cleaning

 2.2.2 Data Integration

 2.2.3 Data Transformation

 2.2.4 Data Reduction

 2.2.4.1 Dimensionality Reduction

 2.2.4.2 Numerosity Reduction

2.2.4.3 Data Compression

2.3 Data Mining

 2.3.1 Data Mining Applications

2.4 Data Interpretation

2.5 Summary

2.6 Practice Question

11

2.0 OBJECTIVES

1. Introduction to Data Acquisition

2. familiarize with the different types of data

3. Provide the concept of data pre-processing and familiarize with the various reprocessing

techniques

4.Familiarize with the concept of data mining and data interpretation

2.1 INTRODUCTION TO DATA ACQUISITION

The process of gathering data and making it useful by filtering and cleaning it as per the

business requirement is termed as data acquisition It is the most important step of data

science, but the data acquired must be suitable to the problem in hand, else the output may

be inaccurate. It is very important to acquire up to date data. The characteristics of big data

namely volume, velocity, variety, and value and very important for the acquisition of data.

In data science, there is a variety of data that we need to deal with. The data is majorly

characterized as:

 Structured Data: The data which is available in some stand format is called

structured data. Structured data is organized data. It is stored in the row and column

structure like in a relational database and excel sheets. Some examples of structured

data are names, numbers, geolocations, addresses etc.

 Unstructured Data: This data is unorganized data. There is no particular format for

unstructured data. It is available in a variety of formats like texts, pictures, videos

etc. Unstructured data is more difficult to search and requires processing to become

understandable.

 Semi- Structured data: This data is basically a semi-organised data. It is generally

a form of data that do not conform to the formal structure of data. Log files are the

examples of this type of data.

2.2 DATA PREPROCESSING AND TECHNIQUES

The data acquired need to be preprocessed to make it usable. The raw data may be

inconsistent, erroneous, incomplete and not in the required format. These issues need to be

resolved to make the data usable. Data Preprocessing is a collaborative term used for the

activities involved in transforming the real-world data or raw data into a usable form to make

it more valuable and to get it in the required format. The preprocessed data is cleaner and

more valuable, and hence used as final training set. Data preprocessing is a very essential

step, as more clean and inconsistent data we get, better shall be the final output. In other

words, data processing improves the quality of data. The huge size of data collected from

heterogenous sources leads to anomalous data. Data preprocessing has become a vital and

most fundamental step considering the fact that high quality data leads to better models and

predictions. Data preprocessing techniques are majorly categorized in the following methods:

12

i. Data Cleaning

ii. Data Integration

iii. Data Transformation

iv. Data Reduction

2.2.1 Data Cleaning involves removing duplicate data, filling missing values, identifying

outliers, smoothening noise and remove data inconsistencies. The following steps

must be followed for cleaning data:

 Remove duplicate or irrelevant observations

It is very important to remove inconsistencies in dataset like removing unwanted

observations including duplicate and irrelevant data entries. Duplicate values may be

caused at the time of data collection e.g. the names of the countries may have

repeated valued like NewZealand and New Zealand; Pakistan and pakistan.

Inconsistencies in capitalizations and trailing white spaces are very common in text

data, The data set can be cleaned using available function in Python or R. functions

like unique, sort, lower(), upper(), strip() can be used to handle inconsistencies

 Fix structural errors: Structural errors are when you measure or transfer data and

notice strange naming conventions, typos, or incorrect capitalization. These

inconsistencies can cause mislabelled categories or classes. For example, you may

find ―N/A‖ and ―Not Applicable‖ both appear, but they should be analysed as the

same category. Set the single date format in case there are multiple date formats in a

single column.

 Filter unwanted outliers is essential to improve the performance of the data. If an

outlier is found to be irrelevant it must be removed.

 Handle missing data: During analysis of data, it is important to understand why the

missing values exist. Whether the missing value exist because they were not

recorded or they imply that data does not exist for the missing values. Missing data

may be handled by using the following ways:

i) In case, the values were not recorded, it becomes essential to fill up the

values by guessing based on the other values in that column and row. This is called

imputation. E.g. if a value is missing for gender, it is understood that the value was

not recorded, so we need to analyse data and give it a value, we cannot leave the

value blank in this case. Therefore, you can input missing values based on other

observations; but there is a chance of losing integrity of the data because these

values are being filled based on assumptions and not actual observations.

ii) If a value is missing because it doesn't exist e.g. the height of the

oldest child of someone who doesn't have any children. In this case, it would make

more sense to either leave it empty or to add a third value like NA or NaN. The NA

13

or NaN values should be replaced with 0. Panda's fillna() function to fill in missing

values in a data frame can be used.

iii) In case, it is not possible to figure out the reason for the missing, then

that particular value can be dropped. Pandas function, dropna() can be used to do

this, but doing this can drop or lose information, so be mindful of what is being

removed or dropped this before removing it.

 Noisy Data: Random variance in the data is called noise. The following methods

called smoothening techniques are used to handle noisy data:

a) Binning Method: This method is also known as discretization, is used to

smooth sorted data values by consulting the values around it i.e., the neighbouring

values. It is a local smoothening method, since it refers to the neighbouring values.

In this method, the entire data is divided into equal segments called bins or

buckets. Smoothing by binning is done by one of the following methods:

 Smoothening by Bin Means: In smoothing by bin means, each value in a

bin is replaced by the mean value of the bin.

 Smoothening by Bin Median: In smoothing by bin means, each value in a

bin is replaced by the median value of the bin.

 Smoothening by Bin Boundary: In smoothing by bin boundaries, the

minimum and maximum values in a given bin are identified as the bin

boundaries. Each bin value is then replaced by the closest boundary value.

 Algorithm:

1. Sort the dataset.

2. Partition the dataset into ‗ n‘ segments. Each segment should contain approximately

same number of data elements. Partitioning can be done using either of the

following methods namely: equal width binning, equal frequency binning or

entropy-based binning.

3. Calculate the arithmetic mean or media or replace by boundary (min and max value)

4. Replace each data element in each bin by the calculated mean/ median/ boundaries.

Example: Given data:18,22,6,6,9,14,20,21,12,18,18,16. Illustrate binning by mean, median

and boundary replacement. Given bin depth=3

Step1: Sort the data: 6,6,9,12,14,16,18,18,18,20,21,22,

Step 2: Partition the data into equal frequency bins of size of bin depth(n/d) where n=

no. of elements and d= bin depth

 N/D=12/3=4 bins

 Bin 1: 6, 6 , 9

14

Bin 2: 12,14, 16

Bin 3: 18,18,18

Bin 4: 20, 21, 22

Step 3: Calculate Arithmetic mean

Arithmetic mean= Sum of observations ÷ number of observations

 Bin 1= (6+6+9)/3=21/3=7

Bin 2= (12+14+16)/3= 42/3=14

 Bin 3=(18+18+18)/3= 54/3=18

Bin 4= (20+21+22)/3= 63/3=21

Step 4: Replace each data element in each bin by the calculated mean

 Bin 1: 7, 7, 7

 Bin 2: 14,14,14

 Bin 3: 18,18,18

 Bin 4: 21, 21, 21

 Binning using Median: In this method, Step 1 and step 2 are same.

 Step 3: Calculate Median (50% percentile)

 Median is the observation 2 in each bin

Step 4: Replace each data element in each bin by the calculated mean

 Bin 1: 6, 6, 6

Bin 2: 14,14,14

Bin 3: 18,18,18

Bin 4: 21, 21, 21

 Binning using Boundary Values: In this, we keep the minimum as well as

maximum values.

 Bin 1: 6, 6, 9

 Bin 2: 12,12,16

 Bin 3: 18,18,18

 Bin 4: 20, 20, 22

b) Regression: Regression is used to find a mathematical equation to fit the data to

smooth out the noise. Regression may be linear or multiple. Linear regression is used

to find the best line that fits two variables such that one predicts the other. Multiple

linear regression involves more than two variables are involved.

c) Clustering: This approach is useful for organizing similar data in groups or

clusters. The outliers may be detected by clustering. Data Integration makes data more

comprehensive and more usable.

15

2.2.2 Data Integration

Data Integration is a vital step in which the data acquired from multiple sources is

integrated into a single centralized location. Data Integration makes data comprehensive

and more usable.

The most common approaches to integrate data are:

a) Data Consolidation

b) Data Propagation

c) Data Virtualization

d) Data Warehousing

a) Data consolidation means to consolidate data from several separate sources into

one data store, so that it is available to all the stake holders to enable better decision making.

It involves eliminating redundancies, removing inaccuracies before consolidating to a single

store. The most common data consolidation techniques are ETL (Extract, Transform, Load),

Data virtualization and Data warehousing.

 ETL is the most widely used data consolidation technique. The data is first

extracted from multiple sources, then it is transformed into an understandable

format by using various functions like sorting, aggregating, cleaning etc and then

transfer it to a centralized store like another database or data ware house. The ETL

process cleans, filters, and transforms data, and then applies business rules before

data populates the new source. ETL is further of two types namely Real time ETL

used in real time systems and Batch processing ETL used for high volume

databases.

 Data Virtualization: In this method, the data stays in the original location, but

changes are made in a virtual manner and can be seen in a consolidated manner by

Data Store1

Data Store 2

Integrated Data

Data Store4

Data Store3

16

the users. It is a logical layer that amalgamates data from various sources without

performing actual ETL process. It is an abstraction such that only the required data

is visible to the users without requiring technical details about the location or

structure of the data source. It provides enhanced data security.

 Data Warehousing is the integration of data from multiple sources to a

centralized source to facilitate decision making, reporting and query handling. A

centralized source of data enables better decision making.

b) Data Propagation involves copying data from one location i.e., source to another

location i.e., target location. It is event driven. These applications usually operate online

and push data to the target location. They are majorly useful for real time data movement

such as workload balancing, backup and recovery. Data propagation can be done

asynchronously or synchronously.

 The two methods for data propagation are: Enterprise Application Integration (EAI) and

Enterprise Data Replication (EDR). The key advantage of data propagation is that it can

be used for real-time / near-realtime data movement and can also be used for workload

balancing, backup and recovery. EAI is used majorly for the exchange of messages and

transactions in real-time business transaction processing; whereas for transfer of

voluminous data between databases, is used.

c) Data Virtualization: In this, data is not stored in a single location, but is abstracted and

can be viewed as unified view of data from multiple sources. Data Federation is a form

of data virtualization, supported by Enterprise information technology (EII). EII

products have evolved from two different technological backgrounds – relational

DBMS and XML, but the current trend of the industry is to support both approaches,

via SQL (ODBC and JDBC) and XML (XML Query Language - XQuery - and XML

Path Language - XPath) data interfaces.

d) Data Warehousing is the integration of data from multiple sources to a centralized

source to facilitate decision making, reporting and query handling. A centralized source

of data enables better decision making.

2.2.3 Data Transformation

After the data has been acquired, it is cleaned as discussed above. The clean data may not

be in a standard format. The process of changing the structure and format of data to make it

more usable is called data transformation. Data transformation may be constructive,

destructive, aesthetic or structural.

 Constructive Data Transformation involves adding, copying, and replicating data.

 Destructive Data Transformation involves deleting fields and records.

 Aesthetic Data Transformation involves standardizing salutations or street names.

 Structural Data Transformation involves renaming, moving, and combining

columns in a database.

17

Data Transformation may require smoothing, aggregation, discretization, attribute

Construction, generalization and normalization to make data manageable.

Scripting languages like Python or domain-specific languages like SQL are usually used for

data transformation.

2.2.4 Data Reduction

It is the process of reducing the volume of data such that data integrity is preserved. i.e., the

volume of data is reduced but the results of data mining before and after mining are the

same. Data reduction increasing the efficiency of data mining. It helps in reducing the

storage requirement, reduced computation time and removal of redundancy. The various

techniques used for data mining are: Dimensionality reduction,

numerosity reduction and data compression.

2.2.4.1 Dimensionality Reduction: is the transformation of data from high dimensional

space to a low dimensional space. It is difficult to visualize data that has higher number of

features. Sometimes, most of these features are correlated, and hence redundant. This is

where the need of dimensionality reduction arises. In other words, dimensionality reduction

is the process of reducing the number of random variables under consideration, by obtaining

a set of principal variables. e.g., 3-dimensional data may be reduced to a 2D data. The

various methods used for dimensionality reduction include:

 Wavelet Transformation is mostly used in image compression. It is a lossy method

for dimensionality reduction, where a data vector X is transformed into another

vector X‘, such that both X and X‘ represent the same length. The result of wavelet

transform can be truncated, unlike its original, thus achieving dimensionality

reduction. Wavelet transforms are well suited for data cube, sparse data or data

which is highly skewed.

 Principal Component Analysis (PCA) is applied to skewed and sparse data. In this

method, the entire data set is represented by few independent tuples with ‗n‘

attributes. This method was introduced by Karl Pearson. It works on a condition that

while the data in a higher dimensional space is mapped to data in a lower dimension

space, the variance of the data in the lower dimensional space should be maximum.

It involves the following steps:

i. Construct the covariance matrix of the data.

ii. Compute the eigenvectors of this matrix.

iii. Eigenvectors corresponding to the largest eigenvalues are used to reconstruct

a large fraction of variance of the original data.

Hence, lesser number of eigenvectors are left.

https://towardsdatascience.com/python-data-transformation-tools-for-etl-2cb20d76fcd0
https://towardsdatascience.com/python-vs-sql-comparison-for-data-pipelines-8ca727b34032

18

 Attribute Subset Selection: In this method, a subset of some selected attributes is

created for reducing the volume of data. The goal of attribute subset selection is to find a

minimum set of attributes such that dropping of those irrelevant attributes does not much

affect the utility of data and the cost of data analysis could be reduced.

 Attribute Subset Selection is done by the following methods:

1. Stepwise Forward Selection.

2. Stepwise Backward Elimination.

3. Combination of Forward Selection and Backward Elimination.

4. Decision Tree Induction.

2.2.4.2 Numerosity Reduction: is the reduction of original data and its representation in a

smaller form. It can be done in two ways: parametric and non-parametric numerosity

reduction.

i) Parametric Numerosity Reduction: In this method, only the data parameters

are stored, instead of the entire original data. The data is represented using some

model to estimate the data, so that only parameters of data are required to be

stored, instead of actual data. Regression and Log-Linear methods are used for

creating such models.

ii) Non- Parametric Numerosity Reduction methods are used for storing reduced

representations of the data include histograms, clustering, sampling and data cube

aggregation.

 Histogram is the data representation in terms of frequency. It uses binning to

approximate data distribution and is a popular form of data reduction.

 Clustering divides the data into groups/clusters. This technique partitions the

whole data into different clusters. In data reduction, the cluster representation of

the data are used to replace the actual data. It also helps to detect outliers in data.

 Sampling can be used for data reduction because it allows a large data set to be

represented by a much smaller random data sample (or subset).

 Data Cube Aggregation involves moving the data from detailed level to a fewer

number of dimensions. The resulting data set is smaller in volume, without loss

of information necessary for the analysis task.

2.2.4.3 Data Compression is a technique in which the original data is compressed for

reduction. This compressed data can again be reconstructed to form the original data. If the

data is reconstructed without losing any information, then it is a ‗lossless‘ data reduction.

2.3 DATA MINING

Data mining is the process that helps in extracting information from a given data set to

identify trends, patterns, and useful data. The objective of using data mining is to make

data-supported decisions from enormous data sets. Different types of data can be mined

such as Data stored in database, data warehouse, transactional data and other types of data

19

such as data streams, engineering design data, sequence data, graph data, spatial data,

multimedia data, and more. In recent data mining projects, various major data mining

techniques have been developed and used, including association, classification, clustering,

prediction, sequential patterns, and regression.

 Association is a data mining technique useful to discover a link between two or

more items. It uses if-then statements to show the probability of interactions

between data items within large data sets. It finds a hidden pattern in the data set. It

is commonly used to help sales correlations in data or medical data sets.

 Clustering is a data mining technique in which clusters are created of objects that share

the same characteristics. Clusters relate to hidden patterns. It is based on

unsupervised learning.

 Classification classifies items or variables in a data set into predefined groups or

classes. It is based on unsupervised learning.

 Prediction is used in predicting the relationship that exists between independent and

dependent variables as well as independent variables alone. It can be used to predict

future trends. It analyses past events or instances in the right sequence to predict a

future event.

 Sequential patterns is a data mining technique specialized for evaluating sequential

data to discover sequential patterns. It comprises of finding interesting subsequence in

a set of sequences, where the stake of a sequence can be measured in terms of

different criteria like length, occurrence frequency, etc.

2.3.1 Data Mining Applications

Data mining is useful in predictions, classification, clustering and trends, which makes it

applicable to many domains like health care, fraud detection, education, market basket

analysis, manufacturing, sales, customer relationship management, finance and banking etc.

2.4 DATA INTERPRETATION

The process of reviewing data through some predefined processes to be able to assign some

meaning to the data and arrive at a relevant conclusion is called data interpretation. It

involves taking the result of data analysis, making inferences on the relations studied, and

using them to reach conclusions and develop recommendations. Data interpretation is done

by analyst to make inferences from the data. There are two ways to interpret data namely

Qualitative and Quantitative.

Qualitative Data Interpretation: Qualitative data also called categorical data, does not

contain numbers, it consists of text, pictures, observations, symbols etc. The interpretation of

patterns and themes in qualitative data is done using qualitative methods.

Quantitative Data Interpretation is done on quantitative data i.e. numerical data. It

involves statistical methods such as mean, standard deviation, variance, frequency

distribution, regression etc. Data analysis and interpretation, regardless of method and

qualitative/quantitative status, may include the following characteristics:

 Data identification and explanation

20

 Comparing and contrasting of data

 Identification of data outliers

 Future predictions

Data Interpretation is helpful in improving processes by identifying problems. Data

interpretations is used for predicting trends after studying the patterns in the data. It is helpful

in better decision making.

2.5 SUMMARY

This chapter introduces the various facets of data and the varius data preprocessing

techniques. A brief introduction to dat mining and data interpretation is provided in this

chapter.

2.6 PRACTICE QUESTIONS

Q1. What are the various types of data?

Q2.Explain the concept of data preprocessing. What are the techniques used for

preprocessing of data?

Q3. Write a short note on Data mining.

Q4. What are the techniques used for data mining?

Q5. What is the importance of data Interpretation?

21

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT III: REPRESENTATION OF DATA

STRUCTURE

3.0 Objectives

3.1 Big Data Analytics

3.2 Data Science – working

3.3 Facets of Data

 3.3.1 Natural Language Data

 3.3.2 Machine Generated Data

 3.3.3 Streaming Data

 3.3.4 Acoustic, Video and Image Data

 3.3.5 Sensor Data

 3.3.6 Graph/ Network Data

3.4 Multiple Problems in Handling Large Datasets

3.5 General Techniques for Handling Large Data

 3.5.1 Choosing the Right Algorithm

 3.5.2 Right Data Structure

 3.5.3 Choosing the Right Tools

3.6 Distributing Data Storage and Processing with Frameworks

 3.6.1 Hadoop

 3.6.2 Apache Spark

 3.6.3 Apache Storm

 3.6.4 Samza

 3.6.5 Flink

3.7 Summary

3.8 Practice Questions

22

3.0 OBJECTIVES

1. To familiarize with the data representation and types of data

2. To familiarize with the general techniques of handling data

3.1 BIG DATA ANALYTICS

The assortment of any kind of data which is large, highly complex and difficult to manage

and handle in the real time scenario with the traditional management techniques becomes the

Big Data. The most extensively technique for the management of data was Relational DBMS

which was a kind of dataset that fits in all the scenarios for the storage, manipulation and

interpretation of data but it failed in case of big data. A groundbreaking study in 2013

reported 90% of the entirety of the world‘s data has been created within the previous two

years. In the previous two years researchers have composed and handled data which is 9

times the data being processed in the previous 1000 years of the survival. As per the

statistical institute, already 2.7 zettabytes of data have been generated and by 2025 it might

escalate to a limit beyond belief which ca be 100zettabytes or even more.

What do we do with all of this data? How do we make it useful to us? What are its real-world

applications? These questions are the domain of data science.

3.2 DATA SCIENCE - WORKING

In order to handle the query for complete in depth and a sophisticated approach for the

exploration of the raw unprocessed data into the real time multiple disciplines with the

expertise in machine learning and AI based dimensions, data science gives the solution with

the most advanced means and methods. The scrutiny of the relevant information from the

irrelevant raw data and pass on or forward only the most vital data for the enhancing the

computing efficiency with the revolution in the fields of engineering, mathematics, statistics,

advanced computing and visualizations. The data science is the basic field of exploration of

data where the researchers or the data scientists also rely heavily on artificial intelligence for

the creation of simulated models and then predicting the values of the parameters with the

algorithms designed for manipulation of data into information. The working in the field of the

data science is thereby based on the types of data being explored and manipulation needed

e.g., if the simple data in form of tables is available then RDBMS is used and if image data is

present then RDBMS fails.

3.3 FACETS OF DATA

In data science and big data, the data required for the manipulation and interpretation

changes with the change in the types of tools and techniques applied in the algorithm. The

types of the data explored in the field of data science can be categorized as follows:

• Structured

• Unstructured

• Natural language

• Machine-generated

• Streaming

https://www.sciencedaily.com/releases/2013/05/130522085217.htm

23

• Acoustic data, video, and images

• Sensor Data

• Graph-based/ Network data

As in the previous chapter we have explored the data categories structured versus

unstructured data. Let‘s talk about the rest of the representation of data and the explore the

characteristics. The structured data is the main type of data explored in a model and can be

expressed as a record with a field of fixed length and dimension. The RDBMS and the Excel

data is usually the structured data with known or used defined datatypes with structural

information. Bu the unstructured data is data that may not fit any kind of mathematical or

simulated model for the study of data due to the context-specific or varying nature of the

stored raw data. One example of unstructured data is the email.

3.3.1 Natural Language Data

Another special type of unstructured data is the Natural language data with the

challenging approach to progression the data and manipulate it. The handling of large amount

of natural language data and processing in itself necessitates the data scientists to acquire the

knowledge of specific data science techniques and linguistics. The natural language

processing community has had success in entity recognition, topic recognition,

summarization, text completion, and sentiment analysis, but models trained in one domain

don‘t generalize well to other domains. Even state-of-the-art techniques aren‘t able to

decipher the meaning of every piece of text. The meaning of the same words can vary when

coming from someone upset or joyous. This is illustrated in figure 3.1.

Fig. 3.1.1 Perfect example of Natural Language data [12]

24

3.3.2 Machine Generated Data

The machine or the computer has the capability to generate the data based on the

requirement of the developer or the application developed. The data generated by the

machine or any robotic process without the intervention of a human is a fast process and also

help to forecast certain information for the application, or other machine without human

intervention. Machine-generated data is becoming a major data resource and will continue to

do so. Wikibon has forecast that the market value of the industrial Internet (a term coined by

Frost & Sullivan to refer to the integration of complex physical machinery with networked

sensors and software) will be approximately $540 billion in 2020. IDC (International Data

Corporation) has estimated there will be 26 times more connected things than people in 2020.

This network is commonly referred to as the internet of things.The analysis of machine data

relies on highly scalable tools, due to its high volume and speed. Examples of machine data

are web server logs, call detail records, network event logs, and telemetry. This is illustrated

by figure 3.2.

3.3.3 Streaming Data

The streaming data when being administered for the information can take nay form and

format which is an interesting property. This type of data only gets loaded into the server or

the data warehouse when any relevant activity occurs or there‘s an interpretable change in the

parameters. The data is not accessed in batch mode. This type of data is not actually a

different category but the system for the processing of such varying formats needs to be

adaptive to the minutest variations in the information to be handled.

Examples are the ―What‘s trending‖ on Twitter, live sporting or music events, and the stock

market.

3.3.4 Acoustic, video and image data

The world of animation and digitization has developed multimedia datasets with audio,

video and images. These types of datsets can be stored, handled and interpreted with the

Object-Oriented Databases. The databases include the class inheritance and interface in a pre-

specified format for handling the complexity of the data and finding its application in Digital

libraries, video-on demand, news-on demand, musical database, etc. The other type of

Fig. 3.1.2 Example of machine generated data [12]

25

information in the multimedia datasets can be represented and reproduced as sensory

experiences - touch, sense and hear which are typically leading to storing a huge amount of

data handled by digitizing. Furthermore, data compression for images and sounds can exploit

limits on human senses performed by throwing away information not needed for good-quality

experience which is performed by compression. There are certain limitations when you deal

with such a large amount of data are described below:

1. Range is limited and might lead to misinformation

• only certain pitches and loudness can be heard

• only certain kinds of light are visible, and there must be enough / not too much

light

2. Discrimination due to the descriptive features of the data

• pitches, loudness, colors, intensities can‘t be distinguished unless they are

different enough (color1, color2)

3. Coding the information of the sensory data into digital world.

• nervous systems ―encode‖ experience, e.g., rods and cones in the eye

3.3 REPRESENTATION OF IMAGE DATA

The image data is expanding vastly and due to enhancement in the cameras the encoding is

needed for computation and manipulation of image data. The techniques are vector array-

based encoding and bit map-based encoding.

Vector graphics encode the image sequences as a series of lines or curves. The process is

expensive in term of image computation but smoothly rescales.

Bit map encode the image as an array of pixels. The encoding process is cost effective in

terms of computation but scales inefficiently leading to loss of image data.

The Basic idea of image data is the array of receptors where each receptor records a pixel by

―counting‖ the number of photons that strike it during exposure. The Red, green, blue

recorded separately at each point on image produced by group of three receptors where each

receptor is behind a color filter.

Representation of Acoustic data: In recent years, the analysis of acoustic characteristics of

speech and sound has been one of the areas that data mining has found its way through. The

present research study is also related to this topic which aims to detect the gender of the

speaker by using the acoustic feature of his voice. When an instrument is played or a voice

speaks, periodic (many times per second) changes occur in air pressure, which we interpret as

acoustics. For the representation of the acoustic data compression is needed. Codecs

(compression/decompression) implement various compression/decompression techniques

which are either lossy or lossless. The lossy compression of the acoustic data may lead to loss

of certain information as it is non-repetitive: MPEG (like JPEG) a family of perceptually-

based techniques are all lossy techniques. While the other type of techniques is where the

information of the acoustic data is preserved in which WMA Lossless, ALAC, MPEG-4 ALS

methods are applied.

26

The encoding of data in form of the sounds heard or the visuals captured are highly

challenging for the data scientists to process the information. Some tasks performed by the

human brain have been of great difficulty to the computers for the recognition of the object in

the images. MLBAM (Major League Baseball Advanced Media) announced in 2014 that

they‘ll increase video capture to approximately 7 TB per game for the purpose of live, in-

game analytics. The higher resolution cameras and acquiring sensors have the capability to

capture the motion of ball and the player in a real time scenario e.g., the path taken by a

defender relative to two baselines.

Recently a company called DeepMind succeeded at creating an algorithm that‘s

capable of learning how to play video games. This algorithm takes the video screen as input

and learns to interpret everything via a complex process of deep learning. It‘s a remarkable

feat that prompted Google to buy the company for their own Artificial Intelligence (AI)

development plans. The learning algorithm takes in data as it‘s produced by the computer

game; it‘s streaming data.

3.3.5 Sensor Data

Any input acquired from the physical environment which is detected and responded from

the devices as an output is the collaborative approach of the sensor data. The extracted data

from the sensor devices act as an output for a real time system or as an input to another

system for the performance of any activity. These sensors can be used to perceive any type

of physical element with the approach to detect the events or changes in the environment. A

sensor is always used with other electronics, as simple as a lamp or as complex as a

computer. Advanced chip technology makes it possible to integrate all the required functions

at low cost, in a small volume and with low energy consumption. The number of sensors

around us is increasing rapidly. Estimates vary, but many expect that by 2030 more than 500

billion sensors will be connected to each other via the Internet of Things (IoT).

The exponential growth of the IoT based systems leads to ever demanding rise in the

input sensor devices which are responsible for the collection, storage and interpretation of the

captured data. In addition, consumers, organizations, governments and companies themselves

produce more and more data, for example on social media. The amount of data is growing

exponentially. People speak of Big Data when they work with one or more datasets that are

too large to be maintained with regular database management systems.

The pros of applying sensor data to the input devices is that the decisions of the IoT

devices are subjected to information accessed from the evidences and not from any kind of

irrelevant details and subjective experiences. This type of knowledge base makes the system

cost effective with the enhanced streamlined processes, boosted product quality and better

services. By combining data intelligently and by interpreting / translating, new insights are

created that can be used for new services, applications and markets. This information can also

be combined with data from various external sources, such as weather data or demographics.

27

3.3.6 Graph/ Network Data

―Graph data‖ is the type of data which can be represented as graph with a special

characteristic of comprising the mathematical graph theory into the mined information.

―Graph‖ in the network data generally represents a model in the statistical and mathematical

domain with pair wise relationship in the constituent objects. Graph or network data is, in

short, data that focuses on the relationship or adjacency of objects. The representation of the

graph models includes the nodes, edges, and relationships between the stored data in the

nodes. Graph-based data is a natural way to represent social networks, and its structure allows

you to calculate specific metrics such as the influence of a person and the shortest path

between two people.

Examples of graph-based data can be found on many social media websites (figure 3.3). For

instance, on LinkedIn you can see who you know at which company. Your follower list on

Twitter is another example of graph-based data. Graph databases are used to store graph-

based data and are queried with specialized query languages such as SPARQ.

3.4 MULTIPLE PROBLEMS IN HANDLING LARGE DATASETS

The multiple problems in the large datasets are discussed by numerous data scientists

with the need to understand the growing demand of the data and handling the mathematical

as well as statistical operations for the manipulation of the data. In the last two years, over

90% of the world‘s data was created, and with 2.5 quintillion bytes of data generated daily, it

is clear that the future is filled with more data, which can also mean more data problem in

context to the following:

• Collecting, storing, sharing and securing data

• Creating and utilizing meaningful insights from their data.

Some common big data problems and the respective solutions have been discussed below.

1. Lack of Understanding

The lack of understanding of the mined data in the data science-based companies might

lead to knocked down the performance in many areas. Many of the major areas for the data-

Fig. 3.1.3 Friends in social network are example of Graph Network[12]

28

based companies were: depreciate the expenses of mining information, innovate new ideas

for interpretation, new product launching, enhance performance and so on. Despite the

benefits, companies have been slow to adopt data for a data centric approach.

Solution: Follow a top-down approach for the introduction and manipulation of the data

science based on the procedures followed up. In case of lack of a data science professional,

the consultancy services or an IT proficient with data science knowledge should be hired to

get a better understanding.

2. High Cost of Data Solutions

 The companies have understood that buying and maintaining of necessary components make

the system less cost effective. In addition to cost of the servers and the software-based

storage, the high-end cost of the data science experts makes the system time consuming.

Solution: The solution is to understand the need and use of the data with a collaborative

method to find a goal, conduct a research or solution and implement the execution with a

plan.

3. Too Many Choices

Coined as the ―paradox of choice,‖ Schwartz explains how option overload can cause

inaction on behalf of a buyer. In the world of data and data tools, the options are almost as

widespread as the data itself, so it is understandably overwhelming when deciding the

solution that‘s right for the business, especially when it will likely affect all departments and

hopefully be a long-term strategy.

Solution: Like understanding data, a good solution is to leverage the experience of your in-

house expert, perhaps a CTO. If that‘s not an option, hire a consultancy firm to assist in the

decision-making process. Use the internet and forums to source valuable information and ask

questions.

4. Complex Systems for Managing Data

The systems to understand the data management and finding a relevant solution for the

manipulation of data is in itself a problem Due to the vast expanse of the different types of

data with the IT teams creating their own data during the process of data handling results in

increased complexity.

Solution: Find a solution with a single command center, implement automation whenever

possible, and ensure that it can be remotely accessed 24/7.

5. Security Gaps

Another important aspect of the data science is the security of the data and the biasing of

the large amount of data is always possible. In order to handle it the encryption and

decryption must be performed with the data store with proper storage.

Solution: The data need to be handled with automated security updates of the data warehouse

and automated backups.

29

6. Low Quality and Inaccurate Data

Having data is only useful when it‘s accurate. Low quality data not only serves no

purpose, but it also uses unnecessary storage and can harm the ability to gather insights from

clean data.

A few ways that data can be considered low quality is:

• Inconsistent formatting (which will take time to correct and can happen when the

same elements are spelled differently like ―US‖ versus ―U.S.‖),

• Missing data (i.e. a first name or email address is missing from a database of

contacts),

• Inaccurate data (i.e. it‘s just not the right information or the data has not be

updated).

• Duplicate data (i.e. the data is being double counted)

• If data is not maintained or recorded properly, it‘s just like not having the data in

the first place.

Solution: Begin by defining the necessary data you want to collect (again, align the

information needed to the business goal). Cleanse data regularly and when it is collected from

different sources, organize and normalize it before uploading it into any tool for analysis.

Once you have your data uniform and cleansed, you can segment it for better analysis.

7. Compliance Hurdles

When collecting information, security and government regulations come into play.

With the somewhat recent introduction of the General Data Protection Regulation (GDPR),

it‘s even more important to understand the necessary requirements for data collection and

protection, as well as the implications of failing to adhere. Companies have to be compliant

and careful in how they use data to segment customers for example deciding which customer

to prioritize or focus on. This means that the data must: be a representative sample of

consumers, algorithms must prioritize fairness, there is an understanding of inherent bias in

data, and Big Data outcomes have to be checked against traditionally applied statistical

practices.

Solution: The only solution to adhere to compliance and regulation is to be informed and

well-educated on the topic. There‘s no way around it other than learning because in this case,

ignorance is most certainly not bliss as it carries both financial and reputational risk to your

business. If you are unsure of any regulations or compliance you should consult expert legal

and accounting firms specializing in those rules.

3.5 General Techniques for Handling Large Data

The multiple challenges have been discussed in the section above and the solutions

for the defies are categorized based on the algorithms and out of memory errors. Never-

ending algorithms, out-of-memory errors, and speed issues are the most common challenges

you face when working with large data. In this section, we‘ll investigate solutions to

overcome or alleviate these problems.

30

The solutions can be divided into three categories: using the correct algorithms,

choosing the right data structure, and using the right tools. (Figure 3.4)

There is no such relationship between the problems discussed in the section above and

the solutions to be incorporated. There are multiple solutions to a given problem which can

also handle the issue of memory and computational overhead. This type of data science

solutions can be generalized for challenges in the exploration of data. For instance, the

compression and decompression of the data set help resolve the memory issues but this also

affects computation speed with a shift from the slow hard disk to the fast CPU. Contrary to

RAM (random access memory), the hard disc will store everything even after the power goes

down, but writing to disc costs more time than changing information in the fleeting RAM.

When constantly changing the information, RAM is thus preferable over the (more durable)

hard disc.

3.5.1 Choosing the Right Algorithm

T

The selection of an effective algorithm for the processing of the data can provide

better results as compared to the enhanced hardware. In order to perform the predictive or

Fig. 3.1.4 Overview of solutions for handling large data sets[12]

Fig. 3.1.5 The algorithms for handling the Big Data[12]

31

selective analysis the best-chosen algorithm need not necessarily load the complete data into

the memory or RAM, it rather supports the parallel computations with parallel or distributed

databases. In this section three types of algorithms have been discussed that can perform the

computations parallelly reducing the computation or memory overhead: online algorithms,

block algorithms, and MapReduce algorithms, as shown in figure 3.5.

Several, but not all, machine learning algorithms can be trained using one observation

at a time instead of taking all the data into memory. The model can be trained based on the

current parameters and the previous parameter values can be made to forget by the algorithm.

This technique of ―use and forget ‖ helps to attain high memory effectiveness in the system.

This way as the new data values is acquired by the algorithm, the previous values are

forgotten or overwritten but the effect can be witnessed or observed in the performance

metrics of the proposed model. Most online algorithms can also handle mini-batches; this

way, the data science exert or the developer can feed the batches of 10 to 1,000 observations

at one single instance and then applying the sliding window protocol to access the data. This

learning can be handled by multiple means discussed as follows:

 Full batch learning (also called statistical learning) —Feed the algorithm all

the data at once.

 Mini-batch learning —Feed the algorithm a spoonful (100, 1000, ...,

depending on what your hardware can handle) of observations at a time.

 Online learning —Feed the algorithm one observation at a time.

 3.5.2 Right Data Structure

The algorithms as discussed can enhance the performance and execution for the

manipulation of the data in the warehouse. This process in the data science field actually

leads to fragmentation in the raw data so that is the reason the structures for the storage of

the data is equally important for the data scientist or a data science researcher. Data

structures have different storage requirements, but also influence the performance of

CRUD (create, read, update, and delete) and other operations on the data set.

Fig. 3.1.6 Data structures applied in the data science[12]

32

 Sparse Data

Most of the IT professional and the data scientist understand the representation

through a sparse matrix. Similarly, the sparse data illustration can be done by giving a

minimal detail about the data as compared to the total number of entries. As per figure

3.7, the conversion of the data from the text to binary or an image to binary can be

expressed as the sparse data. Imagine a set of 100,000 completely unrelated Twitter

tweets. Most of them probably have fewer than 30 words, but together they might have

hundreds or thousands of distinct words. For this reason, the text documents are

processed for the stop words, cut into fragments and stored as vectors instead of the

binary information. The basic idea is that any word present in the tweet is expressed as 1

and not in tweet is expressed as 0 resulting in sparse data indeed. But the matrix

generated would require equal memory as compared to any other matrix even though it

has a little information.

 Tree Structure

Trees is a special type of data structure that has faster retrieval of information in

comparison to the table or sparse data. In these data structures the root node is the first

directory for accessing the information and the child nodes are the sub directories of the

root node. The information can be accessed form the child or leaf nodes by either using

pointers or indexing of the tree structure. The figure 3.8 helps the researcher to

understand the process of information retrieval in the tree structure.

33

 Hash Tables

The process of the calculation of the key for each data entry and allotting the key to

the relevant bucket is the important process of the hash table structure for th storage of

data. The process of storage and handling in the hash table makes it more reliable source

for the retrieval of information based on the key value. This way you can quickly retrieve

the information by looking in the right bucket when you encounter the data. Dictionaries

in Python are a hash table implementation, and they‘re a close relative of key-value

stores. You‘ll encounter them in the last example of this chapter when you build a

recommender system within a database. Hash tables are used extensively in databases as

indices for fast information retrieval.

3.5.2 Choosing the Right Tools

As discussed earlier in section 3.4.1 and 3.4.2 with the need to have a right algorithm

and the right data structure, the requirement of a good tool is also important. The right

tool can be a Python library or at least a tool that‘s controlled from Python, as shown

figure 3.9.

Python has a number of libraries that can help you deal with large data. They range

from smarter data structures over code optimizers to just-in-time compilers. The

following is a list of libraries we like to use when confronted with large data:

Cython —The closer to the actual hardware of a computer, the more vital it is for the

computer to know what types of data it has to process. For a computer, adding 1 + 1 is

different from adding 1.00 + 1.00. The first example consists of integers and the second

consists of floats, and these calculations are performed by different parts of the CPU.

Python needs no specifications of the types of the data but the compiler can itself interpret

the values based on the integer or float. This is although a slow process and so a superset

of python can be used for the solution which forces the user to define the data type before

the execution and hence can be implemented much faster. See http://cython.org/ for more

information on Cython.

Fig. 3.1.7 Tools applied by data scientist for handing data[12]

34

Numexpr —Numexpr is at the core of many of the big data packages, as is NumPy for

in-memory packages. Numexpr is a numerical expression evaluator for NumPy but can be

many times faster than the original NumPy. https://github.com/pydata/numexpr.

Numba —Numba is the package which compiles (just-in-time compiling) the code for

the data manipulation and handling before actually executing it which makes it faster and

less prone to errors. With the user gets a platform to develop a high level code wit the

speed of the compilation as in C. http://numba.pydata.org/.

Bcolz —Bcolz helps you overcome the out-of-memory problem that can occur when

using NumPy. It can store and work with arrays in an optimal compressed form. It not

only slims down your data need but also uses Numexpr in the background to reduce the

calculations needed when performing calculations with bcolz arrays.

http://bcolz.blosc.org/.

Blaze — Blaze is ideal in case the data scientist use the power of a database backend

but like the ―Pythonic way‖ of working with data. Blaze will translate your Python code

into SQL but can handle many more data stores than relational databases such as CSV,

Spark, and others. Blaze delivers a unified way of working with many databases and data

libraries. http://blaze.readthedocs.org/en/latest/index.html.

Theano —Theano enables you to work directly with the graphical processing unit

(GPU) and do symbolical simplifications whenever possible, and it comes with an

excellent just-in-time compiler. On top of that it‘s a great library for dealing with an

advanced but useful mathematical concept: tensors.

http://deeplearning.net/software/theano.

3.6 DISTRIBUTING DATA STORAGE AND PROCESSING WITH FRAMEWORKS

New big data technologies such as Hadoop and Spark make it much easier to work

with and control a cluster of computers. Hadoop can scale up to thousands of computers,

creating a cluster with petabytes of storage. This enables businesses to grasp the value of

the massive amount of data available. ―Big data Analytics‖ is a phrase that was coined to

refer to amounts of datasets that are so large, traditional data processing software simply

can‘t manage them. For example, big data is used to pick out trends in economics, and

those trends and patterns are used to predict what will happen in the future. These vast

amounts of data require more robust computer software for processing, best handled by

data processing frameworks. These are the top preferred data processing frameworks,

suitable for meeting a variety of different needs of businesses.

3.6.1 Hadoop

This is an open-source batch processing framework that can be used for the

distributed storage and processing of big data sets. Hadoop relies on computer clusters

and modules that have been designed with the assumption that hardware will inevitably

fail, and those failures should be automatically handled by the framework.

There are four main modules within Hadoop. Hadoop Common is where the libraries

and utilities needed by other Hadoop modules reside. The Hadoop Distributed File

System (HDFS) is the distributed file system that stores the data. Hadoop YARN (Yet

Another Resource Negotiator) is the resource management platform that manages the

http://deeplearning.net/software/theano

35

computing resources in clusters, and handles the scheduling of users‘ applications. The

Hadoop MapReduce involves the implementation of the MapReduce programming model

for large-scale data processing.

Hadoop operates by splitting files into large blocks of data and then distributing those

datasets across the nodes in a cluster. It then transfers code into the nodes, for processing

data in parallel. The idea of data locality, meaning that tasks are performed on the node

that stores the data, allows the datasets to be processed more efficiently and more quickly.

Hadoop can be used within a traditional onsite datacenter, as well as through the cloud.

3.6.2 Apache Spark

Apache Spark is a batch processing framework that has the capability of stream

processing, as well, making it a hybrid framework. Spark is most notably easy to use, and

it‘s easy to write applications in Java, Scala, Python, and R. This open-source cluster-

computing framework is ideal for machine-learning, but does require a cluster manager

and a distributed storage system. Spark can be run on a single machine, with one executor

for every CPU core. It can be used as a standalone framework, and you can also use it in

conjunction with Hadoop or Apache Mesos, making it suitable for just about any

business.

Spark relies on a data structure known as the Resilient Distributed Dataset (RDD).

This is a read-only multiset of data items that is distributed over the entire cluster of

machines. RDDs operate as the working set for distributed programs, offering a restricted

form of distributed shared memory. Spark is capable of accessing data sources like

HDFS, Cassandra, HBase, and S3, for distributed storage. It also supports a pseudo-

distributed local mode that can be used for development or testing.

The foundation of Spark is Spark Core, which relies on the RDD-oriented functional

style of programming to dispatch tasks, schedule, and handle basic I/O functionalities.

Two restricted forms of shared variables are used: broadcast variables, which reference

read-only data that has to be available for all the nodes, and accumulators, which can be

used to program reductions. Other elements included in Spark Core are:

Spark SQL, which provides domain-specific language used to manipulate Data

Frames.

Spark Streaming, which uses data in mini-batches for RDD transformations, allowing

the same set of application code that is created for batch analytics to also be used for

streaming analytics. Spark MLlib, a machine-learning library that makes the large-scale

machine learning pipelines simpler. GraphX, which is the distributed graph processing

framework at the top of Apache Spark.

3.6.3 Apache Storm

This is another open-source framework, but one that provides distributed, real-time

stream processing. Storm is mostly written in Clojure, and can be used with any

programming language. The application is designed as a topology, with the shape of a

Directed Acyclic Graph (DAG). Spouts and bolts act as the vertices of the graph. The

idea behind Storm is to define small, discrete operations, and then compose those

operations into a topology, which acts as a pipeline to transform data.

36

3.6.4 Samza

Samza is another open-source framework that offers near a real-time, asynchronous

framework for distributed stream processing. More specifically, Samza handles

immutable streams, meaning transformations create new streams that will be consumed

by other components without any effect on the initial stream. This framework works in

conjunction with other frameworks, using Apache Kafka for messaging and Hadoop

YARN for fault tolerance, security, and management of resources.

3.6.5 Flink

Flink is a hybrid framework, open-source, and stream processes, but can also manage

batch tasks. It uses a high-throughput, low-latency streaming engine that is written in Java

and Scala, and the runtime system that is pipelined allows for the execution of both batch

and stream processing programs. The runtime also supports the execution of iterative

algorithms natively. Flink‘s applications are all fault-tolerant and can support exactly-

once semantics. Programs can be written in Java, Scala, Python, and SQL, and Flink

offers support for event-time processing and state management.

3.7 SUMMARY

Data science involves using methods to analyze massive amounts of data and extract

the knowledge it contains. You can think of the relationship between big data and data

science as being like the relationship between crude oil and an oil refinery. Data science

and big data evolved from statistics and traditional data management but are now

considered to be distinct disciplines.

The foremost aspect for the data scientist to conduct the refining of the raw data is the

representation of data dealing with the problems of big data. Another aspect of the

dealing with the problems of big data is to perform the processing of the big data with the

frameworks. For this multiple special type of data have been explored.

There are multiple problems being faced by the data scientists for the processing of

the raw data and mining it into useful and relevant information. Luckily, there are

pragmatic solutions that companies can take to overcome their data problems and thrive

in the data-driven economy. The problems and the relevant solutions have been discussed

in the chapter. Data processing frameworks are not intended to be one-size-fits-all

solutions for businesses. Hadoop was originally designed for massive scalability, while

Spark is better with machine learning and stream processing. A good IT services

consultant can evaluate your needs and offer advice. What works for one business may

not work for another, and to get the best possible results, you may find that it‘s a good

idea to use different frameworks for different parts of your data processing.

37

3.8 PRACTICE QUESTIONS

Q1. Discuss the various representation techniques of different data types.

Q2.What are the issues that are faced in handling large data?

Q3. Explain briefly the techniques to handle large data.

Q4.What are the popular frameworks for big data storage?

38

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT IV: DATA ACQUISITION AND PROCESSING

STRUCTURE

4.0 Objectives

4.1 Data Science Ethics

 4.2 Data Science – Good Aspects for Technology

 4.3 Owners of Data

 4.3.1 Responsibilities of the Data Owner

 4.3.2 The Importance of Assigning Data Owners

 4.3.3 Identification of Data Owners: Three Questions to Ask

 4.4 Different Aspects of Privacy

 4.5 Five C’ s of Data Science

 4.5.1 Consent

 4.5.2 Clarity

 4.5.3 Consistency and trust

 4.5.4 Control and transparency

 4.5.5 Consequences

 4.6 Diversity – Inclusion

 4.7 Future Trends

 4.8 Summary

 4.9 Practice Questions

39

4.1 OBJECTIVE

1. To familiarize with the Data Science Ethics

2. To familiarize with different aspects of privacy

3. To familiarize with the future trends of data Science

4.2 DATA SCIENCE ETHICS

 The skill to extract or mine the relevant patterns and the transforming capability to

revolutionize the products in data science helps to bring a positive change in the social and

technological sphere making it ethically neutral. It does not come with its own perspective of

either: what is correct or incorrect; nor: what is good or bad in using it. There is no such kind

of a value-based framework while the companies working on the data store have a value-

based system for the handling of the information. Anything which is private or protected is

not for anyone to access except the administrator or the data scientist himself/herself. The

problems of the ethical mishandling of data and the relevant solutions to the problems must

be able to amalgamate with the ethics of the companies working in Bigdata.

The future of the technology world is in the hands of machine learning techniques

with AI based systems where data science is the solution for the data on which these systems

are trained. The data science is kind of fuel for he working intelligent systems as there

training can be done on millions of raw data and all of it can be mined or extracted from the

data science sources through the extractive approach of the data scientists. Data Ethics is a

rapidly improvising field-of-study. The IT professionals and the data scientist work for the

collection, sharing and the manipulation of data which is done by keeping ethics in the

exploration of data and are sometimes even forced to deal with the ethics to avoid any kind of

negative public opinion. Loss of ethics sometimes can prove to be alienating to the reputation

and work culture of any kind of organization.

4.3 DATA SCIENCE – GOOD ASPECTS FOR TECHNOLOGY

Data science involves a plethora of disciplines and expertise areas to produce a holistic,

thorough and refined look into raw data. The professionals might be trained for the handling,

manipulation and the interpretation of data but the most important and vital part of the data

science is to perform the scrutiny of the relevant information from the disarrayed or

unorganized form of raw data and only interconnect or forward only those data values which

are of vital importance for the invention or the improvisation of the existing system. These

reasons are sufficient enough for the data scientists to completely depend upon the existing

technological advancement in the field of machine learning or deep learning with the ability

to create the simulated models and predict the values in the models with the proposed

algorithms and techniques.

To acclimatize the organization with the ethical data science, there‘s a need to understand

what actually are the ethics about data science with the cost requirement for the

implementation of ethical values and what can be the ways to execute such practices.

40

There are several ways and means with the respective solutions for the same.

Firstly, the data scientist needs to understand about the daintiness of the information in

the data store. With this the relevant implementation or the operations can be performed on

the data keeping in the view the consequences with improper or unacceptable access of the

data for information. Indeed, the security perspective in computer or network has proved

many times that ignoring the consequences of accessing the data unethically might cause a

trouble to the data professionals or the company as a whole in terms of loss of reputation or

money.

With the available systems it is difficult for any data scientist to predict the inevitable

unethical uses of the data but with the AI based techniques especially using machine learning

and deep learning, a prediction can be made for the unintended consequences. For example,

Facebook‘s ―Year in Review‖ that reminded people of deaths and other painful events. This

can be handled by the data professionals in the field of data science by keeping in view the

patterns of the data to be explored and how to think of better means to represent the data with

a new or enhanced approach.

Another important step to stop the data mining if the administrator finds any kind of

problem in the production line. This idea goes back to Toyota‘s Kanban: any assembly line

worker can stop the line if they see something going wrong. The line doesn‘t restart until the

problem is fixed. Workers don‘t have to fear consequences from management for stopping

the line; they are trusted, and expected to behave responsibly

The issue lurking behind all of these concerns is, of course, corporate culture. Corporate

environments can be hostile to anything other than short-term profitability. That‘s a

consequence of poor court decisions and economic doctrine, particularly in the U.S. But that

inevitably leads us to the biggest issue: how to move the needle on corporate culture. Susan

Etlinger has suggested that, in a time when public distrust and disenchantment is running

high, ethics is a good investment. Upper-level management is only starting to see this;

changes to corporate culture won‘t happen quickly. Users want to engage with companies and

organizations they can trust not to take unfair advantage of them. Users want to deal with

companies that will treat them and their data responsibly, not just as potential profit or

engagement to be maximized. Those companies will be the ones that create space for ethics

within their organizations. We, the data scientists, data engineers, AI and ML developers, and

other data professionals, have to demand change. We can‘t leave it to people that ―do‖ ethics.

We can‘t expect management to hire trained ethicists and assign them to our teams. We need

to live ethical values, not just talk about them. We need to think carefully about the

consequences of our work. We must create space for ethics within our organizations. Cultural

change may take time, but it will happen—if we are that change. That‘s what it means to do

good data science

4.4 OWNERS OF DATA

Data owners are either individuals or teams who make decisions such as who has the right

to access and edit data and how it's used. Owners may not work with their data every day, but

are responsible for overseeing and protecting a data domain.

41

A data owner is responsible for the data in a particular data domain. They may belong to

the steering committee and ensure that the data under their view is governed throughout the

organization. Data owners approve data glossaries and definitions as well as initiate data

quality activities.

Owning' data – who owns data, what's capable of being owned, and what rights and

responsibilities ownership attracts – is gaining a lot of attention.

4.4.1 Responsibilities of the Data Owner

The first responsibility of the data owner is to classify the data correctly. Once a

classification has been set it is up to the data owner to determine who has access to the data.

Usually, this access is based upon roles as opposed to individuals.

The data classification is one of the most important steps. Data classification has a

different meaning for different organizations but at the basic level it is knowing the type of

data a company has, determining its value, and categorizing it. For example, if your

company has a secret sauce or original intellectual property it may be considered ―top secret‖

or ―confidential‖. The reason to label or classify it as ―top secret‖ or ―confidential‖ is so it

can be handled and ultimately protected appropriately. In addition to not putting the correct

controls on data there is the potential to retain data for longer than needed or destroy data

before it should be based on laws or contractual commitments. Many people have an opinion

on how data should be classified or labeled but at the end of the day it is the responsibility of

the data owner who is ultimately accountable for the data to make the final decision. The data

owner will have the most knowledge of the use of the data and the value to the company. It

is advisable for the data owner to get input from various sources like the data custodian or

data users but the data owner has complete control over the data.

 Who has access to the data? Clarify the roles of people who can access the data.

Example: Employees can see an organization chart with departments, manager

names, and titles but not salary information (Classification = internal). But a very

limited audience like HR should only have access to salary data, performance

data, or social security numbers (Classification = confidential).

 How is the data secured? Sensitive data elements within HR documentation have

been classified to be confidential and therefore it requires additional security

controls to protect it. Some of the additional controls to secure confidential data

stored in electronic medium could include being saved in a location on the

network with appropriate safeguards to prevent unauthorized access (secure

folders protected by passwords).

 How long the data is retained? Many industries require that data be retained for a

certain length of time. For example, the finance industry requires a seven-year

retention period and some health care industries requires a 100-year retention

period. Data owners need to know the regulatory requirements for their data and

if there is no clear guidance on retention then it should be based off the

company‘s retention policy or best practices.

42

 How data should be destroyed? Based on the classification of the data there

should be clear guidance on how to dispose or destroy the data. For example:

 What data needs to be encrypted? Data owners should decide whether their data needs

to be encrypted. To make this determination the data owner should know the applicable

laws or regulation requirements set that must be complied with. A good example of a

regulation requirement is set by the Payment Card Industry (PCI) Data Security Standard

and it requires that the transmission of cardholder data across open, public networks must

be encrypted.

4.4.2 The Importance of Assigning Data Owners

In most organizations, as data passes through different teams and systems, assigning data

owners can be cumbersome. However, this is a critical step for GDPR compliance.

Here‘s why assigning data owners is important:

1. Accountability — Ownership creates accountability. Since GDPR introduces many

controls on personal data, assigning responsibilities ensures that data will be continuously

monitored for compliance by the owners.

2. Defining policies — As they have a vested interest in the integrity of their data, owners

focus on defining policies (for example retention or deletion policies) and standards that

ensure the alignment of their data to the GDPR.

3. Creating trusted data — Data ownership is a key ingredient to gain customer trust and

achieve measurable business benefits. Poor data could easily result in bad customer

Information

Medium

Public Internal Confidential

Hard Copy Place in

recycling bins

or trash

receptacles.

Place in

secured

shedding bins

or manually

shred.

Place in secured shedding bins or

manually shred with a cross-cut

shredder or pulped. A record must

be maintained that indicates the

records disposed of and the data of

disposal.

Electronic

records

Electronic

records can be

deleted

normally.

Electronic

records need

to be

overwritten to

1‘s and 0‘s or

with a secure

delete option.

Electronic records need to be

degaussed off magnetic media

after securely deleted or the

physical media should be

destroyed with a record maintained

that indicates the records disposed

of and the date of disposal.

43

experiences and ultimately losing customers. In particular, when personal data is not

reconciled into a data subject 360° view, compliance with data subject access rights, such as

rights of portability or rights to be forgotten cannot be fully achieved.

4. Eliminating redundancies — As organizations strive to put the appropriate governance

framework in place for GDPR, one common frustration is a loss of productivity. This issue

stems from multiple teams addressing the same problem either because there isn‘t a clear

understanding of data or they‘re not even aware that the problem has been resolved by

another team. Federated ownership eliminates these painful issues.

4.4.3 Identification of Data Owners: Three Questions to Ask

The mandatory introduction of a data protection officer (DPO) role by GDPR in most

organizations effectively creates a master data owner. Each and every element in a data

taxonomy needs an individual owner, however, and there is little likelihood that a single DPO

can hold this responsibility on such a large scale. In addition, this could create a security

issue. Delegation and segregation of duties are needed.

Asking the right questions helps. Once these questions have been answered, the data owner

should become clearer:

1. Who is most impacted by data accuracy?

2. Who has authority to decide the next step?

3. Who owns the related data attributes?

4.5 DIFFERENT ASPECTS OF PRIVACY

First there is the data where security and privacy has always mattered and for which

there is already an existing and well galvanized body of law in place. Foremost among these

is classified or national security data where data usage is highly regulated and enforced.

Other data for which there exists a considerable body of international and national law

regulating usage includes:

Proprietary Data – specifically the data that makes up the intellectual capital of individual

businesses and gives them their competitive economic advantage over others, including data

protected under copyright, patent, or trade secret laws and the sensitive, protected data that

companies collect on behalf of its customers;

Infrastructure Data - data from the physical facilities and systems – such as roads, electrical

systems, communications services, etc. – that enable local, regional, national, and

international economic activity; and

Controlled Technical Data - technical, biological, chemical, and military-related data and

research that could be considered of national interest and be under foreign export restrictions.

It may be possible to work with publicly released annualized and cleansed data within these

areas without a problem, but the majority of granular data from which significant insight can

be gleaned is protected. In most instances, scientists, researchers, and other authorized

developers take years to appropriately acquire the expertise, build the personal relationships,

44

and construct the technical, procedural and legal infrastructure to work with the granular data

before implementing any approach. Even using publicly released datasets within these areas

can be restricted, requiring either registration, the recognition of or affiliation to an

appropriate data governing body, background checks, or all three before authorization is

granted.

The second group of data that raises privacy and security concerns is personal data.

Commonly referred to as Personally Identifiable Information (PII), it is any data that

distinguishes individuals from each other. It is also the data that an increasing number of

digital approaches rely on, and the data whose use tends to raise the most public ire. Personal

data could include but is not limited to an individual‘s:

 Government issued record data (social security numbers, national or state identity

numbers, passport records, vehicle data, voting records, etc.);

 Law enforcement data (criminal records, legal proceedings, etc.);

 Personal financial, employment, medical, and education data;

 Communication records (phone numbers, texts data, message records, content of

conversations, time and location, etc.);

 Travel data (when and where traveling, carriers used, etc.);

 Networks and memberships (family, friends, interests, group affiliations, etc.);

 Location data (where a person is and when);

 Basic contact information (name, address, e-mail, telephone, fax, twitter handles,

etc.);

 Internet data (search histories, website visits, click rates, likes, site forwards,

comments, etc.);

 Media data (which shows you‘re watching, music you‘re listening to, books or

magazines you‘re reading, etc.);

 Transaction data (what you‘re buying or selling, who you‘re doing business with,

where, etc.); and

 Bio and activity data (from personal mobile and wearable devices).

In industries where being responsible for handling highly detailed personal data is the

established business norm – such as in the education, medical and financial fields – there are

already government regulations, business practices and data privacy and security laws that

protect data from unauthorized usage, including across new digital platforms. But in many

other industries, particularly in data driven industries where personal data has been treated as

proprietary data and become the foundation of business models, there is currently little to no

regulation. In the new normal, the more that a data approach depends on data actively or

passively collected on individuals, the more likely that consumers will speak up and demand

privacy protection, even if they previously gave some form of tacit approval to use their data.

` Despite this new landscape, there are lots of different ways to use personal data, some

of which may not trigger significant privacy or security concerns. This is particularly true in

cases where individuals willingly provide their data or data cannot be attributed to an

45

individual. Whether individuals remain neutral to data approaches tends to be related to the

level of control they feel they have over how their personal data is used. Some organizations

that collect personal data extensively, such as Facebook and Google, work to increasingly

provide their users with methods to control their own data. But for others, the lack of due

diligence on data privacy in their approaches has already had their effect.

A third category of data needing privacy consideration is the data related to good

people working in difficult or dangerous places. Activists, journalists, politicians, whistle-

blowers, business owners, and others working in contentious areas and conflict zones need

secure means to communicate and share data without fear of retribution and personal harm.

4.6 FIVE C’ S OF DATA SCIENCE

What does it take to build a good data product or service? Not just a product or service

that‘s useful, or one that‘s commercially viable, but one that uses data ethically and

responsibly.

Users lose trust because they feel abused by malicious ads; they feel abused by fake and

misleading content, and they feel abused by ―act first, and apologize profusely later‖ cultures

at many of the major online companies. And users ought to feel abused by many abuses they

don‘t even know about. Why was their insurance claim denied? Why weren‘t they approved

for that loan? Were those decisions made by a system that was trained on biased data? The

slogan goes, ―Move fast and break things.‖ But what if what gets broken is society?

Data collection is a big business. Data is valuable: ―the new oil,‖ as the Economist

proclaimed. We‘ve known that for some time. But the public provides the data under the

assumption that we, the public, benefit from it. We also assume that data is collected and

stored responsibly, and those who supply the data won‘t be harmed. Essentially, it‘s a model

of trust. But how do you restore trust once it‘s been broken? It‘s no use pretending that you‘re

trustworthy when your actions have proven that you aren‘t. The only way to get trust back is

to be trustworthy, and regaining that trust once you‘ve lost it takes time.

There‘s no simple way to regain users‘ trust, but a ―golden rule‖ for data as a starting

point: ―treat others‘ data as data scientist would like other to treat their data.‖ However,

implementing a ―golden rule‖ in the actual research and development process is challenging.

The golden rule isn‘t enough by itself. There has to be certain guidelines to force discussions

with the application development teams, application users, and those who might be harmed

by the collection and use of data. Five framing guidelines help us think about building data

products. We call them the five Cs: consent, clarity, consistency, control (and transparency),

and consequences (and harm).

4.6.1 Consent

The trust between the people who are providing data and the people who are using it cannot

be established without agreement about what data is being collected and how that data will be

used . Agreement starts with obtaining consent to collect and use data. Unfortunately, the

agreements between a service‘s users (people whose data is collected) and the service itself

(which uses the data in many ways) are binary (meaning that you either accept or decline)

46

and lack clarity. In business, when contracts are being negotiated between two parties, there

are multiple iterations (redlines) before the contract is settled. But when a user is agreeing to

a contract with a data service, you either accept the terms or you don‘t get access. It‘s non-

negotiable.

 Data is frequently collected, used, and sold without consent. This includes

organizations like Acxiom, Equifax, Experian, and Transunion, who collect data to assess

financial risk, but many common brands also connect data without consent. In Europe,

Google collected data from cameras mounted on cars to develop new mapping products.

AT&T and Comcast both used cable set top boxes to collect data about their users, and

Samsung collected voice recordings from TVs that respond to voice commands.

4.6.2 Clarity

 Clarity is closely related to consent. Users must have clarity about what data they are

providing, what is going to be done with the data, and any downstream consequences of how

their data is used. All too often, explanations of what data is collected or being sold are

buried in lengthy legal documents that are rarely read carefully, if at all. Observant readers of

Eventbrite‘s user agreement recently discovered that listing an event gave the company the

right to send a video team, and exclusive copyright to the recordings. And the only way to opt

out was by writing to the company. The backlash was swift once people realized the potential

impact, and Eventbrite removed the language.

Facebook users who played Cambridge Analytica‘s ―This Is Your Digital Life‖ game may

have understood that they were giving up their data; after all, they were answering questions,

and those answers certainly went somewhere. But did they understand how that data might be

used? Or that they were giving access to their friends‘ data behind the scenes? That‘s buried

deep in Facebook‘s privacy settings. It really doesn‘t matter which service you use; you

rarely get a simple explanation of what the service is doing with your data, and what

consequences their actions might have. Unfortunately, the process of consent is often used to

obfuscate the details and implications of what users may be agreeing to. And once data has

escaped, there is no recourse.

4.6.3 Consistency and Trust

 Trust requires consistency over time. You can‘t trust someone who is unpredictable.

They may have the best intentions, but they may not honor those intentions when you need

them to. Or they may interpret their intentions in a strange and unpredictable way. And once

broken, rebuilding trust may take a long time. Restoring trust requires a prolonged period of

consistent behavior.

 Consistency, and therefore trust, can be broken either explicitly or implicitly. An

organization that exposes user data can do so intentionally or unintentionally. In the past

years, we‘ve seen many security incidents in which customer data was stolen: Yahoo!,

Target, Anthem, local hospitals, government data, and data brokers like Experian, the list

grows longer each day. Failing to safeguard customer data breaks trust—and safeguarding

data means nothing if not consistency over time.

47

4.6.4 Control and Transparency

 All too often, users have no effective control over how their data is used. They are

given all-or-nothing choices, or a convoluted set of options that make controlling access

overwhelming and confusing. It‘s often impossible to reduce the amount of data collected, or

to have data deleted later. A major part of the shift in data privacy rights is moving to give

users greater control of their data. For example, Europe‘s General Data Protection Regulation

(GDPR) requires a user‘s data to be provided to them at their request and removed from the

system if they so desire.

4.6.5 Consequences

 Data products are designed to add value for a particular user or system. As these

products increase in sophistication, and have broader societal implications, it is essential to

ask whether the data that is being collected could cause harm to an individual or a group. The

unforeseen consequences and the ―unknown unknowns‖ about using data and combining data

sets have been witnessed frequently. Risks can never be eliminated completely. However,

many unforeseen consequences and unknown unknowns could be foreseen and known, if

only people had tried. All too often, unknown unknowns are unknown because we don‘t want

to know.

 While Strava and AOL triggered a chain of unforeseen consequences by releasing

their data, it‘s important to understand that their data had the potential to be dangerous even if

it wasn‘t released publicly. Collecting data that may seem innocuous and combining it with

other data sets has real-world implications. It‘s easy to argue that Strava shouldn‘t have

produced this product, or that AOL shouldn‘t have released their search data, but that ignores

the data‘s potential for good. In both cases, well-intentioned data scientists were looking to

help others. The problem is that they didn‘t think through the consequences and the potential

risks.

 Many data sets that could provide tremendous benefits remain locked up on servers.

Medical data that is fragmented across multiple institutions limits the pace of research. And

the data held on traffic from ride-sharing and gps/mapping companies could transform

approaches for traffic safety and congestion. But opening up that data to researchers requires

careful planning.

4.7 DIVERSITY – INCLUSION

Reports of AI gone wrong abound, and Responsible AI has started to take a foothold in

business — Gartner has even added Responsible AI as a new category on its Hype Cycle for

Emerging Technologies. Yet when talking about solutions, increasing diversity and making

data science a more inclusive field unfortunately don‘t often top the list. Noelle Silver, Head

of Instruction, Data Science, Analytics, and Full Stack Web Development at HackerU, is

looking to change that.

A 2018 study revealed that only 15% of data scientists are women, and sadly, a 2020 study

found exactly the same results: it seems we haven‘t managed to move the needle. While

48

diversity obviously encompasses more than just women, few studies have been able to

quantify other types of representation in the field. Inclusivity is similarly difficult to quantify,

both in terms of people working on technology and the ways in which technology can be

accessed by all. But that doesn‘t mean there aren‘t solutions.

Problem

―The reality is that when we train machine learning models with a bunch of data, it‘s going to

make predictions based on that data. If that data comes from a room of people that look the

same, talk the same, act the same, they‘re all friends — it‘s not a bad scenario. In the

moment, you feel like things are good. No one is really seeing any problems; you don‘t feel

any friction. It‘s very misleading, especially in artificial intelligence. So, you go to market.

The problem, though, is not everyone looks like you, or talks like you, or thinks like you. So

even though you found a community of people that built this software that thinks the same, as

soon as you go to market and someone other than that starts using it, they start to feel that

friction.‖

Solution

Of course, there‘s no easy, magic bullet solution to this problem, but foundations of a good

start are:

 Committing the time and resources to practice inclusive engineering: This includes,

but certainly isn‘t limited to, doing whatever it takes to collect and use diverse

datasets.

 Create an experience that welcomes more people to the field: This might mean

looking at everything from education to hiring practices.

 Think beyond regulations: Simply being compliant doesn‘t necessarily mean

experiences are optimized.

4.8 FUTURE TRENDS

Trend 1: Smarter, faster, more responsible AI

Within the current pandemic context, AI techniques such as machine learning (ML),

optimization and natural language processing (NLP) are providing vital insights and

predictions about the spread of the virus and the effectiveness and impact of

countermeasures. AI and machine learning are critical realigning supply and the supply chain

to new demand patterns.

Trend 2: Decline of the dashboard

Dynamic data stories with more automated and consumerized experiences will replace visual,

point-and-click authoring and exploration. As a result, the amount of time users spends using

predefined dashboards will decline. The shift to in-context data stories means that the most

relevant insights will stream to each user based on their context, role or use. These dynamic

49

insights leverage technologies such as augmented analytics, NLP, streaming anomaly

detection and collaboration.

Trend 3: Decision intelligence

Decision intelligence brings together a number of disciplines, including decision management

and decision support. It encompasses applications in the field of complex adaptive systems

that bring together multiple traditional and advanced disciplines. It provides a framework to

help data and analytics leaders design, compose, model, align, execute, monitor and tune

decision models and processes in the context of business outcomes and behavior. Explore

using decision management and modeling technology when decisions need multiple logical

and mathematical techniques, must be automated or semi-automated, or must be documented

and audited.

Trend 4: X analytics

Gartner coined the term ―X analytics‖ to be an umbrella term, where X is the data variable for

a range of different structured and unstructured content such as text analytics, video analytics,

audio analytics, etc.

Data and analytics leaders use X analytics to solve society‘s toughest challenges, including

climate change, disease prevention and wildlife protection with analytics capabilities

available from their existing vendors, such as cloud vendors for image, video and voice

analytics, but recognize that innovation will likely come from small disruptive startups and

cloud providers.

Trend 5: Augmented data management

Augmented data management uses ML and AI techniques to optimize and improve

operations. It also converts metadata from being used in auditing, lineage and reporting to

powering dynamic systems. Augmented data management products can examine large

samples of operational data, including actual queries, performance data and schemas. Using

the existing usage and workload data, an augmented engine can tune operations and optimize

configuration, security and performance. Data and analytics leaders should look for

augmented data management enabling active metadata to simplify and consolidate their

architectures, and also increase automation in their redundant data management tasks.

Trend 6: Cloud is a given

As data and analytics moves to the cloud, data and analytics leaders still struggle to align the

right services to the right use cases, which leads to unnecessary increased governance and

integration overhead. Data and analytics leaders need to prioritize workloads that can exploit

cloud capabilities and focus on cost optimization and other benefits such as change and

innovation acceleration when moving to cloud.

Trend 7: Data and analytics worlds collide

The collision of data and analytics will increase interaction and collaboration between

historically separate data and analytics roles. This impacts not only the technologies and

50

capabilities provided, but also the people and processes that support and use them. The

spectrum of roles will extend from traditional data and analytics roles in IT to information

explorer, consumer and citizen developer as an example. To turn the collision into a

constructive convergence, incorporate both data and analytics tools and capabilities into the

analytics stack.

Trend 8: Data marketplaces and exchanges

Data marketplaces and exchanges provide single platforms to consolidate third-party data

offerings. These marketplaces and exchanges provide centralized availability and access (to

X analytics and other unique data sets, for example) that create economies of scale to reduce

costs for third-party data. To monetize data assets through data marketplaces, data and

analytics leaders should establish a fair and transparent methodology by defining a data

governance principle that ecosystems partners can rely on.

Trend 9: Blockchain in data and analytics

Blockchain technologies address two challenges in data and analytics. First, blockchain

provides the full lineage of assets and transactions. Second, blockchain provides transparency

for complex networks of participants. Data and analytics should position blockchain

technologies as supplementary to their existing data management infrastructure by

highlighting the capabilities mismatch between data management infrastructure and

blockchain technologies.

Trend 10: Relationships form the foundation of data and analytics value

Graph analytics is a set of analytic techniques that allows for the exploration of relationships

between entities of interest such as organizations, people and transactions. It helps data and

analytics leaders find unknown relationships in data and review data not easily analyzed with

traditional analytics.

4.9 SUMMARY

 When combined with ML algorithms, these technologies can be used to comb through

thousands of data sources and documents that could help medical and public health experts

rapidly discover new possible treatments or factors that contribute to more negative outcomes

for some patients.

Data and analytics leaders need to evaluate opportunities to incorporate graph analytics into

their analytics portfolios and applications to uncover hidden patterns and relationships. In

addition, consider investigating how graph algorithms and technologies can improve your AI

and ML initiatives.

4.10 PRACTICE QUESTIONS

Q1. Write a short note on Data Science Ethics.

Q2. What are the privacy aspects of data?

Q3. What are the five C‘s of data Science

Q4. Discuss briefly the future trends in Data Science.

51

REFERENCES

1. https://www.knowledgehut.com/blog/big-data/5-best-data-processing-frameworks

2. Mark J. Costello, Peter T. Harris, Bryony Pearce, Andrea Fiorentino, Jean-François

Bourillet, Sarah M. Hamylton, ―A Glossary of Terminology Used in Marine Biology,

Ecology, and Geology‖, Michael I. Goldstein, Dominick A. DellaSala, Encyclopedia

of the World's Biomes, Elsevier, 2020, Pages 471-478, ISBN 9780128160978,

https://doi.org/10.1016/B978-0-12-409548-9.11944-X.

3. https://www.solvexia.com/blog/15-big-data-problems-you-need-to-solve

4. https://blog.quantela.com/the-ethical-challenges-of-a-data-science-practitioner/

5. https://towardsdatascience.com/5-key-ai-problems-related-to-data-privacy-

f39558290530

6. https://www.oreilly.com/radar/the-five-cs

7. https://builtin.com/data-science

8. https://www.edx.org/course/subject/data-science

9. https://www.geeksforgeeks.org/types-of-sources-of-data-in-data-mining/

10. https://internetofthingsagenda.techtarget.com/definition/sensor-data

11. https://3bplus.nl/how-do-smart-devices-work-sensors-iot-big-data-and-ai/

12. Introducing Data science, big data, machine learning, and more, using python tools,

Cielen D., Meysman A., Ali M., Manning Publications Co ., 2016, ISBN:

9781633430037

13. https://www.andrew.cmu.edu/user/nbier/15110/lectures/lec15a_sound_video.pdf

https://www.knowledgehut.com/blog/big-data/5-best-data-processing-frameworks
https://doi.org/10.1016/B978-0-12-409548-9.11944-X
https://www.solvexia.com/blog/15-big-data-problems-you-need-to-solve
https://blog.quantela.com/the-ethical-challenges-of-a-data-science-practitioner/
https://towardsdatascience.com/5-key-ai-problems-related-to-data-privacy-f39558290530
https://towardsdatascience.com/5-key-ai-problems-related-to-data-privacy-f39558290530
https://www.oreilly.com/radar/the-five-cs
https://builtin.com/data-science
https://www.edx.org/course/subject/data-science
https://www.geeksforgeeks.org/types-of-sources-of-data-in-data-mining/
https://internetofthingsagenda.techtarget.com/definition/sensor-data
https://3bplus.nl/how-do-smart-devices-work-sensors-iot-big-data-and-ai/

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT V: DATA WRANGLING COMBINING AND MERGING DATA SETS

STRUCTURE

5.0 Objectives

5.1 Introduction

5.2 Data wrangling

 5.2.1 Steps for data wrangling

 5.2.2 Tools for data wrangling

5.3 Combining dataset

5.4 Concatenating dataset

5.5 Merging dataset

5.6 Reshaping dataset

 5.6.1 Using melt () function

 5.6.2 Using stack () and unstack () function

 5.6.3 Using pivot () function

5.7 Data transformation

 5.7.1 Data frame creation

 5.7.2 Missing value

 5.7.3 Encoding

 5.7.4 Inset new column

 5.7.5 Split column

 5.8 String manipulation

 5.9 Regular expression

 5.9.1 The find all () function

 5.9.2 The search () function

 5.9.3 The split () function

 5.9.4 The sub () function

5.10 Summary

5.11 References

53

5.0 OBJECTIVES

The main goal of this module is to help students learn, understand and practice the data

science approaches, which include the study of latest data science tools with latest

programming languages. The main objectives of this module are data wrangling which

includes data discovery, structuring, cleaning, enriching, validating and publishing,

combining and merging datasets, data reshaping, pivoting, transformation, string

manipulation operations and regular expression.

5.1 INTRODUCTION

Data science become a buzzword that everyone talks about the data science. Data science is

an interdisciplinary field that combines different domain expertise, computer programming

skills, mathematics and statistical knowledge to find or extract the meaningful or unknown

patterns from unstructured and structure dataset.

Data science is useful for extraction, preparation, analysis and visualization of various

information. Various scientific methods can be applied to get insight in data.

Data science is all about using data to solve problems. Data has become the fuel of industries.

It is most demandable field of 21
st
 century. Every industry require data to functioning,

searching, marketing, growing, expanding their business.

The application of areas of data science are health care, fraud detection, disease predicting,

real time shipping routes, speech recognition, targeting advertising, gaming and many more.

5.2 DATA WRANGLING

Data wrangling is a key component of any data science project. Data wrangling is a process

where one transforms “row” data for making it more suitable for analysis and it will improve

the quality of the data. Data wrangling is the process of collecting, gathering and

transforming of raw data into appropriate format for accessing, analyzing, easy understanding

and further processing for better and quick decision making. It is also known as Data

Munging or Data Pre-Processing.

Data wrangling is a crucial first steps in the preparation of data for broad analysis of huge

amount of data or big data. It requires significant amount of time and efforts. If data

wrangling is properly conducted, it gives you insights into the nature of the data. It is not just

a single time process but it is an iterative or repetitive process. Each step in the data

wrangling process exposes the new potential ways for the data re-wrangling towards deriving

the goal of complex data manipulation and analysis.

5.2.1 Steps for Data Wrangling

Data wrangling process includes six core activities:

 Discovery

 Structuring

 Cleaning

 Enriching

 Validating

54

 Publishing

 Discovery:

Data discovering is an umbrella term. It describes the process to understand the

dataset and insight into it. It involves the collection and evaluation of data from

various sources and is often used to identify the spot trends and detecting the

patterns of the data and gain instant insight.

Now a day‟s large business organization or companies have a large amount of

data related to the customers, suppliers, production, sells, marketing etc.

For example, if a company have a customer database, you can identify that the

most of the customers are from which part of the city or state or country.

 Structuring:

Data is coming from the various sources with the difference formats. Structuring

is necessary because of the different size and shape of the data. Data structuring is

the process or actions that change the form or schema of the dataset. Data splitting

into the columns, deleting some fields from the dataset, pivoting rows are the form

of data structuring.

 Cleaning:

Before start the data manipulation or data analysis, you need to perform the data

cleaning. Data cleaning is the process to identify the data quality related issues,

such as missing or mismatched values, duplicate records etc. and apply the

appropriate transformation to correct, replace or delete those values or records

from the dataset to make high quality of data.

 Enriching:

The data is useful for decision making process in the business. The data needed to

take business related decision can be stored into multiple files. To gather all

necessary insights into single file and you need to enriched your existing dataset

by performing joining and aggregating multiple data sources.

 Validating:

After completion of data cleaning and data enriching, you need to check the

accuracy of the data. If dataset is not accurate, it might be creating a problem. It is

necessary to do the data validation. This is the final check that any missing or

mismatched data was not corrected during the transformation process. It is also

need to validate that output dataset has the intended structure and content before

publishing it.

 Publishing:

After successful completion of data discovering, structuring, cleaning, enriching

and validating‟s, it‟s a time to published the wrangled output data for the further

analytics processes, if any. The published data can be uploaded in the

55

organization‟s software or store into the file in a specific location where

organizations peoples knows it is ready to use.

5.2.2 Tools for Data Wrangling

There are some tools available for the data wrangling. Some of the popular tools are

as follow:

 Python

Python is a most popular general-purpose high-level programming language.

There are many popular Python libraries available for data science. The pandas is

a most popular and open source library and it becomes a game changer for data

science. It is a very fast, flexible, powerful and easy to used library which includes

Data Frame to perform more complex operation such as data joining, data

merging, data transformation etc. for in data science.

 R

R is also popular, open source and more power tool for data science and

management. It also supports many libraries such as dplyr, tidyr, ggplot2 etc. for

data manipulation and data visualization.

 Tabula

Tabula is a tool for liberating data tables trapped inside the PDF files. It allows the

user to upload the files in PDF format and extract the selected rows and columns

from any tables available in the PDF file. It supports to extract this data from PDF

to CSV or Microsoft Excel file format.

 DataWrangler

It is an interactive tool for data cleaning. It takes the read word data and transform

it into data tables which can be used for further processing or analysis. It also

supports to export the data tables in Microsoft Excel, R, Tabula etc.

 OpenRefine

OpenRefine, previously known as GoogleRefine. It is a Java based open source

powerful tool for manipulates the huge data. It is used for data loading,

understanding, cleaning and transforming from one format to another format. It

also supports to extending the data with web services

.

 CSVKit

CSVKit is a suite for command line tools for converting and working with CSV

file. It supports the covert the data from Excel to CSV, JSON to CSV, query with

SQL etc.

56

5.3 COMBINING DATASET

Combining is the process to put two or more dataset together for further processing. The

pandas library of Python provides easy functionality to combining the dataset together. Here

we learn the combining dataset with concat, merge and join functions using pandas library.

 Concat: The concat() function is used for combining dataset across the rows or

columns.

 Merge: The merge() function is used for combining the dataset on common columns.

 Join: The join() function is used for combining the dataset on key column or an

index.

5.4 CONCATENATING DATASET

The “concat” function is used to perform the concatenation operation with the data frame

along with an axis. The datasets are just stitched together along with axis (rows axis and

column axis). Here we concatenate the datasets using pandas.

Syntax:

pd.concat(objs, axis, join, join_axes, ignore_index, keys)

Here,

 objs: This is a sequence or mapping of Series, DataFrame, objects.

 axis: This is an axis to concatenate. This value is {0, 1, ...}, default is 0.

 join: This is used how to handle indexes on another axis(es). This value is {„inner‟,

„outer‟}, default is „outer‟. The outer is used for union operation and inner is used for

intersection operation.

 join_axes: This is the list of index objects. Its specific indexes to use for the other (n-

1) axes instead of performing inner/outer set logic.

 ignore_index: This value is Boolean type, default is False. If this value is True, do

not use the index values on the concatenation axis. The resulting axis will be labeled

0, ..., n-1.

 keys: This is a sequence to add an identifier to the result indexes, default is None.

Example: Here we perform the concatenation operation using two different data frames

i.e. df1 and df2.

The below code creates the two different data frame df1 and df2.

Importing pandas library

import pandas as pd

First dataframe creation

df1 = pd.DataFrame({

 "Name":["Rahul","Shreya","Pankaj","Monika","Kalpesh"],

 "Age":[20, 19, 24, 25, 25],

 "Gender":["Male","Female","Male","Male","Female"],

57

 "Course":["B.E.","B.Tech.","MCA","M.Tech.","M.E."]},

 index = [1, 2, 3, 4, 5])

Second dataframe creation

df2 = pd.DataFrame({

 "Name":["Mayank","Jalpa","Sanjana","Vimal","Raj"],

 "Age":[22, 21, 24, 26, 23],

 "Gender":["Male","Female","Female","Male","Male"],

 "Course":["MBA","MCA","B.E.","B.Tech.","M.Sc."]},

 index = [1, 2, 3, 4, 5])

Now we display both data frames df1 and df2.

The below code will display data frame df1.

Display first dataframe

df1

The above code will give the following output.

 Name Age Gender Course

1 Rahul 20 Male B.E.

2 Shreya 19 Female B.Tech.

3 Pankaj 24 Male MCA

4 Monika 25 Male M.Tech.

5 Kalpesh 25 Female M.E.

The below code will display data frame df2.

Display second dataframe

df2

The above code will give the following output.

 Name Age Gender Course

1 Mayank 22 Male MBA

2 Jalpa 21 Female MCA

3 Sanjana 24 Female B.E.

4 Vimal 26 Male B.Tech.

5 Raj 23 Male M.Sc.

Now we perform the concatenation operation on both data frames.

The below code will perform the concatenation operation on both the data frame df1 and

df2.

Concatenation of both dataframe

df3 = pd.concat([df1, df2])

df3

58

The above code will give the following output, which concatenate the five records of

data frame df1 and five records of data frame df2 into single data frame df3 with ten

records.

 Name Age Gender Course

1 Rahul 20 Male B.E.

2 Shreya 19 Female B.Tech.

3 Pankaj 24 Male MCA

4 Monika 25 Male M.Tech.

5 Kalpesh 25 Female M.E.

1 Mayank 22 Male MBA

2 Jalpa 21 Female MCA

3 Sanjana 24 Female B.E.

4 Vimal 26 Male B.Tech.

5 Raj 23 Male M.Sc.

Now we perform the concatenation with axis as an argument.

The below code will perform the concatenation operation on both data frame df1 and df2

with using axis as an argument.

Concatenation of both dataframe with axis as an argument

df3 = pd.concat([df1, df2],axis=1)

df3

The above code will give the following output, which concatenate the data frame df1 and

data frame df2 into single data frame df3 horizontally with axis=1 as an argument.

SN Name Age Gender Course Name Age Gender Course

1 Rahul 20 Male B.E. Mayank 22 Male MBA

2 Shreya 19 Female B.Tech. Jalpa 21 Female MCA

3 Pankaj 24 Male MCA Sanjana 24 Female B.E.

4 Monika 25 Male M.Tech. Vimal 26 Male B.Tech.

5 Kalpesh 25 Female M.E. Raj 23 Male M.Sc.

Now we perform the concatenation with keys as an argument which is associated with

specific keys.

The below code will perform the concatenation operation on both data frame df1 and df2

with keys as an argument.

Concatenation of both dataframe with keys as an argument

df3 = pd.concat([df1, df2], keys=['x','y'])

df3

59

The above code will give the following output, which concatenate the data frame df1 and

data frame df2 into single data frame df3 with x and y as keys argument.

 Name Age Gender Course

x 1 Rahul 20 Male B.E.

 2 Shreya 19 Female B.Tech.

 3 Pankaj 24 Male MCA

 4 Monika 25 Male M.Tech.

 5 Kalpesh 25 Female M.E.

y 1 Mayank 22 Male MBA

 2 Jalpa 21 Female MCA

 3 Sanjana 24 Female B.E.

 4 Vimal 26 Male B.Tech.

 5 Raj 23 Male M.Sc.

Now we perform the concatenation with keys and ignore_index as an argument. It

follows its own indexing if we set ignore_index is True.

The below code will perform the concatenation operation on both data frame df1 and df2

with keys and ignore_index as an argument.

Concatenation of both dataframe using keys argument

df3 = pd.concat([df1, df2], keys=['x','y'], ignore_index=True)

df3

The above code will give the following output, which concatenate data frame df1 and

data frame df2 into single data frame df3 using x and y as keys arguments and

ignore_index=True argument.

 Name Age Gender Course

0 Rahul 20 Male B.E.

1 Shreya 19 Female B.Tech.

2 Pankaj 24 Male MCA

3 Monika 25 Male M.Tech.

4 Kalpesh 25 Female M.E.

5 Mayank 22 Male MBA

6 Jalpa 21 Female MCA

7 Sanjana 24 Female B.E.

8 Vimal 26 Male B.Tech.

9 Raj 23 Male M.Sc.

Now we perform the concatenation using append() function.

The below code will perform the concatenation operation on both data frame df1 and

df2. The data frame df2 is appended with the data frame df1.

60

Concatenation of both dataframe using append

df1.append(df2)

The above code will give the following output, which concatenate the data frame df2

with the data frame df1.

 Name Age Gender Course

1 Rahul 20 Male B.E.

2 Shreya 19 Female B.Tech.

3 Pankaj 24 Male MCA

4 Monika 25 Male M.Tech.

5 Kalpesh 25 Female M.E.

1 Mayank 22 Male MBA

2 Jalpa 21 Female MCA

3 Sanjana 24 Female B.E.

4 Vimal 26 Male B.Tech.

5 Raj 23 Male M.Sc.

5.5 MERGING DATASET

The word “merge” and “join” both are used relatively interchangeable in SQL, R and

Pandas. Both merge and join doing the similar things, but there are separate “merge” and

“join” functions in Pandas.

The merging/joining is the process of bringing two or more datasets together into single

dataset and aligning the rows from each dataset based on the common attributes or columns.

The „merge‟ function is used to perform the merging operation with the data frame. Here we

merge the datasets using pandas.

Syntax:

pd.merge(left, right, how, on, left_on, right_on, left_index, right_index, sort)

Here,

 left: This is the first data frame.

 right: This is the second data frame.

 how: This is the method how to perform the merge operation. The values of this field

are one of „left‟, „right‟, „inner‟, „outer‟, default is „inner‟.

 On: This is the name of column in which action to be perform. This column must be

available in both left and right data frame object.

 left_on: This is the name of column from left data frame to use as keys.

 right_on: This is the name of column from right data frame to use as keys.

 left_index: This is using the index (row label) from left data frame as its join keys, if

it is True.

 right_index: This is used the index (row label) from right data frame as its join keys,

if it is True.

61

 sort: This is use to sort the result data frame by join keys in specific order. The value

of this field is Boolean, default is True.

Example: Here we perform the merge operation using two different data frames i.e. left

and right.

The below code creates two different data frames left and right.

Importing pandas library

import pandas as pd

Left dataframe creation

left = pd.DataFrame({

 "Rno":[1, 2, 3, 4, 5],

 "Name":["Rahul","Shreya","Pankaj","Monika","Kalpesh"],

 "Course":["B.E.","B.Tech.","MCA","M.Tech.","M.E."]})

Right dataframe creation

right = pd.DataFrame({

 "Rno":[1, 2, 3, 4, 5],

 "Name":["Mayank","Jalpa","Sanjana","Vimal","Raj"],

 "Course":["B.E.","MBA","MCA","B.Tech.","M.Sc."]})

Now we display both data frame left and right.

The below code will display data frame left.

Display left dataframe

left

The above code will give the following output.

 Rno Name Course

0 1 Rahul B.E.

1 2 Shreya B.Tech.

2 3 Pankaj MCA

3 4 Monika M.Tech.

4 5 Kalpesh M.E.

The below code will display the data frame right.

Display right dataframe

right

62

The above code will give the following output.

 Rno Name Course

0 1 Mayank B.E.

1 2 Jalpa MBA

2 3 Sanjana MCA

3 4 Vimal B.Tech.

4 5 Raj M.Sc.

Now we perform the merge operation on both data frame using on as an argument.

The below code will perform the merge operation on both data frame left and right using

single on key as an argument.

Merge both left and right dataframe using single on key

pd.merge(left, right, on='Rno')

The above code will give the following output, which merge both data frame left and

right using single on key as an argument.

 Rno Name_x Course_x Name_y Course_y

0 1 Rahul B.E. Mayank B.E.

1 2 Shreya B.Tech. Jalpa MBA

2 3 Pankaj MCA Sanjana MCA

3 4 Monika M.Tech. Vimal B.Tech.

4 5 Kalpesh M.E. Raj M.Sc.

The below code will perform the merge operation on both data frame left and right using

multiple on key as an argument.

Merge left and right dataframe using multiple on keys

pd.merge(left, right, on=['Rno','Course'])

The above code will give the following output, which merge both data frame left and

right using multiple on key as an argument.

 Rno Name_x Course Name_y

0 1 Rahul B.E. Mayank

1 3 Pankaj MCA Sanjana

Now we perform the merge operation using how as an argument. This argument specifies

how to determine which keys are to be included in the resulting data frame or table. If the

combination does not appear in any of the data frame or table, NA will be display in joined

table.

The merge methods are same as SQL join equivalent as below:

63

Merge Method SQL Join Equivalent Description

left Left Outer Join Use keys from left object

right Right Outer Join Use keys from right object

inner Inner Join Use intersection of keys

outer Full Outer Join Use unions of keys

It will represent graphically as follows:

The below code will perform the merge operation on both data frame left and right on course

using how=„left‟ method.

Merge both left and right dataframe using on and how

pd.merge(left, right, on='Course', how='left')

The above code will give the following output, which merge both data frame left and right

using left join. It will display left data frame records plus common records as follows:

 Rno_x Name_x Course Rno_y Name_y

0 1 Rahul B.E. 1.0 Mayank

1 2 Shreya B.Tech. 4.0 Vimal

2 3 Pankaj MCA 3.0 Sanjana

3 4 Monika M.Tech. NaN NaN

4 5 Kalpesh M.E. NaN NaN

The below code will perform the merge operation on both data frame left and right on course

using how=„right‟ method.

Merge both left and right dataframe using on and how

pd.merge(left, right, on='Course', how='right')

The above code will give the following output, which merge both data frame left and right

using right join. It will display right data frame records plus common records as follows:

64

 Rno_x Name_x Course Rno_y Name_y

0 1.0 Rahul B.E. 1 Mayank

1 NaN NaN MBA 2 Jalpa

2 3.0 Pankaj MCA 3 Sanjana

3 2.0 Shreya B.Tech. 4 Vimal

4 NaN NaN M.Sc. 5 Raj

The below code will perform the merge operation on both data frame left and right on course

using how=„inner‟ method.

Merge both left and right dataframe using on and how

pd.merge(left, right, on='Course', how='inner')

The above code will give the following output, which merge both data frame left and right

using inner join. It performs the intersection operation on both data frame, which will display

only common records as follows:

 Rno_x Name_x Course Rno_y Name_y

0 1 Rahul B.E. 1 Mayank

1 2 Shreya B.Tech. 4 Vimal

2 3 Pankaj MCA 3 Sanjana

The below code will perform the merge operation on both data frame left and right on course

using how=„over‟ method.

Merge both left and right dataframe using on and how

pd.merge(left, right, on='Course', how='outer')

The above code will give the following output, which merge both data frame left and right

using outer join. It performs the union operation on both data frame, which will display left

data frame records, right data frame records and common records as follows:

 Rno_x Name_x Course Rno_y Name_y

0 1.0 Rahul B.E. 1.0 Mayank

1 2.0 Shreya B.Tech. 4.0 Vimal

2 3.0 Pankaj MCA 3.0 Sanjana

3 4.0 Monika M.Tech. NaN NaN

4 5.0 Kalpesh M.E. NaN NaN

5 NaN NaN MBA 2.0 Jalpa

6 NaN NaN M.Sc. 5.0 Raj

5.6 RESHAPING DATASET

The way in which dataset is arranged into rows and columns is referred as the shape of data.

In a dataset, each row represents one observation in a vertical or long data and each column is

considered a variable with multiple distinct values.

65

It is needed to convert or transform the dataset from one format to another format, which is

called reshaping of dataset.

Reshaping is the process to change the shape or structure of datasets, such as convert “wide”

data tables into “long”. The below figure shows the reshaping process graphically.

The data frame will be reshaped by using melt(), stack(), unstack() and pivot() functions as

follows:

The below code creates and display data frame df1.

Importing pandas library

import pandas as pd

Dataframe creation

df = pd.DataFrame({

 "Rno":[1, 2, 3, 4, 5],

 "Name":["Rajan","Shital","Mayur","Mittal","Mahesh"],

 "Age":[25, 27, 24, 25, 21]})

Display dataframe

df

The data frame output as follows:

 Rno Name Age

0 1 Rajan 25

1 2 Shital 27

2 3 Mayur 24

3 4 Mittal 25

4 5 Mahesh 21

5.6.1 Using melt() Function

We can reshape the data frame using this function. This function is used to wide data

frame columns into rows.

66

The below code will perform the reshape operation using melt function.

Performing melt function on dataframe

df.melt()

The above code will give the following output.

 Variable value

0 Rno 1

1 Rno 2

2 Rno 3

3 Rno 4

4 Rno 5

5 Name Rajan

6 Name Shital

7 Name Mayur

8 Name Mittal

9 Name Mahesh

10 Age 25

11 Age 27

12 Age 24

13 Age 25

14 Age 21

5.6.2 Using stack() and unstack() Function

We can reshape the data frame using these functions. The stack() function is used to

increase the level of index in a data frame.

The below code will perform the reshape operation using stack function.

Performing stack function on dataframe

df.stack()

The above code will give the following output.

0 Rno 1

 Name Rajan

 Age 25

1 Rno 2

 Name Shital

 Age 27

2 Rno 3

 Name Mayur

 Age 24

67

3 Rno 4

 Name Mittal

 Age 25

4 Rno 5

 Name Mahesh

 Age 21

dtype: object

The unstack() function is used to do the revert back changes in a data frame was

perform by the stack() function.

The below code will perform the reshape operation using unstack function.

Performing unstack function on dataframe

df.unstack()

The above code will give the following output.

Rno 0 1

 1 2

 2 3

 3 4

 4 5

Name 0 Rajan

 1 Shital

 2 Mayur

 3 Mittal

 4 Mahesh

Age 0 25

 1 27

 2 24

 3 25

 4 21

dtype: object

5.6.3 Using pivot() Function

We can reshape the data frame using this function. This function is used to reshape

the data frame based on the specified column in a data frame.

The below code will perform the reshape operation on “Rno” column using pivot

function.

Performing pivot function on dataframe

df.pivot(columns='Rno')

68

The above code will give the following output.

 Name Age

Rno 1 2 3 4 5 1 2 3 4 5

0 Rajan NaN NaN NaN NaN 25.0 NaN NaN NaN NaN

1 NaN Shital NaN NaN NaN NaN 27.0 NaN NaN NaN

2 NaN NaN Mayur NaN NaN NaN NaN 24.0 NaN NaN

3 NaN NaN NaN Mittal NaN NaN NaN NaN 25.0 NaN

4 NaN NaN NaN NaN Mahesh NaN NaN NaN NaN 21.0

5.7 DATA TRANSFORMATION

Data is collected from the various sources and combine it into a unified data frame. This data

frame has large number of columns with different data types.

Data transformation is the process to transform or convert the data as per required format for

further processing as and when needed.

The data transformation includes add new columns, find NaN values, drop NaN, replace with

mean value, field encoding and decoding, column splitting etc.

5.7.1 Data Frame Creation

To perform the various transformation operation on data, first we have to create the

data frame.

The below code will create and display a data frame df which contains the three

columns such as “Name”, “Gender” and “City”.

#importing pandas library

import pandas as pd

Dataframe creation

df = pd.DataFrame({

 "Name":["Jayesh Patel","Priya Shah","Vijay Sharma"],

 "Gender": ["Male","Female","Male"],

 "City": ["Rajkot","Delhi","Mumbai"]})

Display dataframe

df

The above code will create and display data frame as follows:

69

 Name Gender City

0 Jayesh Patel Male Rajkot

1 Priya Shah Female Delhi

2 Vijay Sharma Male Mumbai

5.7.2 Missing Value

The dataset contains the many rows and columns. There are some cells in a dataset that have

NA or empty cell. This is called missing data in a dataset.

It is needed first to check that missing value before further processing. The common and very

simple method to handle this missing value is to delete the rows which contain missing

values.

The below code will check the data to containing the missing value or not.

df.isna().sum()

Here there are no any missing values in each column so it returns zero value in each column.

If there are any missing values in each column, it returns the number of missing values.

Name 0

Gender 0

City 0

dtype: int64

The below code will drop all the rows which containing missing value.

df = df.dropna()

The below code will drop the columns where all elements are missing values.

df.dropna(axis=1, how='all')

The below code will drop the columns where any of the elements containing missing values.

df.dropna(axis=1, how='any')

The below code will keep only the rows which contains maximum two missing values.

df.dropna(thresh=2)

The below code will fill all missing values with mean value of the particular column.

df.fillna(df.mean())

70

The below code will fill any missing values in specified column with median value of the

particular column. Here we taken “Age” column for example.

df['Age'].fillna(df['Age'].median())

The below code will fill any missing values in specified column with mode value of the

particular column. Here we taken “Age” column for example.

df['Age'].fillna(df['Age'].mode())

5.7.3 Encoding

The dataset contains both numerical and categorical value. The categorical data is not much

useful for data processing or analytics. It is needed to encoding the categorical value into

numeric value.

Data encoding is the process to convert a categorical variable into a numerical form.

Here we discuss the label encoding which is simply converting each value in a column to a

number. Our dataset has “Gender” column which has only two values “male” and “female”

It encodes like this:

 Male 0

 Female 1

The below code will replace the “Male” to 0 and “Female” to 1.

df=df.Gender.replace({"Male":0,"Female":1})

df

The above code will display data frame as follows:

0 0

1 1

2 0

Name: Gender, dtype: int64

5.7.4 Inset New Column

It is needed to add one or more columns in an existing dataset.

The below code will insert a new column in a data frame and display it.

df.insert(1, "Age", [21, 23, 24], True)

df

The above code will insert a new column “Age” with the values 21, 23 and 24

respectively at second column in a data frame. The newly added column data frame

will display as follow:

71

 Name Age Gender City

0 Jayesh Patel 21 Male Rajkot

1 Priya Shah 23 Female Delhi

2 Vijay Sharma 24 Male Mumbai

5.7.5 Split Column

It is needed to split one column into two or more different columns. The process to

create two or more different columns from single column in a dataset is called column

splitting. Sometimes the “Full Name” column of dataset may be need to split into

“First Name” and “Last Name” as a separate column.

The below code will split the column into two different columns and display new data

frame.

df[['First Name','Last Name']] = df.Name.str.split(expand=True)

df

The above code will create two different columns (i.e. First Name, Last Name) from

the single column “Name” of dataset. The newly split data frame will be display as

follow:

 Name Age Gender City First Name Last Name

0 Jayesh Patel 21 Male Rajkot Jayesh Patel

1 Priya Shah 23 Female Delhi Priya Shah

2 Vijay Sharma 24 Male Mumbai Vijay Sharma

5.8 STRING MANIPULATION

String manipulation is the process of handling and analyzing the strings. The various

operation can be performed on string such as string modification, parsing of string, string

conversion etc. The various in-built functions available for string manipulation in different

language. He we perform some common string manipulation operations in Python.

We take the following strings as an example.

str1 = "Data Science"

str2 = "using"

str3 = "Python"

str4 = "2021"

str5 = " Data Science "

72

Function Description Example Output

capitalize() It converts the first character of

string into upper case

str2.capitalize() 'Using'

casefold() It converts the string into lower case str1.casefold

()

'data science'

center() It returns the string in center of the

specified size

str1.center

(15)

' Data Science '

count() It returns the number of times a

specified value occurs in a string

str1.count("a") 2

endswith() It returns true if the string ends with

the specified value

str1.endswith

("nce")

True

find() It searches the string for a specified

value and returns the position of

where it is found

str1.find("i") 7

format() It formats the specified values in a

string

str4.format() '2021'

index() It searches the string for a specified

value and returns the position of

where it was found

str1.index("c") 6

isalnum() It returns True if all the characters in

a string are alphanumeric

str4.isalnum() True

isalpha() It returns True if all characters in a

string are alphabet

str2.isalpha() True

isdigit() It returns True if all characters in a

string are digit

str4.isdigit() True

islower() It returns True if all characters in a

string are lower case

str2.islower() True

isnumeric() It returns True if all characters in a

string are numeric

str4.isnumeric

()

True

isprintable() It returns True if all characters in a

string are printable

str1.isprintabl

()

True

isspace() It returns True if all characters in a

string are whitespaces

str1.isspace() False

istitle() It returns True if the string follows

the title case rules

str1.istitle() True

isupper() It returns True if all characters in a

string are upper case letter

str1.isupper() False

len(string) It returns the length of a string len(str1) 12

lower() It converts the string into lower case str1.lower() 'data science'

lstrip() It returns the string with left trim

version

str5.lstrip() 'Data Science '

replace(old,n

ew)

It replaces the old string with new

string
str1.replace("Science","

Analytics")

'Data Analytics'

rfind() It searches the string for a specified

value and returns the last position of

str1.rfind("e") 11

https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_isprintable.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_rfind.asp

73

where it was found

rindex() It searches the string for a specified

value and returns the last index

position of where it is found

str1.rindex("a") 3

rstrip() It returns the string with right trim

version

str5.rstrip() ' Data Science'

split() It splits the string with specified

separator and returns a list

str1.split(" ") ['Data', 'Science']

startswith() It returns true if the string starts with

the specified value

str3.startswith

("P")

True

strip() It returns the both left and right trim

version

str5.strip() 'Data Science'

swapcase() It returns the swaps cases, lower

case becomes upper case and vice

versa

str1.swapcase

()

'dATA sCIENCE'

title() It converts the first character of each

word to upper case

str2.title() 'Using'

upper() It converts a string into upper case str1.upper() 'DATA SCIENCE'

zfill() It returns the string with filled by 0

for specified number of times in a

string at the beginning

str3.zfill(10) '0000Python'

+ It concatenates or join the two

strings
str1+" "+str2+" "+str3 'Data Science using

Python'

* It repeated the string using n times str3 * 3 'PythonPythonPyth

on'

string[0] It returns the first character of a

string

str1[0] 'D'

string[7] It returns the eighth character of a

string

str1[7] 'i'

string[2:8] It returns the string from third

character to eighth character

str1[2:8] 'ta Sci'

string[3:] It returns the string from fourth

character to last character

str1[3:] 'a Science'

string[:8] It returns the string from first

character to eighth character

str1[:8] 'Data Sci'

string[-4:] It returns the last four character of a

sting

str1[-4:] 'ence'

string[:-4] It removes the last four character of

a string

str1[:-4] 'Data Sci'

5.9 REGULAR EXPRESSION

Regular expression or RegEx is generally used to identify whether a sequence or

character or pattern is exists in a given string or not. It is also used to identify the

position of such pattern in a string or file. It mainly used to find and replace specific

patterns in a string or file. It helps to manipulate text-based datasets.

Python has a built-in package called re, to work with Regular Expression.

https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rstrip.asp

74

The re package of Python has set of functions to search the string for matching. The

common Python RegEx functions are as follow:

Function Description

findall It returns a list of all match values.

search It returns a match object if match found anywhere in the string.

split It returns a list and spit the string where each match found

sub It replaces the one or more matches with a specified string.

5.9.1 The findall() Function

This function returns a list which contains all match values.

Example:

import re

string = "Working with Data Science using Python"

result = re.findall("th",string)

result

The list contains all match values in an order of they are found.

Output:

['th', 'th']

Example:

import re

string = "Working with Data Science using Python"

result = re.findall("ds",string)

result

If no matches found, an empty list will return.

Output:

[]

5.9.2 The search() Function

This function returns a match object if match found anywhere in the string. Only first

occurrence of match will be returned, if there are more than one match found. The none

will return if no match found.

Example:

import re

string = "Working with Data Science using Python"

result = re.search("wi",string)

75

result

It found the match value “wi”.

Output:

<re.Match object; span=(8, 10), match='wi'>

Example:

import re

string = "Working with Data Science using Python"

result = re.search("\s",string)

result

It found the match value “\s” i.e. space.

Output:

<re.Match object; span=(7, 8), match=' '>

5.9.3 The split() Function

This function returns a list of where the string has been split at each match found.

Example:

import re

string = "Working with Data Science using Python"

result = re.split("\s",string)

result

It found the match value “\s” i.e. space.

Output:

['Working', 'with', 'Data', 'Science', 'using', 'Python']

Example:

import re

string = "Working with Data Science using Python"

result = re.split("\s",string,2)

result

It found the match value “\s” i.e. space. But here the string will split into first 2

occurrence of found only. The remaining string will print as it is.

Output:

['Working', 'with', 'Data Science using Python']

5.9.4 The sub() Function

This function replaces the string with the specified text at each match found.

76

It will print same string, if not match found.

Example:

import re

string = "Working with Data Science using Python"

result = re.sub("\s", "-",string)

result

It found the match value “\s” i.e. space. Every “\s” (space) will replace with the “-”

(dash).

Output:

'Working-with-Data-Science-using-Python'

Example:

import re

string = "Working with Data Science using Python"

result = re.sub("\s","-",string,2)

result

It found the match value “\s” i.e. space. But here “\s” (space) will replace with the “-”

(dash) in first two occurrence of found only. The remaining string will print as it is.

Output:

'Working-with-Data Science using Python'

5.10 SUMMARY

The students will learn many things related to data pre-processing in this module and they

will be able to perform the various data science related operation using Python.

 Ability to do the data wrangling which includes data discovery structuring,

cleaning, enriching, validating and publishing.

 Ability to do the combining different datasets using concat, merge and join

function with different arguments.

 Ability to do the reshaping of dataset using melt, stack and unstack and pivot

functions.

 Ability to work with missing value, encoding categorical data into numerical

value, splitting dataset etc.

 Ability to perform the various functions related to string and regular expression.

REFERENCES

 Books

1. Davy Cielen, Arno D. B. Meysman, Mohamed Ali : Introducing Data Science,

Manning Publications Co.

2. Stephen Klosterman (2019) : Data Science Projects with Python, Packt Publishing

77

3. Jake VanderPlas (2017) : Python Data Science Handbook: Essential Tools for

Working with Data, O‟Reilly

4. Wes McKinnery and Pandas Development Team (2021) : pandas : powerful Python

data analysis toolkit, Release 1.2.3

Web References

1. https://www.geeksforgeeks.org

2. https://www.tutorialspoint.com

3. https://www.w3schools.com

4. https://pandas.pydata.org

5. https://pbpython.com

QUESTIONS

Short Answer:

1. What is data wrangling?

2. What is data cleaning?

3. List tools for data wrangling.

4. What is merging dataset?

5. What is reshaping dataset?

Long Answer:

1. Explain steps for data wrangling process.

2. Explain concat function with example.

3. Explain merge operation with syntax and example.

4. Explain reshaping dataset different functions.

5. Explain string function with example.

6. Explain regular expression with example.

PRACTICALS

1. Create and display a data frame.

2. Create a data frame and find null values and remove it.

3. Create a data frame and inert new column in data frame.

4. Create a data frame and convert categorical data into numerical values.

5. Create a data frame and split the column.

6. Create data frames and combine using concat function.

7. Create data frames and merge with different arguments.

8. Create data frame and reshape using melt function.

9. Perform string manipulation operations on string.

10. Perform regular expression functions on string.

https://www.google.com/search?sa=X&q=Jake+VanderPlas&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEwqr8wtT0_LUoJw0wwq85JNCrK0ZLKTrfST8vOz9cuLMktKUvPiy_OLsq0SS0sy8osWsfJ7JWanKoQl5qWkFgXkJBbvYGUEAAaj1aFTAAAA&ved=2ahUKEwjp1o_D09fwAhWAyzgGHQZyAX4QmxMoATAhegQIGRAD
https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/
https://www.w3schools.com/
https://pandas.pydata.org/
https://pbpython.com/

78

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT VI: AGGREGATION AND GROUP OPERATIONS GROUP BY MECHANICS

STRUCTURE

6.0 Objects

6.1 Introduction

6.2 Data aggregation

6.3 Group wise operation

6.4 Transformation

6.5 Pivot table

6.6 Cross tabulations

6.7 Date and time data type

6.8 Summary

6.9 References

79

6.0 OBJECTIVES

The main goal of this module is to help students learn, understand and practice the data

science approaches, which include the study of latest data science tools with latest

programming . The main objectives of this module are data aggregation, group wise

operation including data splitting, applying and combining, data transformation using lamda

function, pivot table, cross tabulation using two-way and three-way cross table and data and

time data type.

6.1 INTRODUCTION

Data science become a buzzword that everyone talks about the data science. Data science is

an interdisciplinary field that combines different domain expertise, computer programming

skills, mathematics and statistical knowledge to find or extract the meaningful or unknown

patterns from unstructured and structure dataset.

Data science is useful for extraction, preparation, analysis and visualization of various

information. Various scientific methods can be applied to get insight in data.

Data science is all about using data to solve problems. Data has become the fuel of industries.

It is most demandable field of 21
st
 century. Every industry require data to functioning,

searching, marketing, growing, expanding their business.

The application of areas of data science are health care, fraud detection, disease predicting,

real time shipping routes, speech recognition, targeting advertising, gaming and many more.

6.2 Data Aggregation

Data aggregation is the process to gather the raw data and express in a summarised form for

statistical analysis. Data may be collected from various sources and combine into a summary

format for data analysis.

A dataset contains large amount of data in a rows and columns. There are thousands or more

data records are in a single dataset. Data aggregation will useful to access and process the

large amount of data quickly. Aggregate data can be access quickly to gain insight instead of

accessing all the data records. A single raw of aggregated data can represent this large

number of data records over a given time period to calculate the statistics such as sum,

minimum, maximum, average and count.

 Sum : This function add all the specified data to get a total.

 Min : This function displays the lowest value of each specified category.

 Max : This function displays the highest value of each specified category.

 Average : This function calculates the average value of the specific data.

 Count : This function counts the total number of data entries for each category.

Data aggregation provides more insight information based on related cluster of data. For

example, a company want to know the sales performance of different district, they would

aggregate the sales data based on the district. Data can aggregate by date also, if you want to

know the trends over a period of months, quarters, years, etc.

80

Example: Here, we will perform the aggregation operation on data frame.

The below code will create and display data frame df.

#importing pandas library

import pandas as pd

Dataframe creation

df = pd.DataFrame({

 "Rno":[1,2,3,4,5,6,7,8,9,10],

 "Maths":[67,83,74,91,55,70,86,81,92,67],

 "Physics":[56,67,72,84,89,79,90,89,92,82],

 "Chemistry":[81,88,78,69,74,72,83,90,58,68],

 "Biology":[90,83,86,75,68,79,67,71,91,89],

 "English":[60,55,63,71,88,75,91,82,85,80]})

Display dataframe

df

The above code will give the following output.

 Rno Maths Physics Chemistry Biology English

0 1 67 56 81 90 60

1 2 83 67 88 83 55

2 3 74 72 78 86 63

3 4 91 84 69 75 71

4 5 55 89 74 68 88

5 6 70 79 72 79 75

6 7 86 90 83 67 91

7 8 81 89 90 71 82

8 9 92 92 58 91 85

9 10 67 82 68 89 8

Now, we perform the aggregation using min, max and sum.

The below code will find min and max value of different subject of data frame df.

df.aggregate(["min","max"])

81

The above code will give the following output.

 Rno Maths Physics Chemistry Biology English

Min 1 55 56 58 67 55

Max 10 92 92 90 91 91

The below code will find min and max value and calculate average and sum value of

different subject of data frame df.

df.agg(["min","max","average","sum"])

The above code will give the following output.

 Rno Maths Physics Chemistry Biology English

min 1.0 55.0 56.0 58.0 67.0 55.0

max 10.0 92.0 92.0 90.0 91.0 91.0

average 5.5 76.6 80.0 76.1 79.9 75.0

sum 55.0 766.0 800.0 761.0 799.0 750.0

Now, we perform the different aggregation functions on different columns.

The below code will find min and max value of “Maths” subject max and sum of

“Physics” subject and min, median and std of “English” subject of data frame df.

df.agg({"Maths":["min","max"],

 "Physics":["max","sum"],

 "English":["min","median","std"]})

The above code will give the following output.

Here, NaN is display where the specific function is not applying for particular subject.

 Maths Physics English

max 92.0 92.0 NaN

median NaN NaN 77.500000

min 55.0 NaN 55.000000

std NaN NaN 12.400717

sum NaN 800.0 NaN

82

Now, we will apply sum function on each column.

The below code will calculate sum of each column of data frame df.

df.sum()

The above code will give the following output.

Here, the sum of score of each subject will be display.

Rno 55

Maths 766

Physics 800

Chemistry 761

Biology 799

English 750

dtype: int64

Now, we will apply min function on each column.

The below code will find min value of each column of data frame df.

df.min()

The above code will give the following output.

Here, the min value of score of each subject will be display.

Rno 1

Maths 55

Physics 56

Chemistry 58

Biology 67

English 55

dtype: int64

Now, we will apply max function on each column.

The below code will find max value of each column of data frame df.

df.max()

The above code will give the following output.

Here, the max value of score of each subject will be display.

83

Rno 10

Maths 92

Physics 92

Chemistry 90

Biology 91

English 91

dtype: int64

Now, we will apply mean function on each column.

The below code will calculate mean value of each column of data frame df.

df.mean()

The above code will give the following output.

Here, the mean value of score of each subject will be display.

Rno 5.5

Maths 76.6

Physics 80.0

Chemistry 76.1

Biology 79.9

English 75.0

dtype: float64

Now, we will apply count function on each column.

The below code will count the numbers of values in each column of data frame df.

df.count()

The above code will give the following output.

Here, the total numbers of values of score of each subject will be display.

Rno 10

Maths 10

Physics 10

Chemistry 10

Biology 10

English 10

dtype: int64

Now we will apply std function on each column.

The below code will calculate standard deviation of each column of data frame df.

84

df.std()

The above code will give the following output.

Here, the standard deviation of score of each subject will be display.

Rno 3.027650

Maths 11.992590

Physics 11.718931

Chemistry 9.859570

Biology 9.230986

English 12.400717

dtype: float64

Now, we will apply describe function.

The below code will calculate the basic statistics of each column of data frame df.

df.describe()

The above code will give the following output.

 Rno Maths Physics Chemistry Biology English

count 10.00000 10.00000 10.000000 10.00000 10.000000 10.000000

mean 5.50000 76.60000 80.000000 76.10000 79.900000 75.000000

std 3.02765 11.99259 11.718931 9.85957 9.230986 12.400717

min 1.00000 55.00000 56.000000 58.00000 67.000000 55.000000

25% 3.25000 67.75000 73.750000 69.75000 72.000000 65.000000

50% 5.50000 77.50000 83.000000 76.00000 81.000000 77.500000

75% 7.75000 85.25000 89.000000 82.50000 88.250000 84.250000

max 10.00000 92.00000 92.000000 90.00000 91.000000 91.000000

6.3 GROUP WISE OPERATION

The groupby() function is used to perform the group wise operation on a large dataset. This is

a versatile and easy to use function which help to get summary of large dataset. The summary

is easy to explore the dataset and shows the relationship between variables.

We can create a grouping of different categories and apply various functions to each

category. This function is widely used in real data science projects which dealing with large

85

amounts of data. It has ability to aggregate data efficiently. This function refers to a process

of involving one or more of the following steps:

 Splitting: It is a process in which we split the dataset into different groups based on

some criteria.

 Applying: It is a process in which we apply different functions to each group

independently. To apply the function to each group, we perform some operations:

 Aggregation: It is a process to compute a statistical summary of the group such

as sum, mean, median, etc.

 Transformation: It is a process to perform some group specific computations

and return a like-indexed such as filling NA within group with a value derived

from each group.

 Filtration: It is a process to remove some groups based on some criteria such as

filtering out dataset based on group wise sum or mean.

 Combining: It is a process to combine different datasets after applying groupby

function and results will store in a dataset.

The syntax of groupby function is as follows:

Syntax:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True,

group_keys=True, squeeze=False, **kwargs)

Here,

 by: mapping, function, label, str

 axis: int, 0 or index and 1 or columns, default is 0, split along rows (0) or columns

(1).

 level: int, level name, default is None, If the axis is a MultiIndex, group by a

particular level or levels.

 as_index: boolean, default is True, for aggregated output, return object with group

labels as the index.

 sort: boolean, default is True, sort group keys.

 group_keys: boolean, default is True, when calling apply, add group keys to index

to identify pieces.

 squeeze: boolean, default is False, reduce the dimensionality of the return type, if

possible

Example: Here, we will perform the groupby operation on data frame.

The below code will create and display data frame df.

Importing pandas library

import pandas as pd

Dataframe creation

df = pd.DataFrame({

86

"Product":["Mango","Corn","Orange","Cabbage","Mango","Corn","Watermelon","App

le","Pumkin","Mango",],

"Category":["Fruit","Vegetable","Fruit","Vegetable","Fruit","Vegetable","Fruit","Fruit

","Vegetable","Fruit"],

"Qty":[12, 5, 10, 2, 10, 3, 5, 8, 2, 10],

"Price":[350, 80, 320, 50, 200, 50, 280, 380, 60, 400]})

Display dataframe

df

The above code will give the following output.

 Product Category Qty Price

0 Mango Fruit 12 350

1 Corn Vegetable 5 80

2 Orange Fruit 10 320

3 Cabbage Vegetable 2 50

4 Mango Fruit 10 200

5 Corn Vegetable 3 50

6 Watermelon Fruit 5 280

7 Apple Fruit 8 380

8 Pumkin Vegetable 2 60

9 Mango Fruit 10 400

Now, we will perform the groupby operation on “Category” columns.

The below code will find sum of “Qty” and “Price” based on “Category” on data frame

df.

df.groupby("Category").sum()

The above code will give the following output.

87

Here, the total Qty of “Fruit” category is 55 and total Price of “Fruit” category is 1930,

while total Qty of “Vegetable” category is 12 and total Price of “Vegetable” category is

240.

 Qty Price

Category

Fruit 55 1930

Vegetable 12 240

Now, we will perform the groupby operation on “Product” columns.

The below code will find sum of “Qty” and “Price” based on different “Product” on data

frame df.

df.groupby("Product").sum()

The above code will give the following output.

 Qty Price

Product

Apple 8 380

Cabbage 2 50

Corn 8 130

Mango 32 950

Orange 10 320

Pumkin 2 60

Watermelon 5 280

Now, we will perform the groupby operation on “Category” columns.

The below code will find mean of “Price” based on “Category” on data frame df.

df.groupby("Category")["Price"].mean()

The above code will give the following output.

Category

Fruit 321.666667

Vegetable 60.000000

Name: Price, dtype: float64

88

The below code will find mean of “Qty” based on “Category” on data frame df.

df.groupby("Category")["Qty"].mean()

The above code will give the following output.

Category

Fruit 9.166667

Vegetable 3.000000

Name: Qty, dtype: float64

Now, we will perform the groupby operation on “Product” columns.

The below code will find mean of “Price” based on “Product” on data frame df.

df.groupby("Product")['Price'].mean()

The above code will give the following output.

Product

Apple 380.000000

Cabbage 50.000000

Corn 65.000000

Mango 316.666667

Orange 320.000000

Pumkin 60.000000

Watermelon 280.000000

Name: Price, dtype: float64

Now, we will perform the groupby operation on “Category” columns.

The below code will find median of “Price” based on “Category” on data frame df.

df.groupby("Category")["Price"].median()

The above code will give the following output.

Category

Fruit 335

Vegetable 55

Name: Price, dtype: int64

The below code will find standard deviation of “Price” based on “Category” on data

frame df.

df.groupby("Category")["Price"].std()

89

The above code will give the following output.

Category

Fruit 73.325757

Vegetable 14.142136

Name: Price, dtype: float64

6.4 Transformation

Transformation is a process in which we perform some group-specific computations and

return a like-indexed. Transformation perform on a group or a column which returns an

object that is indexed the same size of that is being grouped. Thus, the transform should

return a result that is the same size as that of a group chunk.

Syntax:

DataFrame.transform(func, axis=0, *args, **kwargs)

Here,

 func: this is the function to use for data transformation.

 axis: the axis in which the transformation will perform, {0 or „index‟, 1 or

„columns‟}, default is 0.

 *args: positional arguments to pass in func.

 **kwargs: keyword arguments to pass in func.

Example: Here, we will perform some group specific operation and return a like-

indexed.

The below code will create and display data frame df.

#importing pandas library

import pandas as pd

Creating the DataFrame

df = pd.DataFrame({

 "A":[8, 7, 15, 12, 15],

 "B":[None, 22, 32, 9, 7],

 "C":[10, 6, None, 8, 14]})

Display dataframe

df

The above code will give the following output.

 A B C

90

0 8 NaN 10.0

1 7 22.0 6.0

2 15 32.0 NaN

3 12 9.0 8.0

4 15 7.0 14.0

Now, we will perform the transform operation using lambda.

The below code will multiply by 5 to each value of all the columns A, B and C of data

frame df.

result = df.transform(func = lambda x : x * 5)

result

The above code will give the following output.

 A B C

0 40 NaN 50.0

1 35 110.0 30.0

2 75 160.0 NaN

3 60 45.0 40.0

4 75 35.0 70.0

The below code will calculate the square root of value of all the columns A, B and C of

data frame df.

result = df.transform(func = ["sqrt"])

result

91

The above code will give the following output.

 A B C

 sqrt sqrt sqrt

0 2.828427 NaN 3.162278

1 2.645751 4.690416 2.449490

2 3.872983 5.656854 NaN

3 3.464102 3.000000 2.828427

4 3.872983 2.645751 3.741657

The below code will calculate the exponential of value of all the columns A, B and C of

data frame df.

result = df.transform(func = ["exp"])

result

The above code will give the following output.

 A B C

 exp exp exp

0 2.980958e+03 NaN 2.202647e+04

1 1.096633e+03 3.584913e+09 4.034288e+02

2 3.269017e+06 7.896296e+13 NaN

3 1.627548e+05 8.103084e+03 2.980958e+03

4 3.269017e+06 1.096633e+03 1.202604e+06

The below code will calculate both square root and exponential together of value of all

the columns A, B and C of data frame df.

result = df.transform(func = ["sqrt","exp"])

result

The above code will give the following output.

 A B C

 sqrt exp sqrt exp sqrt exp

92

0 2.828427 2.980958e+03 NaN NaN 3.162278 2.202647e+04

1 2.645751 1.096633e+03 4.690416 3.584913e+09 2.449490 4.034288e+02

2 3.872983 3.269017e+06 5.656854 7.896296e+13 NaN NaN

3 3.464102 1.627548e+05 3.000000 8.103084e+03 2.828427 2.980958e+03

4 3.872983 3.269017e+06 2.645751 1.096633e+03 3.741657 1.202604e+06

The below code will create and display data frame df.

#importing pandas library

import pandas as pd

Creating the DataFrame

df = pd.DataFrame({

"Team":["MI","CSK","RR","MI","KKR","KKR","MI","CSK","KKR",

"RR"],

"Score":[210,150,215,180,185,205,230,190,160,185]})

Display dataframe

df

The above code will give the following output.

 Team Score

0 MI 210

1 CSK 150

2 RR 215

3 MI 180

4 KKR 185

5 KKR 205

6 MI 230

7 CSK 190

8 KKR 160

9 RR 185

The below code will perform the transformation operation using groupby function.

Here, groupby function will apply on “Team” and calculate the “sum” of “Score” using

transform function.

df.groupby("Team")["Score"].transform("sum")

The above code will give the following output.

Here, the sum of “Score” of each “Team” will be display.

93

0 620

1 340

2 400

3 620

4 550

5 550

6 620

7 340

8 550

9 400

Name: Score, dtype: int64

6.5 PIVOT TABLE

Pivot table is a statistical table which summarizes a substantial table like a big dataset. The

summary in a pivot tables may include sum, min, max, mean, median or other statistical

terms. The pivot() function provides general purpose pivoting with various data type such as

string, numeric, etc. The pivot_table() function is used to create pivot table with aggregation

of numeric data using data frame of pandas library of Python. The syntax of this function is

as follow:

Syntax:

DataFrame.pivot(data, index=None, columns=None, values=None, aggfunc)

Here,

 data: dataframe object

 index: a column which has the same length as data. Keys to group by on the pivot

table index.

 columns: a column which has the same length as data. Keys to group by on the pivot

table column.

 values: column or list of columns to aggregate

 aggfunc: function to use for aggregation

The below example will create a pivot table using pivot_table() function of pandas

library of Python.

Example :

The below code will create and display data frame df.

Importing pandas library

import pandas as pd

Dataframe creation

df = pd.DataFrame({

94

"Product":["Mango","Corn","Orange","Cabbage","Mango","Corn","Watermelon","App

le","Pumkin","Mango"],

"Category":["Fruit","Vegetable","Fruit","Vegetable","Fruit","Vegetable","Fruit","Fruit

","Vegetable","Fruit"],

"Qty":[12, 5, 10, 2, 10, 3, 5, 8, 2, 10],

"Price":[350, 80, 320, 50, 200, 50, 280, 380, 60, 400]})

Display dataframe

df

The above code will give the following output.

 Product Category Qty Price

0 Mango Fruit 12 350

1 Corn Vegetable 5 80

2 Orange Fruit 10 320

3 Cabbage Vegetable 2 50

4 Mango Fruit 10 200

5 Corn Vegetable 3 50

6 Watermelon Fruit 5 280

7 Apple Fruit 8 380

8 Pumkin Vegetable 2 60

9 Mango Fruit 10 400

Now, we will perform some examples of pivot table.

Example: To create a pivot table of total sales of each product.

Pivot table of total sales of each product

tot_sales = df.pivot_table(index=["Product"], values=["Price"],aggfunc="sum")

Display pivot table of total sales

print(tot_sales)

95

Here, we set the index as a “Product” and “sum” as an aggregate function to calculate the

total sales of each product. The sum function will do the summation of each products.

The above code will give the following output.

 Price

Product

Apple 380

Cabbage 50

Corn 130

Mango 950

Orange 320

Pumkin 60

Watermelon 280

Example: To create a pivot table of total sales of each category.

Pivot table of total sales of each category

tot_sales = df.pivot_table(index=["Category"], values=["Price"], aggfunc="sum")

Display pivot table of total sales

print(tot_sales)

Here, we set the index as a “Category” and “sum” as an aggregate function to calculate

the total sales of each category. The above code will give the following output.

 Price

Category

Fruit 1930

Vegetable 240

Example: To create a pivot table of total sales of each product.

Pivot table of total sales of both product and category

tot_sales = df.pivot_table(index=["Category","Product"], values=["Price"],

aggfunc="sum")

Display pivot table of total sales

print(tot_sales)

Here, we set the index as a both “Category” and “Product” and “sum” as an aggregate

function to calculate the total sales of each product. The above code will give the

following output.

96

 Price

Category Product

Fruit Apple 380

 Mango 950

 Orange 320

 Watermelon 280

Vegetable Cabbage 50

 Corn 130

 Pumkin 60

Example: To create a pivot table to find the minimum, maximum, mean and median of

price of each category wise.

Pivot table of min, max, mean and media of sales

tot_sales = df.pivot_table(index=["Category"], values=["Price"],

aggfunc={"min","max","mean","median"})

Display pivot table of total sales

print(tot_sales)

Here, we set the index as a “Category” and “min”, “max”, “mean” and “median” as an

aggregate function to calculate the minimum, maximum, mean and median of price of

each category wise. The above code will give the following output.

 Price

 max mean median min

Category

Fruit 400.0 321.666667 335.0 200.0

Vegetable 80.0 60.000000 55.0 50.0

Example: To create a pivot table of total product count of each category.

Pivot table of minimum, maximum and average sales

tot_sales = df.pivot_table(index=["Category", "Product"],

values=["Price"],aggfunc=["count"])

Display pivot table of total sales

print(tot_sales)

97

Here, we set the index as a both “Category” and “Product” and “count” as an aggregate

function to count total product of each category. The above code will give the following

output.

 count

 Price

Category Product

Fruit Apple 1

 Mango 3

 Orange 1

 Watermelon 1

Vegetable Cabbage 1

 Corn 2

 Pumkin 1

6.6 CROSS TABULATIONS

The cross-tabulation method is used to calculate the simple cross-tabulation of two or more

factors. The pandas provide crosstab() function to build a cross-tabulation table which shows

the frequency with which certain groups of data appear. The syntax of crosstab() function in

pandas is as follow:

Syntax:

pd.crosstab(index, columns, values=None, rownames=None, colnames=None,

aggfunc=None, margins=False, margins_name=’All’, normalize=False,

dropna=True)

Here,

 index: array-like, values to group by in the rows.

 columns: array-like, values to group by in the columns.

 values: array-like, optional, array of values to aggregate according to the factors.

 rownames: sequence, must match number of row arrays passed, default is None

 colnames: sequence, must match number of column arrays passed if passed, default

is None

 aggfuncs: function, optional, if no values array is passed, its computers a frequency

table.

 margins: boolean, add row / column margins (i.e. subtotals), default is False.

 margins_name: string, name of the row / column that will contain the subtotals if

margins is True, default is “All”.

 normalize: boolean, {„all‟, ‟index‟, ‟columns‟}, or {0,1}, normalize by dividing all

values by the sum of values, default is False.

 dropna: boolean, do not include columns whose all entries are NaN, default is True.

The below example will create a cross-table using crosstab() function of pandas library

of Python.

98

Example :

The below code will create and display data frame df.

Importing pandas library

import pandas as pd

Dataframe creation

df = pd.DataFrame({

"Name":["Rahul","Jyoti","Rupal","Rahul","Jyoti","Rupal",

"Rahul","Jyoti","Rupal","Rahul","Jyoti","Rupal","Rahul",

"Jyoti","Rupal","Rahul","Jyoti","Rupal"],

"Examination":["SEM-I","SEM-I","SEM-I","SEM-I","SEM-I",

"SEM-I","SEM-I","SEM-I","SEM-I","SEM-II","SEM-II",

"SEM-II","SEM-II","SEM-II","SEM-II","SEM-II","SEM-II",

"SEM-II"],

"Subject":["Physics","Physics","Physics","Chemistry",

"Chemistry","Chemistry","Biology","Biology","Biology",

"Physics","Physics","Physics","Chemistry","Chemistry",

"Chemistry","Biology","Biology","Biology"],

"Result":["PASS","PASS","FAIL","PASS","FAIL","PASS","FAIL",

"PASS","FAIL","PASS","PASS","PASS","FAIL","PASS","PASS",

"PASS","PASS","FAIL"]})

Display dataframe

df

The above code will give the following output.

 Name Examination Subject Result

0 Rahul SEM-I Physics PASS

1 Jyoti SEM-I Physics PASS

2 Rupal SEM-I Physics FAIL

3 Rahul SEM-I Chemistry PASS

4 Jyoti SEM-I Chemistry FAIL

5 Rupal SEM-I Chemistry PASS

6 Rahul SEM-I Biology FAIL

99

7 Jyoti SEM-I Biology PASS

8 Rupal SEM-I Biology FAIL

9 Rahul SEM-II Physics PASS

10 Jyoti SEM-II Physics PASS

11 Rupal SEM-II Physics PASS

12 Rahul SEM-II Chemistry FAIL

13 Jyoti SEM-II Chemistry PASS

14 Rupal SEM-II Chemistry PASS

15 Rahul SEM-II Biology PASS

16 Jyoti SEM-II Biology PASS

17 Rupal SEM-II Biology FAIL

Two-way cross table:

There are two columns is used to create a cross table is called two-way cross table.

Here, we will create a cross table of two columns “Subject” and “Result” as follow:

Two-way cross table creation

pd.crosstab(df.Subject, df.Result, margins=True)

Here, we set margin=True to display the row wise sum and column wise sum of the cross

table. The above code will give the following output.

Result FAIL PASS All

Subject

Biology 3 3 6

Chemistry 2 4 6

Physics 1 5 6

All 6 12 18

Three-way cross table:

There are three columns is used to create a cross table is called three-way cross table.

100

Here, we will create a cross table of three columns “Subject”, “Examination” and

“Result” as follow:

Three-way cross table creation

pd.crosstab([df.Subject, df.Examination], df.Result, margins=True)

Here, we set margin=True to display the row wise sum and column wise sum of the cross

table. The above code will give the following output.

Result FAIL PASS All

Subject Examination

Biology
SEM-I 2 1 3

SEM-II 1 2 3

Chemistry
SEM-I 1 2 3

SEM-II 1 2 3

Physics
SEM-I 1 2 3

SEM-II 0 3 3

All 6 12 18

6.7 DATE AND TIME DATA TYPE

Python does not have date and time data types, but it has a module named “datetime” can

be imported to deal with the date and time. This is inbuilt module available in the

Python. This module consists different classes to work with date and time. These classes

provide different functions to work with dates, times and time intervals.

There are main six classes in datetime module:

Data Type Description

Date It is a date type object. It manipulates only date (i.e. day, month and year).

Time
It is a time object class. It manipulates only time of the any specific day

(i.e. hour, minute, second, microsecond).

Datetime
It manipulates the combination of both time and date (i.e. day, month, year,

hour, second, microsecond).

timedelta
It manipulates the duration expressing the different between two dates,

times or datetime values in milliseconds.

Tzinfo It is an abstract base class which provides time zone information.

101

timezone
It is a class that implements tzinfo abstract base class as a fixed offset

from the UTC.

There are different format codes is used to formatting the data and time.

The format codes are as follows:

Directive Description Example

%a Day of Week, short version Fri

%A Day of Week, full version Friday

%w
Day of Week as a number from 0 to 6,

Here 0 is Sunday
4

%d Day of Month from 01 to 31 25

%b Name of Month, short version Mar

%B Name of Month, full version March

%m Month as a number from 01 to 12 11

%y Year, short version (in two digit) 21

%Y Year, full version (in four digit) 2021

%H Hour from 00 to 23 (in 24 hr format) 16

%I Hour from 00 to 12 (in 12 hr format) 07

%p AM or PM AM

%M Minute from 00 to 59 35

%S Second from 00 to 59 45

%f Microsecond from 000000 to 999999 234567

%z UTC offset +0100

%Z Timezone CST

%j Day number of year from 001 to 365 325

%U
Week number of year, Sunday as the first day of week,

from 00 to 53
40

%W
Week number of year, Monday as the first day of week,

from 00 to 53
40

%c Local version of date and time
Tue Mar 30

13:25:30 2021

%x Local version of date (MM/DD/YY) 11/24/2021

%X Local version of time (HH:MM:SS) 18:25:40

102

To get more insight and work with datetime modules, let‟s take few examples.

Example: To get current data and time.

To get the current date and time

import datetime as dt

d = dt.datetime.now()

print(d)

The above code will give the following output.

2021-05-15 00:53:08.925167

Here, the now() function is used to display the current local date and time.

Example: To get the current date.

To get the current date only

import datetime as dt

d = dt.date.today()

print(d)

The above code will give the following output.

2021-05-15

Here, the today() function is used to get the current local date.

Example: To get the todays date.

To get the today‟s date, month and year separately

import datetime as dt

today = dt.date.today()

print(today)

print("Day :",today.day)

print("Month :",today.month)

print("Year :",today.year)

The above code will give the following output.

2021-05-15

Day : 15

Month : 5

Year : 2021

Here, the today() function is used to get the current local date and display day, month and

year separately.

103

Example: To represent a date using date object.

To represent a date using date object

import datetime as dt

d = dt.date(2021, 1, 26)

print(d)

The above code will give the following output.

2021-01-26

Here, the date is passed as an argument.

Example: To represent a date using timestamp.

To get date from a timestamp

import datetime as dt

ts = dt.date.fromtimestamp(987654321)

print(ts)

The above code will give the following output.

2001-04-19

Here, the fromtimestamp() function is used converts seconds into equivalent date.

Example: To represent a time using time object.

To represent a time using time object

import datetime as dt

time(hour=0, minute=0, second=0)

t = dt.time()

print("Time :",t)

time(hour, minute, second)

t = dt.time(10, 40, 55)

print("Time :",t)

time(hour, minute, second)

t = dt.time(hour=10, minute=40, second=55)

print("Time :",t)

time(hour, minute, second, microsecond)

t = dt.time(10, 40, 55, 123456)

print("Time :",t)

time(hour, minute, second, microsecond)

t = dt.time(10, 40, 55, 123456)

104

print("Hour :",t.hour)

print("Minute :",t.minute)

print("Second :",t.second)

print("Microsecond :",t.microsecond)

The above code will give the following output.

Time : 00:00:00

Time : 10:40:55

Time : 10:40:55

Time : 10:40:55.123456

Hour : 10

Minute : 40

Second : 55

Microsecond : 123456

Here, the time() function with different arguments is used to get the time in different

formats.

Example: To represent a datetime object.

To represent a datetime using datetime object

import datetime as dt

datetime(year, month, day)

dtformat = dt.datetime(2021, 5, 15)

print(dtformat)

datetime(year,month,day,hour,minute,second,microsecond)

dtformat = dt.datetime(2021, 5, 15, 16, 35, 25, 234561)

print(dtformat)

The above code will give the following output.

2021-05-15 00:00:00

2021-05-15 16:35:25.234561

Here, the datetime() function is used to display the dates in different formats.

Example: To represent a datetime object using different format.

To represent a datetime using datetime object

import datetime as dt

dtformat = dt.datetime(2021, 5, 15, 16, 35, 25, 234561)

print("Year : ",dtformat.year)

print("Month : ",dtformat.month)

105

print("Day : ",dtformat.day)

print("Hour : ",dtformat.hour)

print("Minute : ",dtformat.minute)

print("Timestamp : ",dtformat.timestamp())

The above code will give the following output.

Year : 2021

Month : 5

Day : 15

Hour : 16

Minute : 35

Timestamp : 1621076725.234561

Here, the datetime() function is used to display the dates separately in year, month, day,

hours, minutes, seconds etc.

Example: To find the difference between to dates and times.

Different between two dates and times

import datetime as dt

date(year, month, day)

t1 = dt.date(year=2021, month=5, day=15)

t2 = dt.date(year=2020, month=7, day=25)

t3 = t1 - t2

print("Date Difference :",t3)

print("Type of t3 :",type(t3))

date(year, month, day, hour, minute, second)

t1 = dt.datetime(year=2020, month=1, day=15, hour=8, minute=25, second=45)

t2 = dt.datetime(year=2021, month=4, day=25, hour=10, minute=30, second=50)

t3 = t1 - t2

print("Date Difference :",t3)

print("Type of t3 :",type(t3))

The above code will give the following output.

Date Difference : 294 days, 0:00:00

Type of t3 : <class 'datetime.timedelta'>

Date Difference : -467 days, 21:54:55

Type of t3 : <class 'datetime.timedelta'>

106

Here, the datetime() function is used to display the dates and perform the subtraction

operation between two different dates.

Example: To use of timedelta object.

Different between two timedelta objects

import datetime as dt

t1 = dt.timedelta(weeks=6, days=5, hours=9, minutes=45, seconds=10)

t2 = dt.timedelta(weeks=4, days=3, hours=5, minutes=25, seconds=35)

t3 = t1 - t2

print("Time Delta Difference : ",t3)

t1 = dt.timedelta(weeks=3, hours=10, minutes=45)

t2 = dt.timedelta(days=4, minutes=15, seconds=35)

t3 = t1 - t2

print("Time Delta Difference : ",t3)

The above code will give the following output.

Time Delta Difference : 16 days, 4:19:35

Time Delta Difference : 17 days, 10:29:25

Here, the timedelta() function is used to display the dates and perform the subtraction

operation between two different dates.

Example: To represent the time in total seconds.

Time duration in seconds

import datetime as dt

t = dt.timedelta(hours=9, minutes=35, seconds=15)

print("Time in Second :",t.total_seconds())

The above code will give the following output.

Time in Second : 34515.0

Here, the total_seconds() function is used to convert given times into second format.

Example: To use strftime() function for formatting.

Use of strftime() function for date formatting

import datetime as dt

current date and time

now = dt.datetime.now()

print("Current Date and Time :",now)

107

time in HH:MM:SS format

f1 = now.strftime("%H:%M:%S")

print("Time format is :",f1)

date and time format DD/MM/YY, HH:MM:SS format

f2 = now.strftime("%d/%m/%Y, %H:%M:%S")

print("Date :",f2)

Date and time format MM/DD/YY, HH:MM:SS format

f3 = now.strftime("%m/%d/%Y, %H:%M:%S")

print("Date :",f3)

The above code will give the following output.

Current Date and Time : 2021-05-15 17:16:52.794301

Time format is : 17:16:52

Date : 15/05/2021, 17:16:52

Date : 05/15/2021, 17:16:52

Here, the strftime() function is used to display the dates in different format.

Example: To use strptime() function for formatting.

Use of strptime() function for date formatting

import datetime as dt

date in string format

dt_string = "15 May, 2021"

print("Date in string :",dt_string)

date in object format

dt_object = dt.datetime.strptime(dt_string, "%d %B, %Y")

print("Date in object :",dt_object)

The above code will give the following output.

Date in string : 15 May, 2021

Date in object : 2021-05-15 00:00:00

Here, the strptime() function is used to string format date into object format date.

Example: To use different timezone.

Use of time zone

import datetime as dt

import pytz

108

Local time zone

local = dt.datetime.now()

print("Local Time Zone:",local.strftime("%m/%d/%y, %H:%M:%S"))

London time zone

tz_London = pytz.timezone('Europe/London')

dt_London = dt.datetime.now(tz_London)

print("London Time Zone:",dt_London.strftime("%m/%d/%y, %H:%M:%S"))

Newyork time zone

tz_NY = pytz.timezone('America/New_York')

dt_NY = dt.datetime.now(tz_NY)

print("New York Time Zone:",dt_NY.strftime("%m/%d/%y, %H:%M:%S"))

The above code will give the following output.

Local Time Zone: 05/15/21, 17:35:15

London Time Zone: 05/15/21, 13:05:15

New York Time Zone: 05/15/21, 08:05:15

Here, the pytz is used to set different timezone and strftime() function is used to display

the dates in different format.

6.8 SUMMARY

The students will learn many things related to data aggregation and group wise

operations in this module and they will be able to perform the various data science

related operation using Python.

 Ability to perform the data aggregation using various functions such as min, max,

sum, average, count etc.

 Ability to perform group wise operation on specific group such as splitting,

applying and combining to calculate the mean, median, standard deviation group

wise.

 Ability to do the statistical summary table using pivoting.

 Ability to work with cross tabulation using both two-way and three-way cross

table.

 Ability to perform various operation on date and time data types.

REFERENCES

 Books

5. Davy Cielen, Arno D. B. Meysman, Mohamed Ali : Introducing Data Science,

Manning Publications Co.

6. Stephen Klosterman (2019) : Data Science Projects with Python, Packt Publishing

7. Jake VanderPlas (2017) : Python Data Science Handbook: Essential Tools for

Working with Data, O‟Reilly

https://www.google.com/search?sa=X&q=Jake+VanderPlas&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEwqr8wtT0_LUoJw0wwq85JNCrK0ZLKTrfST8vOz9cuLMktKUvPiy_OLsq0SS0sy8osWsfJ7JWanKoQl5qWkFgXkJBbvYGUEAAaj1aFTAAAA&ved=2ahUKEwjp1o_D09fwAhWAyzgGHQZyAX4QmxMoATAhegQIGRAD

109

8. Wes McKinnery and Pandas Development Team (2021) : pandas : powerful Python

data analysis toolkit, Release 1.2.3, 2021

Web References

6. https://www.geeksforgeeks.org

7. https://www.tutorialspoint.com

8. https://www.w3schools.com

9. https://pandas.pydata.org

10. https://pbpython.com

QUESTIONS

Short Answer:

6. What is data aggregation?

7. What is data splitting?

8. What is transformation?

9. What is pivot table?

10. What is cross tabulation?

Long Answer:

7. Explain data aggregation with different functions.

8. Explain groupby function with example.

9. Explain transform function with syntax and example.

10. Explain pivot table with example.

11. Explain cross tabulation with example.

12. Explain date and time data type with different format code.

PRACTICALS

1. Create a data frame and perform aggregation functions.

2. Create data frames and perform groupby function with different arguments.

3. Create data frames and perform transform function.

4. Create data frame and perform pivot table with different arguments.

5. Create data frame and prepare two-way and three-way cross table.

6. Perform various operation using date and time data types.

B.Sc.(DATA SCIENCE)

https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/
https://www.w3schools.com/
https://pandas.pydata.org/
https://pbpython.com/

110

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT VII: DATA MODELING

STRUCTURE

7.0 Objectives

7.1 Introduction

7. Generative Modeling

7.3 Predictive Modeling

7.3.1 Models

7.3.2 Predictive algorithms

7.4 Charts

7.4.1 Histogram

7.4.2 Scatter Plot

7.4.3 Line Chart

7.4.4 Bar Chart

7.5 Graph

7.6 3-D Visulization and Presentation

 7.6.1 3d line plot

 7.6.2 3d scatter plot

 7.6.3 3d bar plot

 7.6.4 wire plot

 7.6.5 surface plot

7.7 Summary

111

7.0 OBJECTIVES

The main goal of this module is to help students learn, understand and practice the data

science approaches, which include the study of latest data science tools with latest

programming languages. The main objectives of this module are data modeling which

includes the basics of generative modeling and predictive modeling techniques and data

visualization which include different types of charts and plots like histogram, scatter plot,

time series plot etc.

7.1 INTRODUCTION

Data science become a buzzword that everyone talks about the data science. Data science is

an interdisciplinary field that combines different domain expertise, computer programming

skills, mathematics and statistical knowledge to find or extract the meaningful or unknown

patterns from unstructured and structure dataset.

Data science is useful for extraction, preparation, analysis and visualization of various

information. Various scientific methods can be applied to get insight in data.

Data science is all about using data to solve problems. Data has become the fuel of industries.

It is most demandable field of 21
st
 century. Every industry require data to functioning,

searching, marketing, growing, expanding their business.

The application of areas of data science are health care, fraud detection, disease predicting,

real time shipping routes, speech recognition, targeting advertising, gaming and many more.

7.2 INTRODUCTION TO GENERATIVE MODELING

Generative models are the family of machine learning models that are used to describe how

data is generated. There are mainly two different types of problems to work with machine

learning or deep learning algorithms such as supervised learning and unsupervised learning.

In supervised learning problem, we have two variables such as independent variables (x) and

the target variable (y). The examples of supervised learning are classification, regression,

object detection etc.

In unsupervised learning problem, we have only independent variables (x). there are no target

variable or label. It aims is to find some underlying patterns from the dataset. The examples

of unsupervised learning are clustering, dimensionality reduction etc.

The generative model is an unsupervised learning problem in machine learning. It

automatically discovers and learning the rules, regularities or patterns from the large input

training dataset. This model learns to create a data that is look like as given. A generative

model can be broadly defined as follows:

A generative model describes how a dataset is generated, in terms of a probabilistic model.

By sampling from this model, we are able to generate new data.

Generative model can generate new data instances. If we have a dataset containing images of

any animal and we may develop a model which can generate a new image of same animal

that is never existing but still it looks like as real animal. This model has learned the general

112

rules that govern the appearance of a specific animal. A generative modelling is used to solve

this kind of problems. A generative model process are as follows:

We require a dataset which consists many instants of the entity which we want to generate.

This dataset is known as the training data and each data points is called as an observation.

The following diagram represent a horse animal dataset.

Generative Model Process (Source: https://www.oreilly.com)

The existing dataset of horse images is used as a training dataset. Based on the training given

to the existing dataset it built a generative model to create new images which look like as a

real image.

7.3 INTRODUCTION TO PREDICTIVE MODELING

Predictive modeling is a mathematical approach to build models based on existing dataset,

which will help to finding the future value or trend of a variable. The variety of statistical

techniques including data mining and machine learning are used to estimate or predict the

future outcomes.

The predictive modelling is used for every area such as

 Weather forecasting

 Price forecasting

 Demand forecasting

 Sales forecasting

 Customer targeting

 Financial modeling

 Risk assessment

 Market analysis

7.3.1 Types of Models

There are different predictive analytics models are developed for specific applications as

follows:

https://www.oreilly.com/

113

 Classification Model

 Clustering Model

 Forecasting Model

 Time Series Model

 Outlier Model

 Classification Model

This is a simplest and most commonly used predictive analytics model. It works on

categorical information based on historical data.

This model is used or apply in many industrial applications because it can easily

retrain with new data as per the needs.

 Clustering Model

This model is use to take the data and divide it into different nested smart groups

based on some common attributes. It helps to divide or grouping things or data

with shared characteristic or behaviors and take strategic decisions for each group.

For example, the customers can be divided based on common attributes like

purchasing methods, purchasing power, etc. for targeted marketing campaign to the

customers.

 Forecast Model

This is a very popular and most widely use model. It works with the metric value

prediction, by estimating the value of new data based on learnings from historical

data. It is also used to generate the numerical values and update where none or

missing value found. This model can be applied wherever historical numerical data

is available. It considers multiple input parameters.

This model is used in many different business and industries. For example, the

company‟s customer care department can predict how many supports calls they

will receive per day.

 Time Series Model

This model is focusses on data where time is an input parameter. This model is

applied by using different data points which is taken from the previous year‟s data

to develop a numerical metric that will used to predict the trends within a specified

period of time.

This model is used in many industries which want to see how a particular variable

change over a time period. It also takes care about extraneous factors that might be

affect the variable such as seasons or seasonal variable. For example, the shopping

mall owners want to know the how many customers may visit the mall in week or

month.

 Outliers Model

114

This model is work with anomalous data entries in a dataset. It works by finding

unusual data, either in isolation or in relation with different categories and

numbers. It is more useful in industries were identifying anomalies can save

organization corers of rupees such as finance and retail. It is more effective in fraud

detection because it can find the anomalies. Since an incidence of fraud is a

deviation from the norm, this model is more likely to predict it before it occurs. For

example, when identifying a fraud transaction, this model can assess the amount of

money lost, purchase history, time, location etc.

7.3.2 Predictive Algorithms

The predictive analytics algorithms can be separated into two things: machine

learning and deep learning. These both are subsets of artificial intelligence (AI).

Machine Learning: It deals structural data such as table or spreadsheets. It has both

linear and non-linear algorithms. Linear algorithms are quickly train, while non-linear

are better optimized for the problems they are to face.

Deep Learning: It is a subset of machine learning. It deals with unstructured data

such as images, social media posts, text, audio and videos.

There are several algorithms can be used for machine learning predictive modelling.

The most common algorithms are:

 Random Forest

 Generalized Linear Model (GLM) for Two Values

 Gradient Booster Model (GBM)

 K-Means

 Prophet

7.4 CHARTS

Charts is the representation of data in a graphical format. It helps to summarizing and

presenting a large amount of data in a simple and easy to understandable formats. By placing

the data in a visual context, we can easily detect the patterns, trends and correlations among

them.

Python provides various easy to use multiple graphics libraries for data visualization with

different features. These libraries are work with both small and large datasets.

Python has multiple graphics libraries with different features. Some of the most popular and

commonly used Python data visualization libraries are :

 Matplotlib

 Pandas

 Seaborn

 ggplot

 Plotly

115

Matplotlib is a most popular, amazing and multi-platform data visualization library available

in Python. Matplotlib consists a wide variety of plots like histogram, scatter plot, line or time

series plot, bar chart etc.

7.4.1 Histogram

Histogram is a graphical representation of the distribution of numerical data. It contains a

rectangular area to display the statistical information which is proportional to the frequency

of a variable. It is an estimate of probability distribution of a continuous variable.

In a histogram, the data are binned and the count for each bin is represent. The number of

bins is selected so that it is comparable to the typical number of samples in a bin. The bins are

specified as consecutive and non-overlapping intervals of a variable. The numbers of bin can

be customized also.

There are three basic steps to construct a histogram:

 Bin the range of values

 Distribute the range of values in a series of intervals

 Count the numbers of value into each interval

The hist() function is used to plot a histogram. It computes and draw the histogram

of x values. There is some parameter to construct the histogram are as follows:

 bins: numbers of bin in the plot, optional

 range: lower and upper range of the bins.

 density: density or count to populate the plot

 histtype: types of histogram plot such as bar, step and stepfilled, default is bar

 align: control to plot the histogram such as left, mid and right

 rwidth: relative width of a bar as a fraction of bin width

 color: it is a color spec or sequence of color specs

 orientation: horizontal or vertical representation, default is vertical

Example: Here we take an example of age of peoples.

The x-axis represents age group or bins and y-axis represents age.

Importing library

import matplotlib.pyplot as plt

Data values

age = [22, 55, 62, 45, 21, 22, 4, 12, 14, 64, 58, 68, 95, 85, 55, 38, 18, 37, 65, 59, 11,

15, 80, 75, 65]

bins = [0,10,20,30,40,50,60,70,80,90,100]

Plotting the histogram with title and label

plt.hist(age, bins)

plt.xlabel("Age Group")

116

plt.ylabel("No. of People")

plt.title("Histogram")

Show plot

plt.show()

The above code will plot histogram as follow:

Here, the age is divided into different age group.

We can also set the type and color of histogram and using histtype and color as an

argument.

import matplotlib.pyplot as plt

age = [22, 55, 62, 45, 21, 22, 34, 42, 42, 4, 2, 102, 95, 85, 55, 110, 120, 7, 65, 55,

111, 115, 80, 75, 65, 4, 44, 43, 42, 48]

bins = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

plt.hist(age, bins, histtype='step', rwidth=0.8, color="red")

plt.xlabel("Age Group")

plt.ylabel("No. of People")

plt.title("Histogram")

plt.show()

The above code will plot histogram as follow:

117

Here, the type of histogram is set to step and color is set to red.

We can also create the multiple histogram of different columns as follows:

Here, we create a data frame with three different columns such as “Age”, “Height”

and “Weight”.

import pandas as pd

df = pd.DataFrame({

 "Age":[25,38,45,29,65,52,46,72,28,35],

 "Height": [145,138,160,180,165,170,158,162,171,168],

 "Weight": [75,90,85,72,68,76,82,96,63,79]})

hist = df.hist(bins=10)

The above code will plot histogram as follow:

118

7.4.2 Scatter Plot

Scatter plot is diagram where each value in the dataset represent by a dot. It is set of dotted

points to represent the individual data on both horizontal and vertical axis to reveal the

distribution trends of data.

This plot is mostly used for large dataset to highlight the similarities in the dataset. It also

shows the outliers and distribution of data.

The scatter() function is used to draw the scatter plot. This function plots one dot for each

observation. It requires two different arrays of same length for both the x-axis and y-axis. we

can also set the scatter plot title and labels on both the axis.

Example: Here we take an example of boys weight and girls weight. The x-axis

represents “Boys_Weight” and y-axis represents “Girls_Weight”.

Importing library

import matplotlib.pyplot as plt

Data values

Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59]

Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 59]

Plotting scatter plot with title and label

plt.scatter(Boys_Weight, Girls_Weight)

plt.title("Scatter Plot")

plt.xlabel("Boys Weight")

plt.ylabel("Girls Weight")

Show plot

plt.show()

The above code will create scatter plot as follow:

In above plot, we can see the relationship between boys and girls weight.

119

We can also compare the boys weight and girls weight of one class with another

class.

import matplotlib.pyplot as plt

import numpy as np

Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59]

Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 68]

plt.scatter(Boys_Weight, Girls_Weight)

Boys_Weight = [54, 67, 92, 56, 83, 65, 89, 78, 50, 49]

Girls_Weight = [41, 79, 56, 74, 76, 73, 74, 87, 82, 63]

plt.scatter(Boys_Weight, Girls_Weight)

plt.title("Scatter Plot")

plt.xlabel("Boys Weight")

plt.ylabel("Girls Weight")

plt.show()

The above code will create scatter plot as follow:

In above plot, we can see the relationship between boys and girls weight of one class

with another class by using different colors.

We can also set or change the color of both the classes of data using color as an

argument. Here we set the red color for first class students and green color for

second class students.

import matplotlib.pyplot as plt

import numpy as np

Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59]

120

Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 68]

plt.scatter(Boys_Weight, Girls_Weight, color="red")

Boys_Weight = [54, 67, 92, 56, 83, 65, 89, 78, 50, 49]

Girls_Weight = [41, 79, 56, 74, 76, 73, 74, 87, 82, 63]

plt.scatter(Boys_Weight, Girls_Weight, color="Green")

plt.title("Scatter Plot")

plt.xlabel("Boys_Weight")

plt.ylabel("Girls_Weight")

plt.show()

The above code will create scatter plot as follow:

In above plot, we can see the relationship between both classes. Here, red color is

used for first class students and green color is used for second class students.

We can also set or change the size of dots using s as an argument in scatter plot.

import matplotlib.pyplot as plt

import numpy as np

Boys_Weight = [67, 90, 72, 114, 67, 80, 91, 106, 60, 59]

Girls_Weight = [50, 59, 63, 40, 52, 88, 60, 45, 52, 68]

size = [200, 220, 240, 260, 280, 300, 320, 340, 360, 380]

plt.scatter(Boys_Weight, Girls_Weight, s=size, alpha=0.5)

plt.title("Scatter Plot")

plt.xlabel("Boys_Weight")

plt.ylabel("Girls_Weight")

plt.show()

121

The above code will create scatter plot as follow:

In above plot, we can see the size of each dots.

We can also set the shape instead of dots in scatter plot. Here we set the marker and

edgecolor as an argument in scatter function to set the shape with edge color in

scatter plot.

import matplotlib.pyplot as plt

import numpy as np

Boys_Weight = [67, 89, 72, 114, 65, 80, 91, 106, 60, 59]

Girls_Weight = [50, 59, 63, 40, 92, 88, 64, 45, 52, 68]

plt.scatter(Boys_Weight, Girls_Weight, marker ="s", edgecolor ="green", s=50)

Boys_Weight = [54, 67, 92, 56, 83, 65, 89, 78, 50, 49]

Girls_Weight = [41, 79, 56, 74, 76, 73, 74, 87, 82, 63]

plt.scatter(Boys_Weight, Girls_Weight, marker ="^", edgecolor ="red", s=100)

plt.title("Scatter Plot")

plt.xlabel("Boys Weight")

plt.ylabel("Girls Weight")

plt.show()

The above code will create scatter plot as follow:

122

In above plot, we can see the shape with edge color.

7.4.3 Line Chart

Line chart is used to shows the relation between two datasets on a different axis. There are

multiple features available such as line color, line style, line width etc. It is also known as

time series plot.

Matplotlib is most popular library for plotting different chart. Line chart is one of them. The

plot() function is used to create a line chart. Here we will see some examples of line chart in

Python.

Example: Here we take an example of numbers of students enroll in specific course

in different year. The x-axis represents “Year” values and y-axis represents

“Student”.

Importing library

from matplotlib import pyplot as plt

Data values

Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]

Student = [88,76,61,68,92,85,62,58,75,83]

Plotting the line

plt.plot(Year, Student)

Show plot

plt.show()

The above code will create line chart as follow:

123

In this chart, there is no label on both the axis and title of chart. Label is required to

understand the dimensions of chart. The following code will create the line chart

with title and labeled on both axes.

from matplotlib import pyplot as plt

Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]

Student = [88,76,61,68,92,85,62,58,75,83]

plt.title("Line Chart")

plt.xlabel("Year")

plt.ylabel("No. of Students")

plt.plot(Year, Student)

plt.show()

The above code will create line chart as follow:

We can set the line color also using color as an argument. Here we set red color to

the line.

from matplotlib import pyplot as plt

124

Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]

Student = [88,76,61,68,92,85,62,58,75,83]

plt.title("Line Chart")

plt.xlabel("Year")

plt.ylabel("No. of Students")

plt.plot(Year, Student)

plt.plot(Year, Student, 'red')

plt.show()

The above code will create line chart as follow:

We can set the line width also using linewidth or lw as an argument. Here we set 10

to the linewidth.

from matplotlib import pyplot as plt

Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]

Student = [88,76,61,68,92,85,62,58,75,83]

plt.title("Line Chart")

plt.xlabel("Year")

plt.ylabel("No. of Students")

plt.plot(Year, Student)

plt.plot(Year, Student, 'green', linewidth=10)

plt.plot(Year, Student,'*')

plt.show()

125

The above code will create line chart as follow:

We can set the line style also using linestyle or ls as an argument. There are various

types of style available such as solid, dotted, dashed and dashdot. Here we set dotted

as a linestyle in line chart.

from matplotlib import pyplot as plt

Year = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]

Student = [88,76,61,68,92,85,62,58,75,83]

plt.title("Line Chart")

plt.xlabel("Year")

plt.ylabel("No. of Students")

plt.plot(Year, Student, linestyle = 'dotted')

plt.plot(Year, Student,'*')

plt.show()

The above code will create line chart as follow:

126

We can set the multiple lines in a single line chart. Here x-axis and y-axis represent

the different values. We plot the line chart separately for both the axis. Here we set

the dotted as a linestyle in x-axis.

from matplotlib import pyplot as plt

X = [36,41,56,82,64,38,73,59,38,78]

Y = [73,46,73,68,54,56,63,80,54,67]

plt.plot(X, linestyle = 'dotted')

plt.plot(Y)

plt.show()

The above code will create line chart as follow:

Here the dotted line represents the x-axis and solid line represent the y-axis.

7.4.4 Bar Chart

Bar chart or bar plot is representing the category of data with rectangular bars with different

heights and lengths with reference to the values that they present. The bar() function is used

to create a bar chart. The bar chart can be plotted both horizontally and vertically.

127

The bar chart describes the comparisons between distinct categories. One axis represents the

particular categories being compared and another axis represent the measured values

respected to those categories. The numerical values of variables in a dataset represent the

height or length of bar.

Example: Here we take an example of students name and age. The x-axis represents

“Name” and y-axis represents “Age”. Here we also set the chart title and labels on

both the axis.

Importing library

from matplotlib import pyplot as plt

import numpy as np

Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"])

Age = np.array([20, 30, 24, 15, 12])

Labelling the axes and title

plt.title("Bar Chart")

plt.xlabel("Name")

plt.ylabel("Age")

Plotting the bar

plt.bar(Name, Age)

The above code will create bar chart as follow:

We can change the bar color also. We set color as an argument to change the color

of bar. Here we set the red as a color of bar.

from matplotlib import pyplot as plt

import numpy as np

Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"])

Age = np.array([20, 30, 24, 15, 12])

128

plt.title("Bar Chart")

plt.xlabel("Name")

plt.ylabel("Age")

plt.bar(Name, Age, color="red")

The above code will create bar chart as follow:

We can set the bar width also. We set width as an argument to set the width of bar.

Here we set 0.2 as a width of bar.

from matplotlib import pyplot as plt

import numpy as np

Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"])

Age = np.array([20, 30, 24, 15, 12])

plt.title("Bar Chart")

plt.xlabel("Name")

plt.ylabel("Age")

plt.bar(Name, Age, width=0.2)

The above code will create bar chart as follow:

129

We can display bar horizontally also instead of vertically. We set the bar

horizontally by using barh() function.

from matplotlib import pyplot as plt

import numpy as np

Name = np.array(["Rahul", "Shreya", "Pankaj", "Monika", "Kalpesh"])

Age = np.array([20, 30, 24, 15, 12])

plt.title("Bar Chart")

plt.xlabel("Age")

plt.ylabel("Name")

plt.barh(Name, Age)

The above code will create bar chart as follow:

The multiple bar chart is used to represent the comparison among the different

variables in a dataset. We can set the thickness and positions of bars also.

130

Here, we take an example of marks of different subject with the name of students.

X-axis represents the students and y-axis represents the marks of different subjects.

from matplotlib import pyplot as plt

import pandas as pd

df = pd.DataFrame({

"Name":["Rahul","Shreya","Pankaj","Monika","Kalpesh"],

"Maths":[67,83,74,91,56],

"Biology":[90,78,86,75,68],

"English":[60,55,63,71,88]})

df.plot.bar()

The above code will create bar chart as follow:

Here, we show the comparisons of marks of different subjects of the students.

7.5 GRAPH

Graph is a pictorial representation of a set of objects. Some pairs of objects are connected

through links. The interaction of link is denoted by points which is known as vertices. The

link which is used to connect the vertices is called edges. We can perform some operation on

graph such as:

 Display vertices

 Display edges

 Add new vertex

 Add new edge

 Create graph

The dictionary data type is used to present a graph in Python. The vertices of a graph are

representing as the keys of dictionary and the links between the vertices also called edges

which represent as the values of dictionary

Take the following graph as an example.

131

The above graph consists the following vertices (V) and edges (E).

V = {A, B, C, D, E}

E = {AB, AC, BC, BD, CE, DE}

The above graph represents using Python as below.

Create the dictionary with graph elements

graph = { "a" : ["b","c"],

 "b" : ["a","c", "d"],

 "c" : ["a","b", "e"],

 "d" : ["b","e"],

 "e" : ["c","d"]

 }

Print the graph

print(graph)

The code will give the following output.

{'a': ['b', 'c'], 'b': ['a', 'c', 'd'], 'c': ['a', 'b', 'e'], 'd': ['b', 'e'], 'e': ['c', 'd']}

7.6 3D VISULIZATION AND PRESENTATION

The matplotlib library is most popular for data visualization in Python. It was initially

designed for two-dimension plotting, but some three-dimension plotting utilities were built on

top matplotlib‟s two-dimension display in later versions. Three dimensional plots are

enabling by importing the mplot3d toolkit, which included with the main matplotlib.

A three-dimensional axis can be created by using the keyword projection=“3d” as

follows.

132

Importing library

import matplotlib.pyplot as plt

3D projection plot

fig = plt.figure()

ax = plt.axes(projection ="3d")

plt.title("3D Projection", color="blue")

The above code will plot as follow:

7.6.1 3D Line Plot

This is a most basic three-dimensional plot created using set of (x, y, z) triples. It is also

known as time series plot. This plot is plotted using ax.plot3D function as follow:

Importing library

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

3D projection

fig = plt.figure()

ax = plt.axes(projection = "3d")

All three axis

z = np.linspace(0, 1, 100)

x = z * np.sin(50 * z)

y = z * np.cos(50 * z)

3D Line plotting

ax.plot3D(x, y, z, "purple")

ax.set_title("3D Line Plot", color="blue")

133

plt.show()

The above code will plot as follow:

7.6.2 3D Scatter Plot

This is a basic three-dimensional plot created using set of (x, y, z) triples. It represents

the data points on three axes to show the relationship between three variables. This plot

is plotted using ax.scatter3D function as follow:

Importing library

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

3D projection

fig = plt.figure()

ax = plt.axes(projection = "3d")

All three axis

z = np.linspace(0, 1, 100)

x = z * np.sin(25 * z)

y = z * np.cos(25 * z)

3D scatter plotting

ax.scatter3D(x, y, z, color="red")

ax.set_title("3D Scatter Plot", color="blue")

plt.show()

The above code will plot as follow:

134

7.6.3 3D Bar Plot

The three-dimensional bar plot is used to compare the relationship between three

variables. This plot is plotted using ax.bar3d function as follow:

Importing library

from mpl_toolkits.mplot3d import axes3d

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import style

3D projection

fig = plt.figure()

ax = fig.add_subplot(111, projection="3d")

All three axis

x = [1,3,5,7,9,11,7,3,5,6]

y = [5,7,2,6,4,6,5,3,6,7]

z = np.zeros(10)

dx = np.ones(10)

dy = np.ones(10)

dz = [1,3,5,7,9,11,7,5,3,7]

3D Bar plotting

ax.bar3d(x, y, z, dx, dy, dz, color="orange")

ax.set_title("3D Bar Plot", color="blue")

ax.set_xlabel("X-axis")

ax.set_ylabel("Y-axis")

ax.set_zlabel("Z-axis")

plt.show()

135

The above code will plot as follow:

7.6.4 3D Wire Plot

This plot takes a grid of values and draws the lines between nearby points on three-

dimensional surface. This plot is plotted using ax.plot_wireframe method as follow:

Importing library

import numpy as np

import matplotlib.pyplot as plt

3D projection

fig = plt.figure()

ax = plt.axes(projection="3d")

Function

def func(x, y):

 return np.sin(np.sqrt(x * x + y * y))

All three axis

x = np.linspace(-5, 5, 25)

y = np.linspace(-5, 5, 25)

X, Y = np.meshgrid(x, y)

Z = func(X, Y)

3D wireframe plotting

ax.plot_wireframe(X, Y, Z, color="Green")

ax.set_title("3D Wire Plot", color="blue")

plt.show()

The above code will plot as follow:

136

7.6.5 3D Surface Plot

This plot is like as wireframe plot, but each face of the wireframe is filled polygon.

This plot shows the functional relationship between one dependent variable and two

independent variables. This plot is plotted using ax.plot_surface method as follow:

Importing library

import numpy as np

import matplotlib.pyplot as plt

3D projection

fig = plt.figure()

ax = plt.axes(projection="3d")

Function

def func(x, y):

 return np.sin(np.sqrt(x * x + y * y))

All three axis

x = np.linspace(-5, 5, 25)

y = np.linspace(-5, 5, 25)

X, Y = np.meshgrid(x, y)

Z = func(X, Y)

3D surface plotting

ax.plot_surface(X, Y, Z, rstride=1, cstride=1,cmap='viridis', edgecolor='none')

ax.set_title("3D Surface Plot", color="blue")

plt.show()

The above code will plot as follow:

137

7.7 SUMMARY

The students will learn many things in this module and they will be able to perform the

various data science related operation using Python.

 Ability to do understand the generative and predictive modeling.

 Ability to plot the various types of charts including histogram, scatter plot, line or

timeseries plot, bar plot from the dataset.

 Ability to prepare a graph.

 Ability to plot the various types of three-dimension graph.

REFERENCES

Books

11. Davy Cielen, Arno D. B. Meysman, Mohamed Ali: Introducing Data Science,

Manning Publications Co.

12. Stephen Klosterman (2019) : Data Science Projects with Python, Packt Publishing

13. Jake VanderPlas (2017) : Python Data Science Handbook: Essential Tools for

Working with Data, O‟Reilly

14. Wes McKinnery and Pandas Development Team (2021) : pandas : powerful Python

data analysis toolkit, Release 1.2.3

Web References

1. https://www.oreilly.com

2. https://www.geeksforgeeks.org

3. https://www.tutorialspoint.com

4. https://www.w3schools.com

5. https://pandas.pydata.org

6. https://pbpython.com

https://www.google.com/search?sa=X&q=Jake+VanderPlas&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEwqr8wtT0_LUoJw0wwq85JNCrK0ZLKTrfST8vOz9cuLMktKUvPiy_OLsq0SS0sy8osWsfJ7JWanKoQl5qWkFgXkJBbvYGUEAAaj1aFTAAAA&ved=2ahUKEwjp1o_D09fwAhWAyzgGHQZyAX4QmxMoATAhegQIGRAD
https://www.oreilly.com/
https://www.geeksforgeeks.org/
https://www.tutorialspoint.com/
https://www.w3schools.com/
https://pandas.pydata.org/
https://pbpython.com/

138

7. https://jakevdp.github.io

8. https://matplotlib.org

9. https://www.logianalytics.com

10. https://seleritysas.com

QUESTIONS

Short Answer:

11. What is generative modeling?

12. What is predictive modeling?

13. List the types of predictive modeling.

14. What is chart?

15. What is histogram?

16. List types of charts.

17. What is graph?

18. List the 3D plots.

Long Answer:

13. Explain predictive modeling in details.

14. Explain histogram with example.

15. Explain scatter plot with example.

16. Explain line chart or time series plot with example.

17. Explain bar plot with example.

18. Explain three-dimensional plot with example.

PRACTICALS

7. Create and display histogram with different arguments.

8. Create and display scatter plot with different arguments.

9. Create and display time series plot with different arguments.

10. Create and display bar plot with different arguments.

11. Create a simple graph.

12. Create and display various 3D plots.

https://jakevdp.github.io/
https://matplotlib.org/
https://www.logianalytics.com/
https://seleritysas.com/

139

B.Sc.(DATA SCIENCE)

SEMESTER-I

INTRODUCTION TO DATA SCIENCE

UNIT VIII: APPLICATION OF DATA SCIENCE

STRUCTURE

8.0 Introduction

8.1 Objectives

8.2 Data Science in Business

8.3 Data Science in Clean Energy

8.4 Data Science in Health Care

8.5 Insurance

8.6 Travel

8.7 Transport

8.8 Manufacturing

8.9 Telecommunication

8.10 Supply Chain Management

8.11 Gaming

8.12 Governance

8.13 Biotechnology

8.14 Pharmaceuticals

8.15 Geospatial Analytics and Modelling

8.16 Summary

140

8.0 INTRODUCTION

Today, Data Science has influenced practically all companies by its advanced usage. Each

company has used the data for its future goals. Thus, data science has made a bridge between the

company and the user. All over the world, there are a couple of industries that use data science

such as, business, insurance, energy, health care, biotechnology, telecommunication, travel, etc.

At last, there are several data science applications, and these applications are given in this unit.

8.1 OBJECTIVES

The objective of this unit is to illustrate the applications of Data Science. After completing this

unit, learners will be able to understand the fundamental applications of the latest technology.

This Unit will cover the applications in the following areas:

 Data Science in Clean Energy, Health Care

 Insurance

 Travel

 Transport

 Gaming, Supply Chain Management

 This unit deals with the basic applications of Data Science and how these applications are

helpful in the implementation of the latest technology.

Figure 1: Applications of Data Science

Applications
of Data
Science

Clean Energy

Health care

Insurance

Tele

communication

Manufacturing

Governance

Gaming

Supply Chain
Management

Transport

Travel

141

8.2 DATA SCIENCE IN BUSINESS

In the modern era, various companies are using Data science to ease their regular processing.

Most companies use data to make better decisions and that data will be implemented for their

growth.

There are many different ways by which Data Science is helping businesses to run in a better

way:

1. Making best decisions:

The traditional way of business was more detailed and fixed in nature but that data cannot be

used in business operations and decision-making strategies. In this processing, various factors are

involved to get the best outcome such as:

1. Aware of the context and behavior of the problem.

2. Elaborate and measuring the quality of data.

3. Best algorithms and tools will be used to find the best solutions.

4. Using stories about success for the understanding of teams.

With the help of these steps, businesses need data science to speed up the decision-making

process.

2. Manufacturing Better Products

Most companies should be able to engage their consumers towards products. They find the best

alternates for their customers and assure them related to their products. Thus, companies need

data to develop their product in the best possible way. The process involves such as feedback,

use advanced analytical tools, market trends, and innovative ideas.

3. Efficiently Manage the Business

Modern business is fully based on data and that will help to make meaningful analysis with

events of prediction. With the use of data science, a businessman can manage their business

more efficiently either business is on a large scale and a small startup. Moreover, companies can

predict the growth rate of their implementation. Thus, it can help in summarizing the overall

performance of the company and the distribution of the products worldwide. Data science helps

in managing business efficiency by some factors such as tracking the performance, the success

rate of the product, and other important metrics.

4. Predict Outcomes for Future Outcome

Prediction factors are the most crucial part of businesses. With the advanced tools and

technologies, industries have elaborated their capability to provide the best training to their

employee. In simple terms, predictive analytics is that which involves several machine learning

algorithms and tools for future outcomes using previous year's data and these tools are SAS,

142

IBM, SPSS, etc.

Figure 2: Predictive Processes

5. Assessing Business Decisions

After prediction, it is important to understand how these predictions will affect the performance

of the business and growth. If the decision leads to face any consequences, then analyze the

decision and eliminate the problems. Thus, business can make profits with the help of data

science.

8.3 DATA SCIENCE IN CLEAN ENERGY

Clean energy is also known as renewable energy. It continuously grows with the advancement of

the Internet of Things (IoT). The connectivity and sensor advancement collect more innumerable

data from outside resources. Earlier energy companies did not work with a large amount of data.

But, with the approach of data science, one can derive important insight from the excessive data.

Data science to be used in the industry of clean energy to improve and optimizes the processes.

One of the significant approaches is to improve the day-to-day operations in the energy

renewable sector. Data plays an efficient role in the management and clean energy regulation.

Data science is to be used in many ways in clean energy. One of the principal examples is the

solar plant that collects data for optimizing power performance, also predicts the maintenance

required after the particular interval, etc. These applications include the widespread collection of

data and its analysis.

There exist several ways of using clean energy with data science. For example, the data to be

collected from solar to optimize the performance, reduce the maintenance times, analyze the

expected maintenance time, and make solar implementation more compact. These applications of

clean energy are extensively used for collection and data analysis.

8.3.1. Clean Energy for Most Suitable Environment and Economy

It can be a great asset to the enterprise that makes optimizations in the day-to-day enforcements

in the wind or solar farm. In this way, renewable energy is an environmentally friendly and cost-

effective option to fossil fuels that improve efficiency. With the advancement of renewable

1. •Detecting Fraud

2. •Optimizing Marketing Campaigns

3. • Improving Operations

4. •Reducing Risks

143

energy sources, it is possible to get more mileage from wind farms or solar plants in a desirable

manner.

8.4 DATA SCIENCE IN HEALTH CARE

Data science plays a vital role in all industries and it will help to transform the health care sector also.

Medicine and healthcare facilities both are a crucial part of everyone's life and the treatment and the medicine

are fully relied on doctor prescription but this wasn’t always right. On the other hand, data science will help

them with their diagnoses. In the healthcare sector, several fields such as medical imaging, drug discovery,

genetics, predictive diagnosis, and some other areas where data science has been used.

a) Medical Imaging: Technology has improved the health sector day by day and there are

various imaging techniques to visualize the internal parts of the human body such as X-Ray,

MRI, and CT-Scan. In the past few years, doctors treat patients manually and this technique

creates a problem for both of them, however, it has been possible through deep learning

technologies in data science. In the past few years ago, doctors check the patients manually

but due to deep learning of data science, the trend has to change day by day.

b) Genomics: It is the study of sequencing and analysis of genomes. A genome is made of

DNA. It is a time-consuming and expensive process to analyze the sequence of genomes.

However, with the advanced tools of data science, it is possible to analyze and

understanding human genes at a low cost. The Gene system has helped to find the

connections between genetics and the health of the person. Moreover, it also involves

finding the proper drug and how it will affect the particular genetic structure and this

combination is called Bioinformatics. Several tools are related to data science such as

MapReduce, SQL, Galaxy, etc.

c) Drug discovery: Drug Discovery is a highly complicated task. Thus, the pharmaceutical

industries are based on data science to solve their problems and create the best outcome for

humanity. For example: In Covid -19 researcher of various countries share their data so they

produce the best vaccine for the social cause. Drug discovery is a time-consuming process

that involves heavy finance and heavy testing. Companies use the patient’s information such

as mutation profiles from the previous year’s data and they can design drugs that address the

key mutations in the genetic sequences. Furthermore, researchers study chemical compounds

and test the combinations of different cells and genetic mutations. After that, they will

produce the drug to solve the health issues.

d) Monitoring patient health: Data science plays a major role in IoT devices and these

devices assist to check the heartbeat, temperature and check other medical parameters of the

person. The data is collected with the help of analytical tools and it helps the doctors track

the patient biological rhythm. Furthermore, it helps the doctors to take compulsory decisions

for their patients.

e) Tracking & Preventing Diseases: Data science plays a significant role in monitoring

144

patient’s health and takes important steps to detect chronic diseases at an early level with the

best use of Artificial Intelligence.

8.5 INSURANCE

Insurance is one of the most competitive and unpredictable industry and it has been dependent on

statistics however data science has changed the scenario. These days, insurance companies have

a large range of information sources for covering the risk assessment. Big data helps to find risks

and maintain effective strategies for customers.

 Figure 3: Effective strategies for customer

a) Fraud detection: Insurance fraud is faced by insurance companies every year. Data science

is the best way to detect fraudulent activity with the help of software and various techniques.

This software relies on the previous history of such activities and uses the sampling method

to consider solving this issue.

b) Price optimization: It is a complex approach thus it can handle combinations of various

methods and algorithms. Insurance companies use these algorithms to compare the changes

between previous years and customer policy, because price optimization is closely related to

the customer’s price awareness. Price optimization assists to improve the customer's bond

with the company for a long period.

c) Risk assessment: Risk assessment tools in the insurance industry encourage the forecasting

of risks. Risks are of two major types: pure and speculative. A risk assessment identifies the

risk amount and various reasons for the risk and these are the basis for data analysis and

Fraud
Detection

Price
Optimization

Risk
Assessment

Healthcare
Insurance

Claims
Prediction

145

calculations.

d) Healthcare insurance: Health insurance is the best insurance throughout the world and it

covers the costs caused by any major diseases, accidents, disability, or death. In most

countries, health policies are strongly recommended by governments. Healthcare facilities

are improving rapidly due to which companies face to provide better services and reduce the

customer’s costs. As a result, companies store a wide range of data includes claims data,

membership information, medical records, etc. so, companies will provide quality of care,

fraud detection, and prevention and consumers get better facilities from the companies.

e) Claims prediction: Insurance companies are interested in the prediction of the coming

future, so these companies predict the financial loss earlier by the use of models such as a

decision tree, a random forest, a binary logistic regression, and a support vector machine.

Forecasting, the demand of the future to charge premiums that are not too high and not low.

Price models also contribute to the improvement, which helps the company to be one step

beyond its opponents.

8.6 TRAVEL

Data Science is growing with multiple paradigms, tools, and machine learning approaches to

acquire predictive, descriptive, and perspective goals to derive hidden data from the raw facts.

Nowadays, traveling is a thriving industry that regularly increases the number of consumers and

requires the highly processing of data. This approach is highly adapting the data science

algorithms. Travel industries such as hotel, reservation, airline, booking sites, etc. are the broad

areas that manage multiple requests from customers every day. Data Science plays an efficient

role and is used for hospitality and marketable uses in travel.

a) Viewpoint Analysis: The area where data science has proved valuable is viewpoint

analysis. This analysis depends on the reviews of customers on the website. Organizations

also track the remarks and emojis that are used by the customers for brands. It is critical to

understand the view of the customer towards the brand and how they recommend the

services to others. In this, Data science provides the resolution to do so.

b) Tour Planning: Data Science helps in building agendas and planning that assist in time

management, cost-cutting, and quick decision making. The new trends in AI are trained by

data science that requires constant learning about customer requests and requirements. It

helps the customers by spending less time and numerous cost-effective plans. Every

customer's history is considered by the AI machine learning tools to discover the most

suitable plans.

8.7 TRANSPORT

Data science is also used in transportation actively making its mark in construct safer ways for

146

drivers. In this sector, data science introduced a self-driving car for the new generation. It also

analysis of fuel consumption patterns, driver behavior and actively monitor the vehicle has

established a strong bond between the company and the user. Driverless cars are the most

advanced topic currently available in the market. Same as the driverless metro even cycle also

has invented by Google engineers. Moreover, industries can also create the best logical routes

and this is possible through data science. For example, most of the transportation companies

follow data science for providing a better experience to their customers so that customers give

the best feedback for their company and they also predict the best way for the customers without

inconveniences like traffic and road conjunction.

8.8 MANUFACTURING

Manufacturing is the pillar of every other industry because it helps to analyze the performance,

reduction of faults in the production adapts to the changes in the market trends, and upgrades the

production system by the use of new technologies. The trend should be changed with the help of

data science in manufacturing companies to boost production and generate annual revenue. To

illustrate: the car industry is the real cause of a manufacturing company. In the last year, 2020

major food companies are using AI machines and this technology is capable of performing the

given tasks such as:

 Figure 3: Steps

Product efficiency and performance of the machines are calculated by data science techniques

such as visualization, which investigates the number of products per day as well as the number of

defective product items and reasons for the defects. Data science helps to predict the annual

growth on the behalf of current production systems.

Applications of Data Science in Manufacturing

The major application of data science in manufacturing industries is given below:

 Price Optimization

 Predictive Analytics

 Demand Forecasting and Inventory Management

 Supply Chain Management

1. Creating an item

2. Detection of the defective item

4. Distribution of products in the market.

3. Packaging of items

147

a. Price Optimization: The main factor of Competition between the companies is the price

of the product and numerous factors on which the end price of a product depends. These

factors are raw materials, machines, labor cost, and electricity. All these affect the price

of the final product. If the price of the product is high then it will affect the demand for

the product in the market. At this stage, techniques of data science help to understand the

requirement of products and identify the unnecessary costs of the product. It helps to

optimize the cost of the product that would be responsible for their customers as well as,

this cost helps them to in the highly corporative world with affordable cost. By this, the

companies can groom their profitability for their future betterment.

b. Predictive Analysis: The overall growth of the company depends on its command of the

trend of the market, the need of customers, and business rivals. Predictive analysis is one

of the major factors that can help the organization's goals as per the customers’ needs.

Data science predicts the growth, customer demands, and future requirements due to

these predictions’, organizations set their goals for future manufacturing. During this

process, data science can protect from errors in the products and develop more secure

technologies that can help to increase production. Data science tools help to figure out the

business and make changes in the product according to requirements. Production staff

can build planning to cover uncertain situations using predictive analysis tools.

c. Demand Forecasting and Inventory Management: One major key factor for successful

manufacturing is on-time production. Manufacturing companies face high-priority tasks

in packaging and supplies. In a competitive market, it is important to forecast the demand

of the customers in advance. Moreover, data science can help to analyze and predict

customer demands. It helps the companies to manage the production and supply chain. In

addition, it prevents unneeded production. At last, this feature is to manage inventory

management, customer requirements, and business needs.

Some key factors about demand forecasting and inventory management:

1. It helps to overcome the need for irrelevant storage.

2. It controls inventory management.

3. It covers the gap between the suppliers and the production companies.

4. It manages the supply process.

In this way, production companies can perform well in the corporate world and create new

strategies for future development.

8.9 TELECOMMUNICATION

Telecommunication companies are using data science applications that help in profit

maximization. These companies play an efficient role in building an effective marketing strategy

148

and business strategy. It analyzes and visualizes data that performs transferring and many other

tasks. The basic functionality of these companies is strongly related to transfer, import, and

exchange. The older techniques are not considered these days, because the amount of data that

passes through the communications links are growing larger with every passing minute. The

most relevant and efficient use cases of data science in the field of telecommunication.

a. Fraud Detection: The telecommunication industry is affected by frauds, illegal access,

theft, fake policies, authorization, cloning, etc. Frauds directly influence the relationship

between the user and the company. Thus, the approaches of fraud detection, tools, and

techniques are widely available. By using machine learning algorithms, the operator can

identify and categorize normal traffic and fraud. If it identifies any fraud, it generates an

alert and informs the system administrator. This technique is efficient because it provides

a real-time response to anomalous activities.

b. Predictive analytics: It is applied in telecommunication companies for predicting

valuable information faster, better and helps in making decisions. This approach uses

historical data to build predictions. The better the quality and for a long time in history,

the better will be predictability.

c. Consumer Segmentation: The success of telecommunication companies is to create

market segments and content can be divided according to each group. There exist four

segmentation schemes such as customer value segmentation, customer lifecycle,

behavior, migration segmentation.

8.10 SUPPLY CHAIN MANAGEMENT

The supply chain process involved in manufacturing has always been complicated. From start to

end risk has been involved in all stages. Some complicated stages are a collection of

requirements, gathering raw data, market data, analysis of the various resources, well-trained

staff and machines, quality and distribution of the product in the market. While production, some

other factors are involved during company running time. Supply chain impact on the business

loss due to organization faces several problems. Data science helps to manage the supply chain,

detects the events where overloading is happening, predict the future possibilities of delay in

manufacturing and supply. By this, manufacturers store the data in the form of backup for future

emergencies and it will help all the businesses.

Finally, the applications of Data Science in manufacturing will change the current scenario of

older methods used by the production companies. It will enhance the revenue generation of

companies and contribute to the overall economic growth of industrialization.

8.11 GAMING

The gaming industry is one of the greatest industries in modern days. These days approximately

two billion users all over the world have been involved in this industry due to more users data to

149

processed is enhancing day by day. Data science helps to improve the business of gaming with

an understanding of the data.

a. Game development: Most important task in gaming is developing the game. In this step,

the developer considers the idea behind the game, its functionality, design plays an

analytical part of gaming and interesting features in-game playing. In which performance

should be measured, result, and it may be adapted according to the need of the customer.

In which data science is used to develop models, to analyze and identify expansion

points, make predictions, algorithms, pattern identification, maps in which players should

move.

b. Game monetization: Another main factor of game planning is linking with companies'

growth. Well, design games will help the developer to make money, thus the developer

will concentrate on the growth of the company. Big data is used to predict the behavior so

that users will come to play the same game again and again and will be ready to pay

money for playing.

c. Game design: Game designing is an art and it will be the best career for developers. It is

a complex task requiring several programming languages. Developers show their

creativity to help to create interactive and complex sides for the games. Gaming analytics

are used to obtain about user’s requirements, to understand the various barriers,

reasoning, and timing. Advanced gaming concepts, storylines, and create a strategy to

find the previous data.

d. Object identification: Latest graphics features, artificial intelligence applications are the

key factors of developers and creative designers. Image recognition technologies are

remodeling the gaming industry. Developer’s uses object detection models, so they create

the natural scenes with the perfect movement of the objects. For example, these models

are used to differentiate between teams, commands, obstacles, and figures become easier

and much faster for interactive games.

e. Visual effects and graphics: During video game development, there were various

graphic techniques invented. Due to these advanced techniques, gaming effects have to

change such as motion capture in games, real-time rendering, and many others. While

using these motion techniques allows the creation of characters with more human features

and attributes. It helps in display facial emotions and expressions with natural

movements. Animation’s developers try to use the latest algorithms to push the video

boundaries of the game reached up to one more advanced level. Real-time tools are used

for this purpose.

f. Personalized marketing: Personalized marketing is applied by those companies which

are linked with animations, video, and gaming. Companies avoid useless and unprofitable

advertisements. In which marketers and game developers are interacted with customers

150

and lead by the creation of successful market messages and results will be provided to the

exact people. Personalized marketing is helping to find the activities of the users and side

by side attract new users.

g. Fraud detection: In Gaming, all the actions and recommendations in the world are fast.

Companies face the problem of finding fraudulent activity, so it is a challenging task. To

solve this problem, companies provide verifications of users by law, finding doubtful

accounts, and stop these fraud accounts as soon as possible. Payment fraud is common in

gaming due to which companies require a high level of security system for detection of

such users. Machine learning algorithms come to the security of gaming industries by

applying fraud detection methods.

h. Social and customer analysis: The gaming industry proves to be very innovative and

successful in the modern era. Its growing popularity is depending upon, after a new

minute a new user is attracting towards games. Millions of users take part in video games

actively all over the world. Most youngsters use gaming as a platform and leave a

significant amount of valuable data that are used by developers because data helps them

to understand the customer’s perception and develop the latest games with advanced

features.

At last, data science is helping to improve in the gaming industry by using techniques and

methods. Data science helps the developers to invent the latest games and companies gain profit

from such games and users enjoy playing real games and reduced their stress level.

8.12 GOVERNANCE

Governance is the application of data science that consists of rules, policies, processes, and

organizational structure to support the data management task of the enterprise. The hierarchy of

the organization data provides guidance, understanding, security, and trust among its

stakeholders. With the growth of companies' data, the organization needs to create an appropriate

big data environment that makes them available across the organization. This integration is an

essential part of deciding workflows and making decisions by various teams. Data governance is

an essential task of the organization's data management. With the help of this governance, one

can easily know the kind of data availability, where the data resides, and the method of data

usage.

8.13 BIOTECHNOLOGY

Biotechnology is a term that represents the manipulation of crops, breed the animals to produce

specific features or simply biotechnology modifies the products for specific use. In the modern

era, our technological tools are mathematics, statistics, computational resources, availability of

data sources, etc. In data science, biotechnology plays a vital role to improve medical treatment,

agriculture, animal breeding, and industrialization and to solve in environmental issues.

151

Types of biotechnology

The basic term of biotechnology can be broken down into small chunks bases on common use

and various applications.

1. Red Biotechnology: It is the latest technology that will use in medical processes such as

getting an organism to produce new drugs and stem cells to revive damaged human

tissues or regenerate entire organs.

2. White Biotechnology: It has to be used in industry such as the invention of new

chemicals or fuels for vehicles.

3. Green Biotechnology: It is for living creatures means green biotechnology implement in

agricultural processes such as removing pests, so everybody uses pest’s free crops and

creates environmentally friendly development.

4. Gold Biotechnology: It is also known as Bioinformatics and it will use in biological

data.

5. Blue Biotechnology: It will help in defense such as encompasses processes in marine

and aquatic environments.

6. Yellow Biotechnology: It is the oldest branch of biotechnology and is used to process

more nutrition-rich food products.

Yellow Biotechnology can be said as the oldest branch of Biotechnology. It uses microorganisms

or insects for the production of more nutrition-rich food products for us so Yellow

Biotechnology is also called Nutritional Biotechnology or Insect Biotechnology.

Biotechnology and Data Science

Biotechnologists are researchers and they use statistical analyses to redesign based on

experiments. Data scientists focus on math and stats background however biotechnologists work

on biostatistics and they have to used quantitative data and shifting through which factors are

more likely to produce a particular effect requires major computational effort.

8.14 PHARMACEUTICALS

The launching of new pharmaceutical products to market is a long process with many

consequences. A thousand trials need to be taken regularly to meet the objective that delays

getting the output and also increases the cost with this expensive process. There exist numerous

data points, experiments, benefits, and risks that must be analyzed which help in making the

industry logically fit for the big data.

The cost of clinical trials can also be reduced by the data scientist:

 Patient selection based on data: Multiple data sources including social media and

public databases related to health that identifies the population best for the trials.

 Monitoring: The companies can monitor on a real-time basis to identify operational risk.

152

 Safety Assurance: The data scientist can also consider the side effects before actual

trials.

8.15 GEOSPATIAL ANALYTICS AND MODELLING

Geospatial analytics helps in gathering, manipulating, and displaying geographic data that

includes GPS and satellite information. This data relies on coordinates and specific terms like a

street address, postal address, etc. These techniques help in creating geographic models and

visualization patterns for accurate modeling and predictions. The data can be collected from

different technologies such as GPS, social media, location sensors, mobile, satellite, etc. to build

better visualization of data for understanding the complex relationships between places and

people. The visualization includes the maps, graphs, cartograms, statistics, etc. that shows the

history and current changes also. It helps in making predictions more accurate and easier.

Geospatial analytics also adds timing and location for the data that creates a complete picture of

events. Geospatial analytics process a large amount of geographic data. It helps the users to

interact with billions of mapped locations by looking at real-time geospatial visualizations. Users

can traverse the data using time and space by instantly checking changes from days to years.

The benefits of geospatial analytics include:

 Appealing insights: The data displayed in the form of maps are easier to understand by

any user.

 Better vision: With the help of visual images, one can understand how the spatial

conditions are changing in real-time that helps an organization to understand the changes

and determine actions for the future.

 Targeted report: The location-based data helps the organizations to understand, why

some locations and countries, like the United States, are more prosperous for business

than others.

Geospatial Analytics Use Cases

Telecommunications: It quickly visualizes the record related to call details and network records

to fix the issues before the customer notices. This tool helps in the identification of anomalies for

signal fluctuation and assists how to resolve them.

Military: In a military operation, logistics provides an aspect of situational awareness. This tool

helps the military to optimize the placement of resources by predicting the infrastructure usage,

and maintenance needs.

Weather: It helps in getting a quick response to weather by getting alerts. This data also helps

the airlines with routing and insurance companies to better access the property risk.

Urban Planning/Development: It helps in determining the growing population's effect on

energy, transportation, and other resources. This data helps to analyze the large datasets with

high speed and scale.

8.16 SUMMARY

153

This unit covers the important and advanced applications of data science. Nowadays, data

science plays an efficient role to achieve a company’s goal. It is used by a couple of industries all

over the world that uses data science such as business, health care, insurance,

telecommunication, biotechnology, etc. To gather data for manipulation and to display

geographic data such as GPS and satellite information, the Geospatial analytics application of

data science is used. It also helps in making business related decisions in an easy way and

quickly. Thus, data science includes a lot of different applications to achieve the industry goal

and makes improvements in existing work.

.

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
 (Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

B.Sc.(Data Science)

Semester I

BSDB31102T

Fundamental of IT

Head Quarter: C/28, The Lower Mall, Patiala-147001
Website: www.psou.ac.in

The Motto of Our University

(SEWA)

SKILL ENHANCEMENT

EMPLOYABILITY

WISDOM

ACCESSIBILITY

A
L

L
 C

O
P

Y
R

IG
H

T
S

 W
IT

H
 J

G
N

D
 P

S
O

U
,
P

A
T

IA
L

A

SE
LF

-I
N

ST
R

U
C

TI
O

N
A

L
ST

U
D

Y
 M

A
TE

R
IA

L
FO

R
 J

G
N

D
 P

SO
U

The Study Material has been prepared exclusively under the guidance of Jagat

Guru Nanak Dev Punjab State Open University, Patiala, as per the syllabi

prepared by Committee of experts and approved by the Academic Council.

The University reserves all the copyrights of the study material. No part of this

publication may be reproduced or transmitted in any form.

COURSE COORDINATOR AND EDITOR:

Dr. Amitoj Singh

Associate Professor

School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University

LIST OF CONSULTANTS/ CONTRIBUTORS

Sr. No. Name

1 Dr. Amitoj Singh

2 Dr. Anju Bala

JAGAT GURU NANAK DEV PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

PREFACE

Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in December

2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open University

of the State, entrusted with the responsibility of making higher education accessible to all,

especially to those sections of society who do not have the means, time or opportunity to

pursue regular education.

In keeping with the nature of an Open University, this University provides a flexible

education system to suit every need. The time given to complete a programme is double the

duration of a regular mode programme. Well-designed study material has been prepared in

consultation with experts in their respective fields.

The University offers programmes which have been designed to provide relevant, skill-based

and employability-enhancing education. The study material provided in this booklet is self-

instructional, with self-assessment exercises, and recommendations for further readings. The

syllabus has been divided in sections, and provided as units for simplification.

The University has a network of 10 Learner Support Centres/Study Centres, to enable

students to make use of reading facilities, and for curriculum-based counselling and

practicals. We, at the University, welcome you to be a part of this instituition of knowledge.

 Prof. Anita Gill

Dean Academic Affairs

B.Sc. (Data Science)

Core Course (CC)

Semester I

BSDB31102T: Fundamental of IT

Total Marks: 100

External Marks: 70

Internal Marks: 30

Credits: 4

Pass Percentage: 35%

Objective

 This course introduces the concepts of computer basics and working with word processor, spread

sheet, and presentation software packages. Basic concepts of information technology have also been

explained in this course.

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

1. The syllabus prescribed should be strictly adhered to.

2. The question paper will consist of three sections: A, B, and C. Sections A and B will

have four questions from the respective sections of the syllabus and will carry 10

marks each. The candidates will attempt two questions from each section.

3. Section C will have fifteen short answer questions covering the entire syllabus. Each

question will carry 3 marks. Candidates will attempt any ten questions from this

section.

4. The examiner shall give a clear instruction to the candidates to attempt questions only at

one place and only once. Second or subsequent attempts, unless the earlier ones have been

crossed out, shall not be evaluated.

5. The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the

question paper and any ten short questions from Section C. They have to attempt questions only at

one place and only once. Second or subsequent attempts, unless the earlier ones have been crossed

out, shall not be evaluated.

Section A

Unit I: Computer Fundamentals: Block diagram of a Computer, Characteristics of

Computers, Hardware, Software, Machine Language, Assembly Language and Assembler,

High Level Language and Compiler v/s Interpreter. Input Devices: Keyboard, Mouse,

Joystick, Track Ball, Touch Screen, Light Pen, Digitizer, Scanners, Speech Recognition

Devices, Optical Recognition devices – OMR, OBR, OCR. Output Devices: Monitors,

Impact Printers - Dot matrix, Character and Line printer, Non Impact Printers – DeskJet and

Laser printing, Plotter.

Unit II: Computer Memory: Representation of information: BIT, BYTE, Memory, Memory

size; Units of measurement of storage; Main memory: main memory organization, RAM,

ROM, PROM, EPROM, Computer languages: Machine language, assembly language, higher

level language, 4GL. Introduction to Compiler, Interpreter, Assembler, System Software,

Application Software. Introduction to Internet, WWW and Web Browsers

Unit III: Basic of Computer networks; LAN, WAN; Concept of Internet; Applications of

Internet; connecting to internet; ISP; Knowing the Internet; Web Browsing software’s,

Search Engines; Understanding URL; Domain name; IP Address; Using e-governance

website Basics of electronic mail; Getting an email account; Sending and receiving emails;

Accessing sent emails; Using Emails;

Unit IV: Word Processing Package: Opening, saving and closing an existing document;

renaming and deleting files; Using styles and templates: Introduction to templates and styles;

applying, modifying; using a template to create a document, creating a template, editing a

template, organizing templates, examples of style use, Changing document views

Section B

Unit V: Working with text: select, cut, copy, paste, find and replace, inserting special

characters, setting tab stops and indents, Formatting text, formatting paragraphs, Formatting

pages: Using layout methods, creating headers and footers, Numbering pages, Changing page

margins, Adding comments to a document, Creating a table of contents, Creating indexes and

bibliographies, Printing a document, Tracking changes to a document.

Unit VI: Making Small Presentation: Basics of presentation software; Creating

Presentation: Entering and Editing Text, Inserting And Deleting Slides in a Presentation,

Inserting Word Table or An spreadsheet Worksheet, Adding Clip Art Pictures, Inserting

Other Objects, Slide Show: Running a Slide Show, Transition and Slide Timings,

Automating a Slide Show,

Unit VII: Using Spreadsheet Statistical functions: SUM, COUNT, AVERAGE, MAX,

MIN, MEDIAN, MODE PRODUCT SQRT, STDEV.S, ABS, QUARTILE, PERCENTILE,

AVERAGEIF, COUNTA, COUNTBLANK, CORREL, Logical operation IF, SUMIF,

AVERAGEIF, COUNTIF,

Unit VIII: Formatting Text: Using RIGHT, LEFT, and MID functions; format text by using

UPPER, LOWER, and PROPER functions; format text by using the CONCATENATE

function, Generating inference from Data: Pivot Table, Creating Charts, Data Cleaning:

Removing duplicate values, Text to Columns,

Suggested Readings

1. Nortorn, P. Introduction to Computers, 7
th

 Edition, 2017

2 .Rajaraman, V., Fundamentals of Computers, PHI, 2014

3. Larry E. Long and Nancy Long, Computers: Information Technology in Perspective, PHI,

2001

4. Andy Channelle, Beginning OpenOffice 3, Apress, 2009

JAGAT GURU NANAK DEV PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

BSDB31102T: FUNDAMENTAL OF IT

COURSE COORDINATOR AND EDITOR: DR. AMITOJ SINGH

UNIT NO. UNIT NAME

UNIT 1 COMPUTER FUNDAMENTALS

UNIT 2 COMPUTER MEMORY

UNIT 3 BASIC OF COMPUTER NETWORKS

UNIT 4 WORD PROCESSING PACKAGE

UNIT 5 WORKING WITH TEXT

UNIT 6 MAKING SMALL PRESENTATION

UNIT 7 USING SPREADSHEET STATISTICAL FUNCTIONS

UNIT 8 FORMATTING TEXT

`

1

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT I: COMPUTER FUNDAMENTALS

STRUCTURE

1.0 Objective

1.1 Computer System

1.2 Computer System Block Diagram

1.2.1 Central Processing Unit

1.2.2 Micro Processor

1.2.3 Arithmetic and Logical Unit (ALU)

1.2.4 Control Unit (Cu)

1.3 Display

1.4 Keyboards

1.5 Mouse

1.6 Hard Disk Drive (HDD)

1.7 Solid State Drive (SSD)

1.8 Other Peripheral Devices

1.8.1 Input Devices

1.8.2 Output Devices

1.9 Summary

1.10 Practice Exercises

2

1.0 OBJECTIVES

 To understand computer organization and bock diagram of computer.

 To gain knowledge about input, output and other peripheral devices.

1.1 COMPUTER SYSTEM

Today, computers are not only used in commerce and business but also in various fields like

medicine, research, educational institutions, launching a satellite, etc. computers are available

in different sizes and have different capabilities of processing commonly known as

configurations. We need different types of hardware to construct a computer. Computer

hardware is a collective term used to explain various tangible components of computers. Each

hardware component has its functionality and is attached in a specific manner to form a

computer system. A typical block diagram of a computer system is shown in Fig below. Now

we will discuss the basic components that make up a computer system.

Fig 1.1 CPU

1.2 COMPUTER SYSTEM BLOCK DIAGRAM

1.2.1 Central Processing Unit (CPU)

The CPU consists of arithmetic and logical unit (ALU), control unit (CU) and memory

storage unit. Collectively they form the brain of the computer. CPU is the place where the

actual processing of data takes place on the execution of the program. The CPU is responsible

for processing most of the data, turning input data into output data. The CPU is one of the

main components that will improve the performance of your computer. CPU is being used in

almost all kinds of digital processing equipment like desktops, laptops, tablet computers,

smartphones, even in our television set and many more devices. Colloquially it is also termed

as a processor, microprocessor or central processor. The two main companies that

manufacture the desktop CPU are AMD and Intel.

3

1.2.2 Microprocessor

It is a silicon chip with ALU, register circuits and control circuits. The microprocessor is

capable of carrying out a large number of functions like receiving data, processing and

storing the results and outputting the required results on a single integrated circuit. It has the

responsibility to perform ALU operations and control the components connected to it like

memory, input output devices, etc. Thus, it is a programmable device that takes binary data as

input, performs processing as per instructions loaded in memory and generates results in

binary form.

1.2.3 Arithmetic and Logical Unit (ALU)

An ALU is a major component of the CPU of a computer system. It performs all the

arithmetic & logical operations for the computer system e.g., addition, subtraction, compare,

complement, shift, etc. It is a combinational digital circuit and an ALU can be designed by

engineers to calculate any operation. As the operations become more complex, the ALU also

becomes more expensive and it will take up more space in the

1.2.4 Control Unit (CU)

This is an important part of the CPU which supervises all the operations taking place in it. Its

main aim to send and receive control signals to all parts of a computer system. The control

signals are helpful in the smooth execution of instructions in the CPU, communication over

buses to memory and IO devices. Via control signals, CU facilitates that all tasks in computer

performed at right time and in the correct order. It also directs other units of the system to

carry out their respective function. Thus, CU regulates and integrates the operations of the

computer. It fetches an instruction from a program stored at main memory, decodes it and

sends control signals to other units of the computer system.

Fig. 1.2: Types of Display

1.3 DISPLAY

A display is an output device to present information in visual form. It may be an external

monitor or built-in screen with the digital device e.g., computer, mobile, ATM, advertising

boards, etc. A computer display is simply the screen that will give you, your video output

from the computer. A computer monitor works with the video card located inside the

4

computer case, to display images and text on a screen. Most monitors have some control

buttons that allow us to change the display settings of the monitor. With the change in display

screen technology, different types of monitors are available in the market.

CRT (cathode ray tube) Monitors: These are older computer monitors built using cathode

ray tubes (CRTs). A typical CRT monitor is shown in Fig below. The monitors employ CRT

technology, which was used most commonly in the manufacturing of television screens. A

cathode ray tube is a vacuum tube containing an electron gun at one end and a fluorescent

screen at another end. The use of CRT made them heavy and caused them to take up a lot of

desk space.

Fig. 1.3.: Display Devices (a) CRT Monitor (b) LED Monitor (c) DLP Projector

LCD (liquid crystal display) Monitors: Most modern monitors are built

using LCD technology and are commonly referred to as flat screen displays. These thin

monitors are light weighted, electricity saviour and take up much less space than the older

CRT displays. An LCD is composed of two pieces of glasses with a thin layer of liquid

crystals in between. When a voltage is applied to the glasses, the orientation of liquid crystals

will be changed. This change in the crystal’s orientation (called polarization) will make either

a dark or a light area, creating a character or image on the display.

A TFT monitor uses thin-film transistor technology in an LCD. It is a variant of LCD

monitors and is dominantly being used in current monitors.

LED (light-emitting diodes) Monitors: LED monitors are the latest types of monitors in the

market today. These are flat panel displays that make use of light-emitting diodes for back-

lighting, instead of cold cathode fluorescent (CCFL) backlighting used in LCDs. The

advantages of LED monitors are that they produce images with higher contrast, have a less

negative environmental impact when disposed of. Modern electronic devices such as mobile

phones, TVs, tablets, computer monitors, laptops screens, etc., use a LED display to display

their output.

DLP Monitors: DLP stands for Digital Light Processing, developed by Texas Instruments. It

is a technology, which is used for presentations by projecting images from a monitor onto a

big screen. It gives better quality pictures that can also be visible in a lit room normally.

Plasma Monitors: The plasma monitor has a flat screen, and it has small fluorescent lights

with colour that are lit up to form images on the screen. plasma monitors have a very wide

screen using very thin materials.

https://techterms.com/definition/crt
https://techterms.com/definition/lcd
https://www.easytechjunkie.com/what-is-a-transistor.htm

5

OLED Monitors: OLED stands for organic light-emitting diode. This type of monitor is

thinner and lighter, and it offers incredible contrast and colour. It works without a backlight

as it transmits visible light. Flexible and transparent displays are also possible using OLED.

Touch Screen Monitors: These monitors perform both input and output functions. It enables

users to interact with the computer by using a finger or stylus instead of using a mouse or

keyboard. When users touch the screen with their finger, it occurs an event and forwards it to

the controller for processing. It takes input from the users by touching menus or icons

presented on the screen.

1.4 KEYBOARDS

A keyboard is the primary input device used with the computer similar to an electronic

typewriter. It is used to input data and instructions of a user in a computer system. A keyboard

is composed of buttons used to create letters, numbers, symbols, and perform functions. A

keyboard is connected to a computer system using a cable or wireless connection. Some

keyboards also have additional functions like volume control buttons to power down or sleep

the device even a built-in trackball mouse intended to provide the easiest way to use both the

keyboard and the mouse. The various types of keyboards are used by users for associated

purposes like a qwerty keyboard for general purpose uses, a gaming keyboard for game

lovers, a virtual keyboard for software inputting, an ergonomic keyboard for physiological

consideration and a multimedia keyboard for convenient web surfing and music play, etc. A

keyboard has various keys some are logically grouped and a name is assigned to them. A

QWERTY layout keyboard and its various keys are depicted in Fig. below.

Fig. 1.4: Keys on keyboard

Function keys: The topmost row of the keyboard have function keys. These are twelve keys

F1 to F12. Each of these keys is used for a special purpose and assigns some system

commands to them. For different software, these can be customized to perform a specific

task. e.g., some shortcut of command can be assigned.

Character keys: These are keys which also present in a traditional typewriter too e.g. A-Z, a-

z, 0-9, Tabs, Caps, are those keys. The keys are used to type letters, punctuation and other

characters.

Modifier keys: These keys do nothing by themselves but with help of these keys, the

functions of other keys are modified. Ctrl, Alt, Shift, Alt Gr comes under this group.

6

Navigation keys: These are also termed cursor control keys. Used to navigate cursor in any

direction e.g., left ⬅, right➡, up⬆and down⬇, beginning of line or screen (Home), end of line

or screen (End).

Numeric Keypad: Numeric keys of keypad i.e., 0-9, NumLock, -, +, /, * and Del keys forms

this group.

System command keys: some keys have important functions other than printing characters,

depending on the type of application where they are being used. These can be interpreted by

the computer system as formatting or important commands to the system.

PrtSc: Print Screen key is used to capture the entire screen and send it to the clipboard.

Break/Pause: Not being used for predefined purpose nowadays. We can still use it to assign

other tasks like terminate a program.

Esc: Escape key is used to quit a dialogue box, as a quit or stop signal.

Enter: In a text editor window, it is used to terminate a paragraph and request for the next

newline. For a command line, enter key is a signal to process the command.

Shift: The shift key is used to type more symbols than visible on the keyboard. e.g when we

press the ‘a’ key +⇧ Shift key it will produce ‘A’.

Window: Window key (is used to open the start application menu on the windows

operating system.

Space Bar: It is used to provide space between words during typing. In physical appearance,

it is a wide key on the keyboard.

Backspace: The backspace key erases the text to the left of the cursor’s position. It is

generally useful for correcting typos.

1.5 MOUSE

A mouse is a handheld input device that controls the pointer in a GUI (Graphical User

Interface). It is the most widely used pointing device and can move and select text, icons,

files, and folders. In a desktop computer the mouse is placed on a flat surface like mouse pad

or desk in front of computer. When we have a mouse in our palm and we move the palm in

any direction, the mouse will convert the palm’s movement into an equivalent digital signal.

The digital signal is used to move the pointer on the computer screen. Some basic operations

of a mouse are as below:

Point: to move your mouse pointer () to a specific location on the screen.

Click: It is pointing to an item and then single time press and release of the mouse’s main

button i.e., left mouse button. Generally, this is done to select an item or menu command or to

identify a location on a computer screen.

7

Right-Click: It is the press of right button of a mouse. Generally, to open a dropdown menu

list to choose what we can do more with the item, like copy, paste, open, print, etc.

Double Click: It is pressing & releasing of the left mouse button on a spot twice, rapidly.

Drag & Drop: It is a process of pointing an icon on the screen, pressing the left mouse

button (without releasing it), moving the mouse pointer to a different location and release the

left button. To move an item is called dragging whereas placing it somewhere is dropping.

Scrolling: Mouse with single axis digital wheel is very common nowadays. It can be

depressed and used as a third button for scrolling. Scrolling is a process to navigate a

webpage or document with a given scroll button.

Some mouse has some extra buttons for performing other special tasks like webpage forward

or backward, volume up or down. Mice are available in both wireless and physical wired

connections. Fig. 1.5 shows the traditional mechanical mouse and the most popular wireless

mouse of nowadays.

Fig.1.5: Common Parts of Computer Mice (a) Mechanical (b) Wireless

Mechanical mouse: As the name implies these mice have some mechanical structure with a

hard rubber ball to detect the motion of the mouse. Sensors inside the assembly interpret the

rubber ball movement into the equivalent electronic signal. Due to mechanical driven

functionality, its parts like wheels and sensors will wear out over time.

Optical and laser mouse: Uses an LED sensor and imaging arrays of photodiodes to detect the

relative movement on the underlying surface. Such mice are not able to work properly on

surfaces which does not reflect light properly like glass, plastic, etc. A laser mouse is also an

optical mouse having laser light for sensing mouse movement despite LED or photodiode.

1.6 Hard Disk Drive (HDD)

The standard hard disk drive (HDD) is a type of nonvolatile memory (NVM). HDD stores

operating systems files, application problems, media and other documents. A hard drive uses

a disk and magnets to write data on the disk permanently, even in the event of a power

failure. HDD can be used to store and retrieve digital information using platters or rotating

disks. Data can be read in a random access manner; means we can store and retrieve data in

any order rather than sequentially. A hard device is also required for the installation of any

program or files you want to keep on your computer. When we download the files they are

8

permanently saved on our hard disk. The cost per bit stored on the hard disk is very less

compared to other storage media.

A hard disk is a magnetic storage medium for a microcomputer. A computer’s hard drive

consists of, various disks with read/write heads, a driver motor (used to spin the disks), and a

small amount of circuitry which is sealed with a metal case to protect the disks from dust.

The hard disk drives are consists of four key components inside the casing:

Platters: A HDD consists circular disks called platters sealed with container which store data

inside the hard disk in the form of 1s and 0s. To increase the overall capacity of the drive,

several platters are used. Platter’s speeds correlate with read/write rates.

Spindle: It is used to place the platters in position and rotate as it requires.

Read/Write arm: It is used to control the read /write heads. The actual work of

reading/writing arm is to convert the magnetic surface into electric current.

Actuator: It is used to control the movement of the read/write arm and transfer data to and

from the platters. An actuator is responsible for ensuring the exact position of the read/write

arm.

HDD Size: The hard drive is mostly capable of storing more data than any other drive, but its

size can change depending on the type of drive. Older hard drives had a storage size of

several 100MB to several GB. Newer hard drives have a storage size of several hundred GBs

to several TBs.

Advantages of HDD: It has a Fast start up and produces very little noise. HDDs are

environment friendly and produce minimum heat on working. These are light weighted so

Ideal for Laptops. As compared to other drives HDDs consume less power.

1.7 SOLID STATE DRIVE (SSD)

Modern computers are now using solid-state drives as the primary storage device, rather than

HDD. HDDs are very slow as compare to SSDs, for reading and writing data. SSDs are

replacing HDDs. Now the configuration is being made in such a way that SSD is used as the

master drive for installing the operating system and other software on it, and HDD is being

used as secondary storage to store documents, downloads, and audio or video files. HDDs are

less expensive than SSDs. However, more and more laptops are beginning to utilize SSD

over HDD, helping to improve the reliability and stability of laptops. Various components of

HDDs and SSDs are depicted in Fig. 1.6.

Comparison between HDD and SSD

SSD and HDD both are Hard Disk Drive

SSD has high read/write performance for random and sequential data retrieval as compared to

HDD.

SSD is now more popular as compared to HDD in desktops and Laptops.

9

SSD uses the newest way to read/write data using tacking chips in a grid whereas HDD uses

magnetic properties to read/write data. Thus HDD has a frequent mechanical breakdown as

compare to SSD.

SSD generates little to no noise and HDD can sometimes be one of the loudest components in

a computer.

 FIG 1.6: Parts of HDDs and SSDs

1.8 OTHER PERIPHERAL DEVICES

A peripheral device also called an auxiliary device is any connected device that provides a

computer with additional features. Usually, the word peripheral is used to refer to a device

external to the computer case, like a scanner, but the devices located inside the computer case

are also technically peripherals. Peripheral is commonly divided into three kinds input device,

output device, storage device. Let us understand various peripherals devices:

1.8.1 Input Devices

These are used to send data or commands to the computer system. Some commonly used

devices are mouse, keyboard, scanner, barcode reader, webcam, microphone, Digital Camera,

Light pen, joystick, stylus Graphic tablet, Touch screen. Some popular input devices are

discussed and depicted in Fig. 1.6 & 1.7.

Scanner: Scanner is an input device that is used for direct data entry from the source

document into the computer system. It converts document image into digital form and saves

into the computer for future prospect.

Bar Code Reader: Barcode reader or barcode scanner is an optical device (scanner) that is

used to read barcodes in the form of lines, decode the information contained in the barcode

and send the information to a computer. It is being used commonly for automated, fast and

reliable data entry operations. We can see its usage in the shopping market to track the price

of goods, tracking parcel or postage, or in libraries where each book has a bar code to

uniquely identify its details.

Webcam: It is used to capture image and video and convert it into digital form. It has no

inbuilt memory so they require computer storage to save captured data.

10

Fig.1.7: Input Devices (a) Scanner (b) Barcode Reader (c)Webcam

Microphone: It is a voice input device that allows users to input audio into the computer

system. It is used in a computer system for taking audio input for its various applications like

online chatting, computer gaming, voice recording, voice recognition and many more.

Digital Camera: It is used to take pictures digitally. It allows the user to store the captured

media files (audio, video) in a memory card and transfer them to a computer. Digital cameras

have become very popular and inexpensive in recent years.

Light Pen: It looks like a pen. It is light sensitive device, made up of photocells and an

optical system in a small tube. It is mainly used to select items on the computer screen, for

drawing pictures and writing directly in a document file using a computer screen.

Joystick: It is generally used to play games conveniently on the computer or other gaming

device. It controls the objects, players and vehicles of the computer game.

Fig. 1.8: Input Devices (a) Microphone (b) Digital Camera (c) Joystick

Graphic Tablet: It is also known as a digitizer. It is used to convert hand-drawn artwork into

digital file formats e.g. png, jpeg, etc. Users use the stylus to draw graphics on a surface as

we draw on paper using a pen or pencil.

Stylus: Using this device we can draw or write on the digitizer's surface and touchscreen.

Touch screen: Widely used for portable devices such as smartphones, tablets, laptops,

notebooks. It allows users to input via gestures of hand or stylus.

1.8.2 Output Devices

It provides processed data saved on the computer as output to the users. Some output devices

are monitors, projector, printers, speakers, Braille readers, plotters, Television, video card,

sound card Radio. We have discussed the primary output device i.e. monitor in our earlier

section. Now let us understand some others output devices.

11

Projector: It is an output device that projects an image, video onto a large surface, like a

white screen or wall.

Printer: It is an output external hardware device that takes the electronic data or information

on a computer or any other device and converts it into a hard copy. In other words, a printer is

an output device that prints a paper document that includes text, images, or a combination of

both. The printer output is called a hard copy, as it is a physical form of an electronic

document. The quality of a printer depends on various factors like printing color, resolution,

speed, etc.

Fig.1.9. Classification of Printers

Nowadays two types of printers are mostly used, inkjet and laser printers. Types of printers

are depicted in Fig. 1.9. Dot-matrix and daisy wheel printers are impact printers which print

single character at a time whereas drum, chain and band printer prints complete line. Above

discussed printers were impact printers that use mechanical moving components for printing.

In the case of a nonimpact printer, there is no mechanical moving component used. Inkjet,

laser and thermal printers lie in this category. Inkjet printers are commonly used by

consumers or suppliers, while laser printers are used by the businesses world, where they

require high resolution or highspeed printing. Dot matrix printers, which have become

increasingly rare but are still used for basic text printing. Dot-matrix printer speed and

resolution are less as compare to laser printer.

Speaker: A computer speaker is the primary output device for audio output. It is hardware

devices that convert a computer’s sound card signals into audio form. It was coming as

separate external hardware in PCs but now in laptops and modern PCs it is coming as an

onboard preassembled unit

Braille Reader: It is a peripheral device that is mainly used for a blind person to read text

displayed on a computer screen. Braille readers are also called braille displays it is a separate

device as a part of the keyboard.

Plotter: It is similar to printers but was used to produce vector graphics drawings. It uses

various writing tools (e.g. pencil, pen, marker, etc.) instead of toner for printing. A

https://techterms.com/definition/inkjet
https://techterms.com/definition/laserprinter
https://techterms.com/definition/dotmatrix

12

conventional printer draws series of dots whereas a plotter device draws multiple, continuous

lines onto paper.

Graphics card: It is an expansion card that attaches to the slot residing on the motherboard.

It is used to process the images and videos and enables higher resolution graphics to rapidly

visualize on a display screen.

Sound Card: It controls the output of sound signals, which enable speaker and headphones

to work.

1.9 SUMMARY

The proliferation of internet services requires basic internet skills. Browsers are user agents to

send and receive information on the internet. Search engines are powerful tools to retrieve

desired information in minimal time.

Good governance by e-Governance is achieved by the digital India program. It aims to

provide minimal government and maximum governance. Computer hardware is various

physical (tangible) components of computers. The CPU consists of ALU, Control Unit and

Memory storage unit. The ALU can be called the brain of the computer without it the

computer would be more or less useless. Input and Output devices are essential components

of a computer system.

Primary memory is called a temporary or volatile memory as whatever data or instructions

are stored in it, remain till power is ON. Secondary memory is mainly used to store data

permanently and is also known as nonvolatile memory. A Computer monitor is simply the

screen that will present you digital output from the computer. Various type of monitors are

CRT, TFT, LCD, LED, Plasma, etc. The keyboard is used to type letters, numbers, symbols,

and send instructions to a computer. The printer is an output device that prints document

having text, images, or a combination of both. The output of the printer is called a hard copy.

HDD is a nonvolatile memory used to store operating systems files, application problems,

media and other documents. Peripheral devices can be input/output, internal or external.

1.10 PRACTICE EXERCISES

Subjective Questions

 What is a web browser? Discuss common features of a web browser.

 How does a Search Engine work? Explain its searching process.

 What is DigiLocker? Explain its features.

 Explain types of printers.

 Write a Google search query to get:

 official websites of the Government of India.

 web results available under the name "India New Education Policy", get web results

with pdf file.

 web results that give information about laptops in the range of Rs 25000 to Rs 35000.

These results should come from the website of an anyone e-commerce company and

should include laptops of the desired brand.

13

Further Readings

1. Nortorn, P. Introduction to Computers, 7
th

 Edition, 2017

2 .Rajaraman, V., Fundamentals of Computers, PHI, 2014.

3. Larry E. Long and Nancy Long, Computers: Information Technology in Perspective, PHI,

2001

4. Andy Channelle, Beginning OpenOffice 3, Apress, 2009

14

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT II: COMPUTER MEMORY AND INTERNET

STRUCTURE

2.0 Objective

2.1 Memory Unit

2.2 Types of Computer Memory

 2.2.1 Primary Memory

 2.2.2 Secondary Memory

2.3 Software and Hardware

 2.3.1 System Software

 2.3.2 Application Software

2.4 Machine Language

2.5 Assemble Language

2.6 High Level Languages

2.7 Language Processors

2.8 World Wide Web

 2.8.1 History of WWW

2.9 Practice Exercises

15

2.0 OBJECTIVE

 Learning representation of information: BIT, BYTE, Memory, Memory size;

 Understanding different types of memories like RAM, ROM, PROM, EPROM

 Knowing about Computer languages: Machine language, assembly language, higher

level language, 4GL, Compiler, Interpreter, Assembler, System Software, Application

Software.

2.1 MEMORY UNIT

The instructions and data given to the computer are stored in the memory or storage unit.

This data along with the program instructions are used by the CU and ALU. It is also used to

store intermittent results and information (final results). Types of memory are discussed in

detail, in the next topic.

The smallest unit of memory is called a ‘Bit’. A bit can have the value 1 or 0 which is known

as binary values. Groups of eight bits form a Byte and similarly higher order units are

formed. The Table 1.1 shows measurement units for digital data with their denoting symbol

and corresponding capacity.

Table1.1: Measurement Units for Digital Data

Computer memory is one of the most important components of the computer system.

Computer memory is a vital resource that is managed by the operating system. When the data

is sent to the memory it is kept at some particular location called to address. The data can be

retrieved by the computer from this address as and when required.

2.2 TYPES OF COMPUTER MEMORY

The computer system makes use of different types of memory depending upon the functional

requirement. Depending on the direct accessibility of memory by CPU, memories are

classified as a primary and secondary type. Further, the main memory is divided into two

types based on the data retention by the system memory, volatile and non-volatile.

2.2.1 Primary Memory

 Primary memory is known as main memory or internal storage because it is directly

accessible by the CPU. It is used to store program instructions, data and intermittent results. It

is made of semiconductor devices. Due to its fast access rate and circuit complexity, it is

expensive in comparison to secondary memory. A computer can’t work if there is no primary

memory installed into the system. RAM, ROM, Cache Memory are an example of primary

memory.

Unit Symbol Capacity Unit Symbol Capacity

Bit B 1 or 0 (on or off) Terabyte TB 1024 Gigabytes

Byte B 8 bits Petabyte PB 1024 Terabyte

Kilobyte KB 1024 Bytes Exabyte EB 1024 Petabytes

Megabyte MB 1024 Kilobyte Zettabyte ZB 1024 Exabytes

Gigabyte GB 1024 Gigabyte Yottabyte YB 1024 Zettabytes

16

A. Random Access Memory (RAM)

It is called Random access memory due to its feature that access time to any stored

information is independent of the physical location of data. RAM is also known as a

temporary or volatile memory because whatever data stored in it remains till the computer is

switched ON. When the current is switched off, all stored data will be wiped out or lost.

RAM is the most essential element of a computer system because, without it, the system

cannot perform its tasks. RAM is further classified into two types (a) Static RAM (b)

Dynamic RAM

Static Random Access Memory (SRAM)

 The word static indicates that the memory retains its contents as long as power remains

supplied. However, data is lost when the power gets down due to its volatile nature. SRAM is

faster and much more expensive than DRAM.

Dynamic Randon Access Memory (DRAM): DRAM is constructed of tiny capacitors that

leak electricity. Designers use DRAM because it is much denser (can store many bits per

chip), uses less power, and generates less heat than SRAM. For these reasons, both

technologies are often used in combination: DRAM for main memory and SRAM for the

cache.

B. Read-only Memory (ROM)

The programs stored in ROM are permanent and are not lost or erased when the current is

switched off. So, it is a nonvolatile memory type. The programs stored in ROM are generally

of critical in nature & given by the manufacturer of the computer and includes operating

system programs, booting program, etc. ROM is available in different types, including

PROM, EPROM and EEPROM.

Programmable Read Only Memory (PROM): PROM is read-only memory that can be

modified only once by a user. The user buys a blank PROM and enters the desired contents

using a PROM programmer.

Erasable and Programmable Read Only Memory (EPROM): It is programmable with the

added advantage of being reprogrammable (erasing an EPROM requires a special tool that

emits ultraviolet light).To reprogram an EPROM, the entire chip must first be erased.

Electrically Erasable and Programmable Read Only Memory (EEPROM): The

EEPROM is programmed and erased electrically. It can be erased and reprogrammed about

ten thousand times. Both erasing and programming take about 4 to 10 ms (milli second). In

EEPROM, any location can be selectively erased and programmed. EEPROMs can be erased

one byte at a time, rather than erasing the entire chip.

17

Figure 1: Classification of Memories

Flash memory: It is essentially EEPROM with the added benefit that data can be written or

erased in blocks, removing the one-byte-at-a-time limitation. This makes flash memory faster

than EEPROM.

2.2.2 Secondary Memory

Generally, the amount of storage available in the main/primary storage unit becomes

insufficient when loading large programs or simultaneous processing of programs e.g.

complex business problems. In such situations, it is necessary to use external or auxiliary

memory for storing data. Here the secondary memory comes into the picture and it is mainly

used to store data permanently. It is also termed as ‘external memory’ due to lack of direct

access between CPU and the memory. It is a nonvolatile memory; data retains even after the

computer system is switched off or electric power is disconnected.

A. Hard Disk Drive (HDD)

The standard hard disk drive (HDD) is a type of nonvolatile memory (NVM). HDD stores

operating systems files, application problems, media and other documents. A hard drive uses

a disk and magnets to write data on the disk permanently, even in the event of a power

failure. HDD can be used to store and retrieve digital information using platters or rotating

disks. Data can be read in a random access manner; means we can store and retrieve data in

any order rather than sequentially. A hard device is also required for the installation of any

program or files you want to keep on your computer. When we download the files they are

permanently saved on our hard disk. The cost per bit stored on the hard disk is very less

compared to other storage media.

A hard disk is a magnetic storage medium for a microcomputer. A computer’s hard drive

consists of, various disks with read/write heads, a driver motor (used to spin the disks), and a

small amount of circuitry which is sealed with a metal case to protect the disks from dust.

18

The hard disk drives are consists of four key components inside the casing:

Platters: A HDD consists circular disks called platters sealed with container which store data

inside the hard disk in the form of 1s and 0s. To increase the overall capacity of the drive,

several platters are used. Platter’s speeds correlate with read/write rates.

Spindle: It is used to place the platters in position and rotate as it requires.

Read/Write arm: It is used to control the read /write heads. The actual work of

reading/writing arm is to convert the magnetic surface into electric current.

Actuator: It is used to control the movement of the read/write arm and transfer data to and

from the platters. An actuator is responsible for ensuring the exact position of the read/write

arm.

HDD Size: The hard drive is mostly capable of storing more data than any other drive, but its

size can change depending on the type of drive. Older hard drives had a storage size of

several 100MB to several GB. Newer hard drives have a storage size of several hundred GBs

to several TBs.

Advantages of HDD: It has a Fast start up and produces very little noise. HDDs are

environment friendly and produce minimum heat on working. These are light weighted so

Ideal for Laptops. As compared to other drives HDDs consume less power.

B. Solid State Drive (SSD)

Modern computers are now using solid-state drives as the primary storage device, rather than

HDD. HDDs are very slow as compare to SSDs, for reading and writing data. SSDs are

replacing HDDs. Now the configuration is being made in such a way that SSD is used as the

master drive for installing the operating system and other software on it, and HDD is being

used as secondary storage to store documents, downloads, and audio or video files. HDDs are

less expensive than SSDs. However, more and more laptops are beginning to utilize SSD

over HDD, helping to improve the reliability and stability of laptops.

Comparison between HDD and SSD

 SSD and HDD both are Hard Disk Drive

 SSD has high read/write performance for random and sequential data retrieval as

compared to HDD.

 SSD is now more popular as compared to HDD in desktops and Laptops.

 SSD uses the newest way to read/write data using tacking chips in a grid whereas

HDD uses magnetic properties to read/write data. Thus HDD has a frequent

mechanical breakdown as compare to SSD.

 SSD generates little to no noise and HDD can sometimes be one of the loudest

components in a computer.

19

2.3 SOFTWARE AND HARDWARE

Hardware is the term given to the physical components of a computer: e.g. keyboard,

monitor, system box or floppy disk drive. Software, on the other hand, is electronic

information: files, operating system, graphics, computer programs are all example of

software. The difference between hardware and software reflects the duality between the

physical and mental worlds: for example, your brain is hardware, whereas your mind is

software. Software is the stuff that makes your computer do things for you. The computer

without software would be like a home entertainment system with no tapes, CDís, or movies -

you have the machine, but thereís nothing to play on it. Software is continually developed.

Each time the software maker (Microsoft, Adobe, Corel, etc) develops a new version of their

software they assign it a version number. Before Microsoft Word 7, there was Microsoft

Word 6.0.1, and before that Word 6.0. The larger the developments made to the software, the

larger the version number changes. Usually a large change will result in a whole number

upgrade; a small change may result in a tenth of a decimal place. Hardware are those

components or physical pieces (things you can touch) that make up the computer. The

different pieces of the computerís hardware are monitor, speakers, mouse, CDROM, floppy

drive, hard drive, keyboard, CPU, RAM, Processor, etc. Each piece plays a role in the

operation of a computer.

2.3.1 System Software

System Software is the type of software which is the interface between application software

and system. Low level languages are used to write the system software. System Software

maintains the system resources and gives the path for application software to run. An

important thing is that without system software, system can not run. It is a general purpose

software.

2.3.2 Application Software

Application Software is the type of software that runs as per user request. It runs on the

platform which is provided by system software. High level languages are used to write the

application software. Its a specific purpose software.

2.4 MACHINE LANGUAGE

Sometimes referred to as machine code or object code, machine language is a collection of

binary digits or bits that the computer reads and interprets. Machine language is the only

language a computer is capable of understanding. Therefore all instructions and data should

be written using binary codes 1 and 0. The binary code is called the machine code or machine

language. The exact machine language for a program or action can differ by operating system

on the computer. Computer programs are written in one or more programming languages,

like C++, Java, or Visual Basic.

A computer cannot directly understand the programming languages used to create computer

programs, so the program code must be compiled. Once a program's code is compiled, the

computer can understand it because the program's code has been turned into machine

language. A compiler checks the entire user-written programme (known as source

20

programme) and produces a complete programme in machine language (known as object

programme).

The source programme is retained for possible modifications and corrections and the object

programme is loaded into the computer for execution.

For example, a program instruction may look like this:

1011000111101 Typical Machine language Instruction format

1. OPCODE (Operation code) OPCODE tells the computer which operation to perform from

the instruction set of the computer.

2. OPERAND (Address/Location) OPERAND tells the address of the data on which the

operation is to be performed.

Advantage of Machine Language

The only advantage is that program of machine language run very fast because no translation

program is required for the CPU.

Disadvantages of Machine language

 It is machine dependent i.e. it differs from computer to computer.

 It is difficult to program and write.

 It is prone to errors

 It is difficult to modify.

2.5 ASSEMBLE LANGUAGE

It is a low level programming language that allows a user to write a program using

alphanumeric mnemonic of instructions. It requires a translator as assembler to convert

language into machine language so that it can be understood by the computer. It is easier to

remember and write than machine language.

Using alphanumeric mnemonic codes instead of numeric cods for the instruction in the

instruction set e.g. using ADD instead of 1110 (binary) or 14 (decimal) for instruction to add.

Allowing storage location to be represented in form of alphanumeric address instead of

numeric address e.g. representing memory locations 1000, 1001 etc.

Advantages of Assembly Language

1. The symbolic programming of Assembly Language is easier to understand and saves a lot

of time and effort of the programmer.

2. It is easier to correct errors and modify program instructions.

3. Assembly Language has the same efficiency of execution as the machine level language.

Because this is one-to-one translator between assembly language program and its

corresponding machine language program.

21

Disadvantages Assembly Language

1. One of the major disadvantages is that assembly language is machine dependent. A

program written for one computer might not run in other computers with different hardware

configuration. Long programs written in such languages cannot be executed on small sized

computers.

2. It takes lot of time to code or write the program, as it is more complex in nature.

2.6 HIGH LEVEL LANGUAGES

High level language is abbreviated as HLL. High level languages are similar to the human

language. Unlike low level languages, high level languages are programmers friendly, easy to

code, debug and maintain.

High level language provides higher level of abstraction from machine language. They do not

interact directly with the hardware. Rather, they focus more on the complex arithmetic

operations, optimal program efficiency and easiness in coding.

Low level programming uses machine friendly language. Programmers writes code either in

binary or assembly language. Writing programs in binary is complex and cumbersome

process. Hence, to make programming more programmers friendly. Programs in high level

language is written using English statements.

High level programs require compilers/interpreters to translate source code to machine

language. We can compile the source code written in high level language to multiple machine

languages. Thus, they are machine independent language.

Today almost all programs are developed using a high level programming language. We can

develop a variety of applications using high level language. They are used to develop desktop

applications, websites, system software’s, utility software’s and many more.

High level languages are grouped in two categories based on execution model – compiled or

interpreted languages.

Advantages of High level language

1. High level languages are programmer friendly. They are easy to write, debug and maintain.

2. It provide higher level of abstraction from machine languages.

3. It is machine independent language.

4. Easy to learn.

5. Less error prone, easy to find and debug errors.

6. High level programming results in better programming productivity.

Disadvantages of High level language

1. It takes additional translation times to translate the source to machine code.

2. High level programs are comparatively slower than low level programs.

3. Compared to low level programs, they are generally less memory efficient.

4. Cannot communicate directly with the hardware

22

2.7 LANGUAGE PROCESSORS

Compilers, interpreters, translate programs written in high-level languages into machine

code that a computer understands. And assemblers translate programs written in low-level

or assembly language into machine code. In the compilation process, there are several

stages. To help programmers write error-free code, tools are available.

Compiler: the language processor that reads the complete source program written in high-

level language as a whole in one go and translates it into an equivalent program in machine

language is called a compiler. Example: c, c++, c#, java.

In a compiler, the source code is translated to object code successfully if it is free of errors.

The compiler specifies the errors at the end of the compilation with line numbers when

there are any errors in the source code. The errors must be removed before the compiler can

successfully recompile the source code again

Assembler: the assembler is used to translate the program written in assembly language

into machine code. The source program is an input of an assembler that contains assembly

language instructions. The output generated by the assembler is the object code or machine

code understandable by the computer. Assembler is basically the 1st interface that is able to

communicate humans with the machine. We need an assembler to fill the gap between

human and machine so that they can communicate with each other. Code written in

assembly language is some sort of mnemonics(instructions) like add, mul, mux, sub, div,

mov and so on. And the assembler is basically able to convert these mnemonics in binary

code. Here, these mnemonics also depend upon the architecture of the machine

Interpreter: the translation of a single statement of the source program into machine code

is done by a language processor and executes immediately before moving on to the next

line is called an interpreter. If there is an error in the statement, the interpreter terminates its

translating process at that statement and displays an error message. The interpreter moves

on to the next line for execution only after the removal of the error. An interpreter directly

executes instructions written in a programming or scripting language without previously

converting them to an object code or machine code

2.8 WORLD WIDE WEB

World Wide Web, which is also known as a Web, is a collection of websites or web pages

stored in web servers and connected to local computers through the internet. These websites

contain text pages, digital images, audios, videos, etc. Users can access the content of these

sites from any part of the world over the internet using their devices such as computers,

laptops, cell phones, etc. The WWW, along with internet, enables the retrieval and display of

text and media to your device.

The building blocks of the Web are web pages which are formatted in HTML and connected

by links called "hypertext" or hyperlinks and accessed by HTTP. These links are electronic

connections that link related pieces of information so that users can access the desired

information quickly. Hypertext offers the advantage to select a word or phrase from text and

thus to access other pages that provide additional information related to that word or phrase.

23

A web page is given an online address called a Uniform Resource Locator (URL). A

particular collection of web pages that belong to a specific URL is called a website,

e.g., www.facebook.com, www.google.com, etc. So, the World Wide Web is like a huge

electronic book whose pages are stored on multiple servers across the world.

Small websites store all of their WebPages on a single server, but big websites or

organizations place their WebPages on different servers in different countries so that when

users of a country search their site they could get the information quickly from the nearest

server.

Difference between World Wide Web and Internet

Some people use the terms 'internet' and 'World Wide Web' interchangeably. They think they

are the same thing, but it is not so. Internet is entirely different from WWW. It is a worldwide

network of devices like computers, laptops, tablets, etc. It enables users to send emails to

other users and chat with them online. For example, when you send an email or chatting with

someone online, you are using the internet.

But, when you have opened a website like google.com for information, you are using the

World Wide Web; a network of servers over the internet. You request a webpage from your

computer using a browser, and the server renders that page to your browser. Your computer

is called a client who runs a program (web browser), and asks the other computer (server) for

the information it needs.

2.8.1 History of the World Wide Web

The World Wide Web was invented by a British scientist, Tim Berners-Lee in 1989. He was

working at CERN at that time. Originally, it was developed by him to fulfill the need of

automated information sharing between scientists across the world, so that they could easily

share the data and results of their experiments and studies with each other. ERN, where Tim

Berners worked, is a community of more than 1700 scientists from more than 100 countries.

These scientists spend some time on CERN site, and rest of the time they work at their

universities and national laboratories in their home countries, so there was a need for reliable

communication tools so that they can exchange information.

Internet and Hypertext were available at this time, but no one thought how to use the internet

to link or share one document to another. Tim focused on three main technologies that could

make computers understand each other, HTML, URL, and HTTP. So, the objective behind

the invention of WWW was to combine recent computer technologies, data networks, and

hypertext into a user-friendly and effective global information system.

2.9 PRACTICE EXERCISES

 What is a web browser? Discuss common features of a web browser.

 How does a Search Engine work? Explain its searching process.

 What is DigiLocker? Explain its features.

 Explain types of printers.

 Write a Google search query to get: official websites of the Government of India.

24

.REFERENCES

1. Hunt, R., J. Shelley, Computers and Commonsense, Prentice Hall of India.

2. Sinha, Pradeep K. and Preeti Sinha, Foundation of Computing, BPB Publication.

3. Saxena, Sanjay, A First Course in Computers, Vikas Publishing House.

25

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT III: BASIC OF COMPUTER NETWORKS

STRUCTURE

3.0 Objectives

3.1 Computer Network

 3.1.1 Local Area Network

 3.1.2 Metropolitan Area Network

 3.1.3 Wide Area Network

3.2 Internet Skills

3.3 Types of Internet Service

3.4 Domain Names and IP Addresses

3.5 Applications of the Internet

3.6 Glossary for the Internet

3.7 Understanding a Browser

3.8 Search Engine

 3.8.1 Some popular Search Engines

 3.8.2 Types of Web Searches

3.9 E-Mail

3.10 Practice Exercises

26

3.0 OBJECTIVE

 Understanding Computer Networks and different kind of networks

 Understanding Internet and its applications

 Understanding web browser, search engines and internet basics

3.1 COMPUTER NETWORK

The network allows computers to connect and communicate with different computers via

any medium. Lan, man, and wan are the three major types of networks designed to operate

over the area they cover. There are some similarities and dissimilarities between them. One

of the major differences is the geographical area they cover, i.e. LAN covers the smallest

area; MAN covers an area larger than LAN and WAN comprises the largest of all.

3.1.1 Local Area Network (LAN)

LAN or local area network connects network devices in such a way that personal computers

and workstations can share data, tools, and programs. The group of computers and devices

are connected together by a switch, or stack of switches, using a private addressing scheme

as defined by the TCP/IP protocol. Private addresses are unique in relation to other

computers on the local network. Routers are found at the boundary of a LAN, connecting

them to the larger wan.

3.1.2 Metropolitan Area Network (MAN)

Man or metropolitan area network covers a larger area than that of a LAN and smaller area

as compared to wan. It connects two or more computers that are apart but reside in the same

or different cities. It covers a large geographical area and may serve as an ISP (internet

service provider). Man is designed for customers who need high-speed connectivity. Speeds

of man range in terms of mbps. It‟s hard to design and maintain a metropolitan area

network.

3.1.3 Wide Area Network (WAN)

Wan or wide area network is a computer network that extends over a large geographical

area, although it might be confined within the bounds of a state or country. A wan could be

a connection of LAN connecting to other LANs via telephone lines and radio waves and

may be limited to an enterprise (a corporation or an organization) or accessible to the

public. The technology is high speed and relatively expensive.

3.2 INTERNET SKILLS

Internet is a popular tool for accessing digital information & services across the globe. It uses

digital devices like computers, mobiles, other gadgets and network devices to exchange

information and services. Skills required to access various applications of the internet are

commonly termed as “internet skills”. These skills are very important nowadays and we will

learn, some basic terms pertaining to the internet, how to access with web browsers and use

of search engines to find relevant, reliable & precise information (like pearls) from the web

(the information ocean).

Internet is an interconnected network of computers all over the world that connects people

and information 24 hours a day. The internet is a computer network consisting of a worldwide

network of servers that use the TCP/IP network protocols to facilitate data transmission and

27

exchange and to communicate between networks and devices. It is a network of networks that

consists of private, public, academic, business, and government networks of local to global

scope, linked by a broad array of electronic, wireless, and optical networking technologies.

The internet carries a vast range of information resources and services, such as the inter-

linked hypertext documents and applications of the world wide web (www), electronic mail,

telephony, and file sharing.

Internet is nothing but a collection of various interconnected networks of heterogeneous types

across the globe. It comprises of different kinds of devices, specifications for hardware &

software to be connected in a global network and a variety of protocols with a common

understanding between various countries, universities, companies and global agencies. It is

also referred as a “network of networks”. The purpose is to share resources over a global

network, a resource can be a simple webpage having information, a network printer, or any

digitally accessible service like email, e-commerce, real-time streaming, telnet, etc. It is a

global network working over physical cables like traditional pots (plain old telephone

system), TV cables, Fiber optic cables and even wireless mediums like wi-fi, 3g/4g or

satellites communication depending on need and type of communication.

3.3 TYPES OF INTERNET SERVICE

The type of internet service you choose will largely depend on which internet service providers

(ISPs) serve your area, along with the types of service they offer. Here are some common types of

internet service.

Dial-up: this is generally the slowest type of internet connection, and you should probably avoid it

unless it is the only service available in your area. Dial-up internet uses your phone line, so unless

you have multiple phone lines you will not be able to use your landline and the internet at the same

time.

DSL: DSL service uses a broadband connection, which makes it much faster than dial-up. DSL

connects to the internet via a phone line but does not require you to have a landline at home. And

unlike dial-up, you'll be able to use the internet and your phone line at the same time.

Cable: cable service connects to the internet via cable TV, although you do not necessarily need to

have cable tv in order to get it. It uses a broadband connection and can be faster than both dial-up

and DSL service; however, it is only available where cable TV is available.

Satellite: a satellite connection uses broadband but does not require cable or phone lines; it

connects to the internet through satellites orbiting the earth. As a result, it can be used almost

anywhere in the world, but the connection may be affected by weather patterns. Satellite

connections are also usually slower than dsl or cable.

3G and 4G: 3G and 4G service is most commonly used with mobile phones, and it connects

wirelessly through your ISP's network. However, these types of connections aren't always as fast

as DSL or cable. They will also limit the amount of data you can use each month, which isn't the

case with most broadband plans.

28

3.4 DOMAIN NAMES AND IP ADDRESSES

An internet protocol, or IP, address is different than a domain name. The IP address is an

actual set of numerical instructions. It communicates exact information about the address in a

way that is useful to the computer but makes no sense to humans. The domain name

functions as a link to the IP address. Links do not contain actual information, but they do

point to the place where the IP address information resides. It is convenient to think of IP

addresses as the actual code and the domain name as a nickname for that code. A typical IP

address looks like a string of numbers. It could be 232.17.43.22, for example. However,

humans cannot understand or use that code.

3.5 APPLICATIONS OF THE INTERNET

Internet is being used in a variety of applications, few of them are as under:

1. Communication: Millions of e-mails are sent and received worldwide in a day for

exchanging information. Online messengers are also popular for real-time

communications. With help of VoIP (voice over the internet protocol) audio and video

conversation also take place.

2. E-commerce: The internet provides an online market to sell/purchase various products

and services globally. Now, we can purchase things from our neighbouring house to

the farthest country as well. These online stores may work round the clock and enable

consumers to purchase from home.

3. Storage & file transfer: The user can send and store files of different types. Cloud

computing makes it possible to share it among various users with their associated

roles to access such files.

4. Live streaming & podcasts: Users can send their live videos and audios to large

groups of people in a real-time manner.

5. News, entertainment: Whatever is happening in the real world, it can be updated as a

piece of information on the web. Now, it is possible to provide breaking news,

entertainment, election results or about the sports activity of your favourite team or

sportsperson.

6. Collaborative tasks: People can meet online, discuss things and work together using

collaborative applications.

7. Research & learning activities: With the availability of information and online

resources, researcher and learners can continually equip themselves.

8. Interactive gaming: We can play & interact online with another human being, a

computer program having a real-time conversation. We can participate in the game

across the world.

9. Social networking: Various online platform provides facility to connect the people of

the same interest. Millions of people daily connect with their colleagues, family

members and find new persons on such platforms.

10. Job hunting: Job providers can post various vacancies on the internet via their

portal, third-party portals or social media. Jobseekers search for various jobs on

portals, newspapers & apply their applications with resume to concerning human

resource managers.

29

11. Navigation & tracking: Searching best routes on digital maps, tracking the live

status of trains, cars, parcels are few widely used location-based services of the

internet.

In addition to the above, real-time updates, cashless transactions, online booking, live trading

and advertisements, etc. Are also some popular uses of the internet.

3.6 GLOSSARY FOR THE INTERNET

Few commonly used terms for the internet basics are:

www: world wide web or simply „web‟ is the most popular use case of the internet. It is an

information system where different kinds of files or resources are hosted and uniquely

accessed via url address. These resources are interlinked with hyperlinks. The resources can

be uploaded or downloaded with application software known as web browser using some

standard protocols like http or ftp.

Domain Name: it is a human understandable unique name on the internet to identify a

computer system or resource.

Url: uniform resource locator is known as the web address. It is a unique identifier of a web

resource with a specification of how to access and from where to access it. Http: hypertext

transfer protocol is a set of rules (protocol) that define the way how data transfer over the

web. It is used to access websites.

Https: it is the secure version of http using ssl (secure socket layer) encryption.

Ftp: file transfer protocol is a set of rules (protocol) that define the way how data transfer

over the internet. It is used to transfer a large file from one host to another.

Hyperlink: it is a word, phrase or image that refers to another data. Can be followed by the

user by clicking or tapping. The reference may belong to another document or specific

element of the same document.

Browser: it is an application program with a user interface to display and navigate web pages

over www.

Webpage: it is a hypertext document designed to view on the web browser.

30

Website: it is a collection of web pages and related resources that is identified by a common

domain name and hosted (published) on a web server.

Search engine: it is a web-based complex software that provides information searching

services to its users. The search engine uses various algorithms to search its huge database

and produce appropriate search results taking minimal time.

ISP: an internet service provider is a company that provides internet access to other

companies or individuals.

Email: electronic mail is a method of exchanging digital messages from one electronic

device to another device or to many recipients via a network.

Podcast: it is a web resource available on the internet that contains audio information.

Filetype: every information available on the internet have a certain format and type which is

understood by their file type. Information can be in form of documents, audio, video, etc.

Download: it is the process of copying data over the internet from one device to another in

direction of a server to a client machine.

Upload: it is also the process of transferring data from one device to another on the internet

but from client to server-side.

DNS: the domain name system translates human understandable domain name (for example,

www.ncs.gov.in) to machine readable ip address (for example, 203.129.202.69)

TCP/IP: transmission control protocol and internet protocol are set of rules that govern the

linking of a computer system to the internet and similar computer networks.

Modem: it is the short name for hardware device modulator-demodulator. It is responsible to

convert the digital data of a computer system to an analog signal which can travel over

telephone lines (modulator) and vice-versa.

Network equipment: these are networking hardware required for the interconnection and

communication in a computer network e.g., bridge, repeater, hub, switch, router, modem, etc.

Cloud computing: it provides computer resources over the internet as per the demand of the

user. Resources can be computer infrastructure, computing power or data storage, etc.

3.7 UNDERSTANDING A BROWSER

Services & information provided by the internet follows the client-server model. In this

model when a client machine seeks some service, it forms a request message (http request)

and sends it via a client-side program to network towards the server machine. On the other

31

side, when a request approaches the server machine it grants or denies the requested service

in form of the response message (http response). A browser is a client-side application

program to search and retrieve information from the world wide web, available in the form of

web pages and display it on the client‟s machine. It is also termed as “web browser” or “user

agent”. we will understand some trending variants of the browser, their comparison in terms

of offered features and the basic architecture of a web browser for its better understanding.

Google chrome: it is the most widely used web browser developed by google. It is cross-

platform web browser that was firstly released in 2008 for the windows operating system of

microsoft. This browser is now a proprietary freeware based on google‟s free and open-

source software (foss) project “chromium”. It is widely used due to its speed & security

capabilities. It is constantly updating and keeps us safe from phishing and malware scams.

Web store keeps chrome customizable via its various themes, extension and web apps. It can

translate a website in different languages.

Microsoft edge: it is developed by microsoft and was firstly released in 2015 for its

proprietary operating system windows 10. It is the successor of the internet explorer web

browser of the microsoft family. It is also integrated with microsoft‟s online platforms for

providing voice control, searching functionality and dynamic content related to searches

inside the address bar.

Mozilla firefox: it is a free and open-source browser developed by mozilla foundation and its

subsidiary mozilla corporation. It was initially released in september 2002. In comparison to

other browsers, firefox provides an extensive library of extensions & add-ons to its users for

customizing their browser experiences & functionality.

Opera: it is a multi-platform browser developed by opera software. It was initially released

in april 1995. It is also available for mobile devices and these mobile versions are known as

opera mini & opera mobile. With its artificial intelligence (ai) based platform opera browser

supports a personalized news feed at the start page. It also supports sharing files, links and

notes between user's different devices with the opera flow feature.

32

Safari: this browser was developed by apple inc. And it is not a complete open-source

browser. It was initially released on january 2003 as a part of mac operating system. It is

considered as faster browser with considerable high privacy features. Safari also implemented

feature of cross site tracking. It natively supports web page translation and picture in picture

functionality.

3.8 SEARCH ENGINE

The search engine is a generic name assigned to a software system whose purpose is to

systematically search the web pages against supplied search terms, commonly known as

„keywords‟, „search query‟ or „search phrase‟. The result of this search is presented in form of

a listing technically referred to as search engine results pages (serp). The search engine is not

a mere finding tool but a web service that performs the task of indexing, organizing, rating

and reviewing websites too. There are many search engines available in the world of

computer networking. Every search engine works in its way and that‟s why we get different

search results for the same search query in different search engines. Some rely on users to

maintain a catalogue of web pages where other use their automated advanced software to

identify key information available in interlinked websites.

3.8.1 Some Popular Search Engines

Google: it is the most trusted search engine worldwide. It was developed by larry page and

sergey brin in 1996 for their academic research project. It was initially known as backrub. It

is written in c, c++ and python programming languages. It is being used as a default search

engine for various web browsers e.g., chrome, safari and mozilla firefox, etc. Google is using

emerging technologies like artificial intelligence (ai), machine learning (ml) to recognize user

behaviour, likings and other contextual information and produce better results for its users.

Microsoft bing: it is owned and being maintained by microsoft. It is the successor of

previous search engines of microsoft e.g., msn search & windows live search. It was launched

in june 2009 and written in asp.net. It provides a variety of search services like web, image,

video and map. Unlike google its home page provides various links to current news, weather

and links to other information like “on this day in history”

Yahoo: this is the oldest search engine available to internet users. It is founded by jerry yang

and david filo in january 1994 as “jerry and david‟s guide to the world wide web“. This

search engine is owned by yahoo and originally written in general-purpose scripting

language- php.

Baidu: it is among the top performer in the market share of search engines worldwide. It is

owned by chinese company baidu, inc. Which is one of the largest artificial intelligence and

internet companies in the world. It was incorporated in january 2000 by robin li and eric xu.

This search engine holds more than 72% of the chinese search engine market as of june 2021.

It offers various services like maps, image search, video search, patent search, legal search,

games, etc.

33

Yandex: it is a search engine prevalently used in russia and was launched in september 1997.

It is owned by yandex n.v., a russian-dutch domiciled multinational. Apart from image

searching, video searching and web searching, it also provides other services like online text

and website translator, maps, email, app analytics and marketing platform.

Duckduckgo: last in our list of the search engine but not the least, duckduckgo(ddg) is a

favorite search engine for millions of users (mine too), especially who cares their privacy and

want to keep their searching history anonymous. It is created by gabriel weinberg and owned

by duck duck go inc. It was launched in september 2008 and its code is written in perl,

javascript and python. Many search engines record the search history of their users and

profile their surfing, searching habits by giving an excuse for better-personalized search

results. In contrast, duckduckgo respects the privacy of its users and displays the same search

results to its all users for a given search query. It is against the online tracking of user‟s data

and believes that “your personal data is nobody's business”.

3.8.2 Types of Web Searches

In the case of web information retrieval, the intention or need behind searching query is not

always informational in nature. Web search queries are classified into three types according

to the intention behind the search.

1. Navigational: users may input some search keywords not for seeking direct information

about the entered text, in spite they intent to navigate to some website. The purpose is to

navigate a website that is in the mind of the user or he/she think that such website should

be there or they have visited the website in past. E.g. Users may simply type “jim corbett

national park” with intention (not known to search engine) to navigate the official

website. The search result will show different search results having beautiful pictures of

the national park, weblinks to „top stories‟ and videos of the national park and many

other related results. Here, by examining the website domain name, a user may navigate

to any of the above websites, https://uttarakhandtourism.gov.in/ or

https://www.corbettonline.uk.gov.in/

2. Informational: in such web queries user‟s intention is to find related information about

the given search term which may be on some interlinked static webpages. The purpose is

to read those pages to acquire facts about the input text. E.g. If a user has entered the

search term “jim corbett national park” with an intention to find its history, geography or

climate then the user may open any suitable results available infront of him like

wikipedia pages or another website.

3. Transactional: the purpose of such web queries to reach a website where further

interaction or web-mediated activity is performed. E.g. If the user enters search term “jim

corbett national park booking” then out of available search result user will select suitable

web result to navigate a website where he will perform booking operation for his

intended visit to the national park. User may visit https://www.corbettonline.uk.gov.in/

and finalize a visit via booking.

Such web queries are also performed widely for shopping, downloading content from the

web, etc.

34

3.9 E-MAIL

E-mail, short for Electronic Mail, consists of messages which are sent and received using the

Internet. While there are many different e-mail services available that allow you to create an

e-mail account and send and receive e-mail and attachments, we have chosen to focus this

class on the services available through Gmail because it is free and one of the more popular

e-mail services available.

The Pros

 It's fast. Most messages are delivered within minutes – sometimes seconds – around

the world without the inconvenience and cost of using a postal service. In fact, postal

service is often referred to as "snail mail" by e-mail users.

 It's personal. While the nature of e-mail is informal, its efficiency is an excellent

substitute for telephone conversations.

 You can think through your response. Like a letter, you can type your reply and make

changes before sending.

 The sender and the receiver don't have to be working at the same time. E-mail avoids

problems such as telephone tag or tying to contact someone in a different time zone.

 E-mail makes it easy to keep a record of your communication. You can save and refer

to later copies of the e-mails you send as well as those you receive.

 You can reach a lot of people at once. It is possible to send one message to hundreds

of recipients at once, or you can send a private message to one individual.

The Cons

 Junk Mail (also referred to as spam). This is as annoying in e-mail as it is with

traditional mail. Most e-mail services now filter incoming mail and sort e-mail

messages that are most likely advertisements or scams into a folder called “spam.”

 Friendly spam. Try not to forward unnecessary messages to friends who may not

appreciate hearing the latest list of “Top Ten Things…” • Ads. The reason you can get

free e-mail services like Gmail is because of advertisements. You pay the price of

having to click around them to read your mail.

 Misinterpretation. E-mail arrives without tone or facial expressions, which can lead to

misunderstanding.

 E-mail messages can be passed on to others. You should always count on the

possibility of your message ending up in the inbox of someone it wasn't intended for.

 You can hide behind e-mail. It's tempting to use e-mail instead of facing a person

when you have to deal with an unpleasant situation. It's best to talk to a person face-

to-face under these circumstances.

3.10 PRACTICE EXERCISES

Searching on various web browsers on a particular search engine:

1. Open Mozilla Firefox web browser and go to google search engine website i.e.,

www.google.com

Insert any of your favorite search terms (like “nep 2020”) in the search bar

1. What is the way to view a Wikipedia page in regional languages?

2. Explain in detail about the components given in the table, such as the names of the

35

manufacturers of the components, their purpose, estimated price, etc.

REFERENCES

 D. Anfinson and D. Quammen, IT Essentials PC Hardware and Software Companion

Guide. Madrid:

o CISC Press.Pearson Education., 2009.

 M. Meyers, Mike Meyers’ CompTIA A+ guide : essentials : exam 220-701. New York:

Mcgraw-Hill,

o 2010.

 Computer Rear Panel Connectors pinouts diagrams @ pinouts.ru,” pinouts.ru.

https://pinouts.ru/comp.php (accessed Sep. 19, 2021).

36

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT IV: WORD PROCESSING PACKAGE

STRUCTURE

4.0 Objectives

4.1 Introduction

4.2 Components of Word Processor

 4.2.1 Opening a Document

 4.2.2 Saving a Document

 4.2.3 Closing a Document

 4.2.4 Renaming the Document

 4.2.5 Deleting the Document

4.3 Use of the Templates, Themes and Styles

4.4 Create a Table of Contents

 4.4.1 Update the Table of Contents

 4.4.2 Using Template to Create a Document

 4.4.3 Creating / Modifying a Template

4.5 Document Views

4.6 Steps to Create a Resume

4.7 Summary

4.8 Practice Questions

37

4.0 OBJECTIVES

 To know the basics of Word Processor Components

 To open, close, save, delete and rename the document

 To use the templates and styles

 To design a table of contents

 To design the resume

 To create the document views

4.1 INTRODUCTION

Word Processing Package is a computer application software package which is designed by

Microsoft Co-operation. It is used to process and edit the words and also known as

computerized typewriter software. Computer and Typewriter have QERTY type keyboard

and all the concepts are in Word Processor which are in Typewriter. As compared to

typewriter, Word Processor package has many advantages:

 The content of the text can be seen on to the screen rather than directly printing.

 It is easier to modify and edit the information through computer

 Word Processing Package is most popular used package. It is used for every

application like industrial, commercial, business, administration, hospital etc.

 You can edit, copy, save, open, and print the document.

 It enables the user to create Graphics, Tables, and Images etc. into the document file.

 It can work in every environment like DOS, WINDOWS, and LINUX etc.

In this chapter, firstly the components of MS-WORD 2007 will be discussed. Then, the

basics of word processor like Opening, Closing an existing document and the use of

templates have been discussed [13].

4.2 COMPONENTS OF WORD PROCESSOR

The different components of MS-WORD is shown as below:

38

 Title Bar

 A horizontal bar is present at the top of an active document. This bar shows the name of the

currently open document and application. At the right end, it contains control buttons like

Minimize, Maximize, Restore and Close.

 Quick Access Toolbar

A customizable toolbar present at the top of an active document. By default, this Toolbar

displays the Save, Repeat and Undo buttons and mostly used for accessing frequently used

commands. Any of the commands can be added by clicking the dropdown arrow [4].

 Ribbon

The Ribbon changes the menus and toolbars into the previous versions. The Ribbon depicts

various features that used to be hidden in the File menus. It becomes easier to find and see all

commands for document formatting. CTRL + F1. Is used to reduce the Ribbon to a single line

of tabs.

Status Bar

A horizontal bar present at the bottom of an active window. It provides the information like

number of pages present in the current document, current position of the cursor, current page

number etc.

View Toolbar

A toolbar which enables, modifies, and shows different views of an active document‟s

content.

Zoom Button

A button that expands or reduces the document contents in the document window.

Ruler

It helps to adjust the text along with the document. The ruler may set the ruler according to

the requirement of the setting. It is used to make the text more presentable.

Task Bar

It shows the currently open document along with other settings such as volume control,

printer, Clock and CPU information etc.

4.2.1 Opening a Document

When you need to modify the existing document, then document will be opened that allows

to make changes in the document like adding, modifying or deleting content. To open an

existing word document created in the Microsoft Word, the following steps are taken:

1. Click the File menu.

2. Click on the Open submenu which makes a dialog box to appear.

39

3. In the recent documents, it show the list of all latest documents opened previously

from which one can choose the file you want to open.

4. On clicking the Computer icon, locate and open the drive and folder the contains the

file.

5. Click the file which one want to open.

 4.2.2 Saving a Document

It is necessary to save the newly created files in order to access them later. We need to give

some name to the file which we want to save. To save the created file, the following steps are

taken:

1. Choose the File menu.

2. Click on Save submenu from the File menu. From keyboard, the combination of

Ctrl+S can be pressed. The Save dialog box will appear as

3. Select the required folder from the Browse folder where we want to save the

document.

4. In the File name box, write the name of the file by which we want to save the created

document.

5. From the Save as type field, we need to specify the format of the file in which we

want save our file. The default file format is “.docx”.

6. Click on the Save button [16].

4.2.3 Closing a Document

The opened word file or document can be closed by taking following steps:

1. Click on File menu.

2. Click on the Close option present in the File menu.

 OR

3. Press Ctrl+F4 key combination from the keyboard.

4. On clicking the Close option for the already existing opened document, the following

dialog box will appear on the screen

40

5. To save the document, click on Save otherwise click on Don‟t Save.

6. On the press of Save button, the document will be saved to the already specified

location.

7. On the press of Don‟t Save, the specified changes in the document will not be

reflected back to the specified location.

4.2.4 Renaming the Document

To change the name of the existing document is done using the following steps:

1. Go to the specified location where the document is saved.

2. Right click on the document which we want to rename. The following menu will appear on

doing so [8].

3. Click on the Rename option. This will provide the facility to type the new name of the

document instead of old name.

 4.2.5 Deleting the Document

To delete the existing document the following steps are followed:

1. Go to the specified location where the document is saved.

2. Right click on the document which we want to delete. The following menu will appear on

doing so.

3. Click on the Delete option. The following dialog box appears on the screen asking for the

assurance of the user for the deletion of the file.

41

4. On clicking Yes button, the file gets deleted and move to the recycle bin.

5. On clicking No button, the process gets reverted back and nothing happens.

4.3 USE OF THE TEMPLATES, THEMES AND STYLES

Templates are the files that help to design interesting, attractive, and professional-looking

documents. Template contains content and design based elements that are useful in the starting

point while creating a document.

A template may be defined as a predefined file with predefined structure, style and look. On the

basis of this file, a new document can be created having same structure, style and look as that of

the template. The size with orientation of the page, specific margins, face type, font style and line

spacing, have to be specified [17]. This collection of specifications that determine the appearance

of a document is known as template. User can change structure, style and look of the document

depending upon the requirement.

Examples: Examples are resumes, invitations, and newsletters.

Theme

It is used to provide a designer look with different theme colors and fonts. Themes can be shared

among the Office for various applications that support themes, such as Excel, Word and

PowerPoint. For example, we can create or customize a theme in either Excel, MS-Word

PowerPoint, and then apply it anywhere.

Style

It is one of the important feature of the Microsoft Word. Style is basically the predefined

instructions used for formatting throughout the document. The style gallery is available in the

standard toolbar under the home menu as shown below.

When we create a document in the Microsoft Word, the new blank document uses the Normal

template and the written text will use the Normal style. The typed text in the newly created

document uses the font type, font size, indentation, line spacing, paragraph spacing, text

alignment and other specifications defined under the Normal style.

There are two types of styles.

 Character style

42

 Paragraph style

Character Style

It is applied to typed words or even individual characters. Character formatting is done from the

formatting options available under the create new style from formatting option. The style type

chosen is character.

e

Paragraph Style

It contains both font and paragraph formatting which makes it more flexible than the

character style. On applying the paragraph style, the formatting options affect the whole

paragraph.

After Microsoft Word 2007 version, there is a provision of Linked styles which can be used

for character formatting or paragraph formatting. When the formatting options are used on

the text written in the particular paragraph, the linked styles act as character style. When

formatting options are used on the paragraph, they act as paragraph style.

We can disable this option, by checking the „Disable Linked Styles‟ option.

Steps to use and create the style

 Click the paragraph, Word, list, or table you want to format [3].

 Select the style that we want want to apply from the Styles group

Steps to modify the style

For quickly modifying all the text that is formatted with a particular style, you can

reformat the style just by changing its properties.

43

 Right Click on the styles option in the Styles group

 Click on Modify option

 Do the modifications by using either the Format button or icons

 Click on OK

To Select all Same Formatting using Styles,

We can quickly see all the areas of our document that have been formatted with a

selected style, it will highlight all the areas that are formatted using style.

 Right-click on the Style option

 Click on Select All 2 Instances

Steps to Create a New Style

 Highlight the part of the document to format

 Using the Font and Paragraph groups apply all formatting

 Click on the drop-down list in the Styles group

 Click Save Selection as a New Quick Style

44

 Type the name of the new style and click on OK.

4.4 CREATE A TABLE OF CONTENTS

To get the overview of the topics in a document, Table of Contents is used to create using

the heading styles from the Styles group.

 Apply the styles of headings to the areas of the document that are to be included in the

Table of Contents [5].

 Use Heading 1 as the main Heading, Heading 2 for subtopics

 Select the References tab

 Select the Table of Contents

 Select either one of the built-in table of contents styles or click on Insert Table of

Contents for a list of options

45

 Apply Changes

 Click on OK

4.4.1 Update the Table of Contents

 If you want to modify the document, Table of contents need to be modified using

the following steps

 Right-click where you need to update within the Table of Contents [3]

 Select Update Field

 Click on Update Entire Table

 Click OK

46

4.4.2 Using Template to Create a Document

There are number of existing templates available for the newly created word document. To

select the already existing templates, following steps are used:

1. Choose the File tab

2. Click on the new option which will display all the existing templates.

Microsoft Word provides a number of templates which one can use but it also provide the

option to search for the templates online from the office.com.

4.4.3 Creating / Modifying a Template

Depending on the requirement of the user, the user can create his own new template. The

template file has .dotx extension. The following steps are used to create the new template.

1. Select the File tab.

2. Click on the New option which display all the existing templates

3. Select any of the existing templates and open with template option as „On‟.

The user can modify the opened template as per the requirement and save it with .dotx

extension.

Even, one can create the template from the created new document as well.

1. Click on File tab.

2. Click on New option where existing available templates will open.

3. Double click the Blank Document to create the new empty document template.

4. Save the template with the .dotx extension and a unique name.

47

4.5 DOCUMENT VIEWS

Depending upon the different aspects of the usage of the word document, Microsoft Word

provides different views of the document. Instead of the default view, the user can find other

views available to make one more productive. By default the word document opens in Print

Layout, but other views can be selected by clicking the View tab.

The other available view modes except the default „Print Layout‟ are Web Layout, Read

Mode, Outline and Draft.

 The Web Layout is appropriate when one want to view the document in the form of a

web page. It is mostly used when the user is designing the web page in Microsoft

Word.

 The Outline view is used for the navigation of a lengthy document which shows the

outline form of the document. The user can also decide the number of levels that

should be shown.

 Draft view works similar to the plain text editor which shows only the text without

any formatting and graphics.

 Read mode displays only the pages of the document by hiding all the toolbars and

menus which provides more space for the document text.

 4.6 STEPS TO CREATE A RESUME

 The following steps are used to create a Resume using MS-WORD

 Open MS WORD

 Click on CTRL+N or New from the File Menu

 Select the style of resume

 Click on Create

 Then Update the details and photographs as per the requiremnets

48

4.7 SUMMARY

 Basics of the Word Processor has been discussed

 Steps for Creating, closing, deleting and renaming the document file is also discussed

 Templates are the files that help to design interesting, attractive, and professional-

looking documents.

 Theme is used to provide a designer look with different theme colors and fonts.

 Style is one of the important feature of the Microsoft Word. Style is basically the

predefined instructions used for formatting throughout the document.

 Templates and Styles can be used for designing Resume, Invitation letter etc.

4.8 PRACTICE QUESTIONS

Q1. Differentiate between SAVE and SAVEAS

Q2. Design a template for typing the resume

Q3. Differentiate between Template, Style and Theme

Q4. Design the template for Invitation letter

Q5. What are the document views?

MCQ Type Questions

Q1. Which is the extension of templates [1]

a) Dotx

b) Doc

c) Doct

d) Dott

Q2. Which of the following statements regarding styles in MS Word are true[5]?

 a) Styles can not to individual words or characters, only be applied to paragraphs,

 b) All text in the document has assigned style even without assigning it

 c) We cannot modify built-in styles

 d) All of the above

Q3.Ali typed a letter to his son but did not apply a style. Which built-in style was

assigned to the text in his letter?

 a) Normal Style

 b) Default Style

49

 c) No Spacing Style

 d) No style applied to the text

Q4. Which of the following statements about style deletion are true?

 a) Both Custom and Built-in Styles can be deleted

 b) Both Custom and Built-In Styles can be removed from the Styles Gallery

 c) Styles cannot be deleted if they are assigned to text in the document, you first need

to assign that text a new style

 d) All of the above

Q5. Which of the following statements about the styles are false?

 a) Styles help maintain consistent formatting within and between documents

 b) Every aspect of text formatting can be specified for a style

 c) Styles make it easier to change the formatting in large documents

 d) Custom styles must be created as part of a template

Q6. The file extension _____ shows the file is a Word document.

a. .wor

b.. .wrd

c. .doc

d. None of these

Q7. How many number of different documents can be opened at the same time?

a. Maximum Three

b. One Only

c. As per the computer memory.

d. None of these

Q8 The _____ in the Resume Wizard dialog box shows the wizard is ready to be

create the document [6]

a. Address panel

b. Start panel

c. Add or Sort Heading panel

d. Finish panel

Q9. _______is the default font size of a new Word document which is based on

Normal template in Word 2007?

a. 12 pt

b. 11 pt

c. 14 pt

d. None of above

Q10. What do you call „a collection of character and paragraph formatting

commands‟?

a. defaults

b. template

c. documnet

d. a boilerplate

50

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT V: WORKING WITH TEXT

STRUCTURE

5.0 Objectives

5.1 Editing and Formatting a Document

 5.1.1 Select, Copy and Paste Text in Word

 5.1.2 Cut & Paste the Text

 5.1.3 Find and Replace in the Word

 5.1.4 Inserting Special Symbols and Characters

 5.1.5 Set Tabs and Indenting

 5.1.5.1 Steps to Set the Tabs

 5.1.5.2 Steps to Set a Custom Tab Stop

 5.1.5.3 Steps to Remove a Tab Stop

 5.1.5.4 Indenting Text

 5.1.6 Formatting Text

 5.1.6.1 Setting Text Direction

 5.1.6.2 Auto-Correct

 5.1.6.3 Bullets and Numbering

 5.1.7 Formatting Paragraphs

5.1.7.1 Paragraph Spacing

5.1.7.2 Page Setting

5.1.7.3 Page Layout

5.1.7.4 Page Margins

5.1.7.5 Page Size

5.1.7.6 Page Brwak

5.1.7.7 Creating Headers and Footers

5.1.7.8 Adding Comments to a Document

 5.1.8 Create the Table of Contents

5.2 Modify Table of Contents

 5.2.1 Create Indexes

 5.2.2 Create Bibliography

51

 5.2.3 Print Document

 5.2.4 Tracking Changes in the Document

5.3 Summary

5.4 Practice Questions

52

5.0 OBJECTIVES

To Edit and Format Text/Paragraph and Page

 To add comments in the document

 To insert the Table of Contents in the file

 To write the bibliography for writing content or research papers

 To track the document views

5.1 EDITING AND FORMATTING A DOCUMENT

Editing means doing modifications in the document according to the requirements of the user.

It is used for better look to your documents. You can select the text either by using Keyboard

or mouse clicking.

In this module, firstly editing of the text is discussed, then formatting through various

options.

5.1.1 Select, Copy and Paste Text in Word

It is the important feature of the MS-WORD in which the part of the document can be

available multiple times at the required location. The copy part of the content may be present

in the same location and to other location. To perform a Copy, Paste the following steps need

to follow:

 Select the text that you need to copy.

 You can copy the text in one of two ways:

o Right-click on the selected text, then select the Copy option. Or you can select

the Copy option from Edit menu from the menu bar.

o Ctrl + C Key can be used to copy also as a shortcut on your keyboard.

 Paste the text inside your document in a number of ways[2]:

53

o Put the cursor where you want to paste and right click onto it, It may be

accessed the Home tab in the Ribbon. You can select any of the formatting

like “Source formatting”, “merge formatting” or keep text only”.

o Use the Ctrl + V shortcut on your keyboard for pasting the text.

 The text you copied is now in your document!

5.1.2 Cut & Paste the Text

The Cut operation is used to remove the content from its original location and made available

from its original location to a desired location. It can be used to move to the same document

or to any other document. These are the following steps:

 Select a portion of the text which we want to cut

 Multiple options can be used to cut the content

 Using Right-Click – By pressing right-click on the selected text, cut option will be

displayed and click on the option.

 Using Ribbon Cut Button is also available at the ribbon to cut the selected content

 Using Ctrl + X shortcut Keys to cut the selected text.

 Using Ctrl + V keys is used to paste the content at the desired location.

5.1.3 Find and Replace in the Word

This option is used to find a required word and replace a word with other word. To perform

Find and Replace these are the steps:

 Click Edit Menu and select the option replace from the drop down menu, either press

Ctrl+H.

54

 Type the word or text that you want to find and enter desired text in the Replace box.

 To update in all the places at once, choose Replace All.

5.1.4 Inserting Special Symbols and Characters

MS-WORD contains all the alphabets, numbers and some other symbols which are available

on the keyboard. Sometimes, you need to insert some special symbols that are not available

on the keyboard like some mathematical formulas, scientific equations etc.

These are the following steps:

 To insert a special symbol:

 Put the cursor where you need to insert a symbol

 From the Insert tab , select „Symbol‟[14].

 Choose the symbol from the drop-down list.

 If the symbol is not in the current list, Select More Symbols. From the font box, select

the font that you need to use and select Insert.

 To insert a special character:

 Click on the Insert tab, choose the Special Characters tab.

 Select the character that you need to insert, and then select Insert.

5.1.5 Set Tabs and Indenting

Tab stops can be sued to create uniformly spaced text. Word has by default left tab stops set

after every half-inch, but it can be created using own tab stops for a specific position.

5.1.5.1 Steps to Set the Tabs

1. Select the Show/Hide ¶ button from the Home tab.

2. Select the View tab.

3. Select the Ruler checkbox to Show the group.

55

5.1.5.2 Steps to Set a Custom Tab Stop

 Select the Home tab.

 Select the Paragraph dialog box launcher.

 Select Tabs.

 Choose the type of tab stop which you need to set.

 Click Set.

 Click on OK.

5.1.5.3 Steps to Remove a Tab Stop

 Select the Clear button in the Tabs dialog box to delete a single tab stop

 Select the Clear All button to delete all tab stops.

 Alignment can also be done in the same way.

5.1.5.4 Indenting Text

It is used to provide the extra space to the paragraph or the text. The distance between the

page margin and the boundaries of the Text is called an Indent and the process is known is as

indentation. There are four types of indents such as left, right, hanging and first line indent

 Steps to indent the paragraph are:

 Select the paragraph or text which you need to be indented

 Select the Format menu and select the paragraph option

 Click the mouse on the indent and spacing tab option.

 Select any of the option to set left, right, hanging or first line indent.

 Click on OK.

56

5.1.6 Formatting Text

Formatting text means to display the text in the better way using various font, font size, font

styles and font colors.

Steps to Format the text

1. Select the text or the paragraph

2. Select the Format menu and drop down menu appears.

3. Select the Font option. A font window appears on the screen with different items

4. Font: Select the type of the Font like Times New Roman or any other.

5. Font Style: Select the Font Style like regular, bold, italic etc.

6. Select the Font Size any like 10,12,8 etc.

7. Select the Font color from the set of colors

8. Click OK

5.1.6.1 Setting Text Direction

 Text direction can be changed from bottom to top or top to the bottom. This option is useful

for printing name or headings in a envelope on A4 sheet

 Steps to Set the Text Direction:

57

 Click on the Insert Tab and select the Text Box from the drop down list

 Then Text box will be available

 Enter the required Text in the text box

 Select the Format and select the Text Direction.

 Select the required Text direction

 Click on OK

5.1.6.2 Auto-Correct

Auto Correct option converts the large Strings to short form. These are the following steps

 Click on the Tools and Click on Auto Correct Option from the drop down menu‟

 Enter the short form MS-WORD like MW

 Click on add and ok

5.1.6.3 Bullets and Numbering

 Graphical symbols bullets can be used to represent each line and Numbering can be

used to represent the items into numbers and alphabets. These are the steps to insert

bullets and numbering

 Set the cursor where you need to use bullets/numbering

 Select any of the bullet button from formatting tool bar

 Press the enter key or Okay

5.1.7 Formatting Paragraphs

MS-WORD provides many features for formatting whole paragraph in your document.

The following features are being discussed.

5.1.7.1 Paragraph Spacing

 This features is used to set extra space between the paragraphs to look better. The

following steps are used:

 Choose the paragraph which you need to format

 Click on the Format me menu and select the paragraph option

58

5.1.7.2 Page Setting

 Click on the File option and select the page setup

 Select the Margin, Paper or layout option

5.1.7.3 Page Layout

Sometimes you need to take a print on landscape, then the page layout can be used for

taking the page in portrait (length wise) or landscape (width wise)

 Click on orientation tab

 Select the orientation either portrait or landscape

 Landscape means the page is oriented horizontally.

5.1.7.4 Page Margins

Page margin is the difference of the space between text and the edge of the document.

The default value of Page margins is Normal style with one-inch space between a text and

each of the edge.

 Select the Page Layout tab, then choose the Margins command.

 Select the defined margin from a list of drop-down menu.

 The margins of the document will be modified.

59

5.1.7.5 Page Size

The default page size of an active document is 8.5 inches by 11 inches. If you need to

change the page size, then you can modify using following steps:

 Click on the paper tab from the page set up dialog box

 You can change the paper size as per the need.

5.1.7.6 Page Break

 When you want to start a new page when current page is still not used fully, then Page

Break allow to go to the next page.

 Put the pointer where you want to set the page break

 Click on the INSERT menu and select break

 Select the Page break from the or you can press Ctrl+ENTER

5.1.7.7 Creating Headers and Footers

 It is used to create a heading o on the top of the page and some message at the bottom of the

page. It is mainly used for setting heading of the chapter and on the footer, date or page

number may be mentioned.

 Select the view option from drop down menu

 Select the header and footer option

 Enter the text in the header and in the footer set the date

 Heading will be appeared on the top and date will be onto the bottom.

5.1.7.8 Adding Comments to a Document

 Click the text where want to insert a comment.

 Choose on the Review tab and click on New Comment.

60

 Type your comment and word displays the comment in the document's margin.

5.1.8 Create the Table of Contents

 Put the cursor where you need to add the table of contents.

 Click on the References and select Table of Contents option

 Choose an automatic style.

 If you want to modify the content that also effects the table of contents,

 Then, update the table of contents by right-clicking on the table of contents and select

Update Field.

 For taking each heading the table of contents, select the heading text.

 Select Home then Styles option and then select Heading 1.

5.2 MODIFY YOUR TABLE OF CONTENTS

 Choose the text which you need to modify with table of contents.

 Click where you want to insert the entry

 .Select the References tab, in the Index group, click Mark Entry.

5.2.1 Create Indexes

 Place the cursor where you want to create an index

 Go to References and select Mark Entry option

 Select any required formatting options from the menu

61

 Select Mark Entry Option

 Text can be edited in the Mark Entry option

o Second level can be added the Subentry box.

o Select Cross-reference tender Options, and then type the text for the other

entry in the box.

o Page can be formatted by using formatting features like Bold/Italic

 To mark this text in whole document select Mark Al option

 Click where you need to add the index.

 On the References tab select Insert Index.

 Formatting can be done for text entries, page numbers, tabs, and leader characters.

 Click OK.

5.2.2 Create Bibliography

A bibliography means the list of references used in the document. The references can be

taken in a bibliographic database or within the document itself [11].

62

Steps to Create and Update a Bibliography database

 Select the References option

 Select any Style of the References like APA, IEEE, Gost etc.

 Select the source for where you need to add references.

 Put the cursor at the end of the line to add citation

 Select Insert Citation option and select the source which you are citing. (Anju, 2021)

 Citation can be edited Go to the citation and add the references

 Click on OK.

5.2.3 Printing a document

When you want to take a hard copy of the document, then it is better to use print preview

option, it gives the idea about formatting details before taking printout. You can modigy the

document before taking print [10]. These are the steps to print a document.

 Make sure that the printer is on and ready to print.

 Save your document.

 Click the File tab.

 Firstly, select the print preview

 If you are satisfied with formatting, select the Print option or Ctrl+P command

 Specify the type of printer which is attached

63

 Select the page range:

o All: To print all the pages

o Current Page: To print the current page

 Pages: Number of pages you need to print

5.2.4 Track Changes in the Document

 To turn on Track Changes:

 Select the Review tab

 click the Track Changes option

 Track Changes will be turned on.

 Any modifications you make to the document will be appeared as colored markups.

 The changes can be reviewed from where you can accept or reject the changes

 Select the change which you need to accept or reject

 Click the Accept drop-down arrow to select all the changes, select Accept

 If you do not want to continue, then select Stop Tracking.

5.3 SUMMARY

 Editing of the text or paragraph is possible by using CUT, COPY PASTE option or

with shortcut keys

64

 Text Formatting can be done using various options like Auto Correct, Bullets and

Numbering, Text Direction etc.

 Page Formatting can be done using Page Size, page break, Page Layout etc.

 For writing any book, chapter, table of contents can be created using Table of content

option from the References Tab.

 Bibliography can be added using References Menu Bar, it would be useful to add

citations in the paper or in the document.

 Print option is used to print any document. Ctrl+P shortcut key is also used to Print.

 The changes in the document is tracked by using Track changing option.

5.4 PRACTICE QUESTIONS

Q1. Differentiate between Cut Paste and Copy Paste

Q2. What is the importance of inserting Headers and Footers in the document?

Q3. Significance of Find and Replace

Q4. Create a Bibliography for any Research paper using IEEE style

Q5.Write various steps to create the Index?

Multiple Choice Questions

1. The space left between the start of a paragraph and Margin is called

a. Spacing

b. Indentation

c. Merging

d. None of these

2. To apply centre alignment to a paragraph which shortcut key can be used

a. Ctrl+E

b. Ctrl+A

c. Ctrl+B

d. Ctrl+N

3. Text Styling features in MSWORD is done by

a. Word Art

b. Word Color

c. Word Fill

d. Word Font

4. In which view Headers and Footers are visible

a. Print Layout

b. Page Layout

c. Normal View

d. None of these

5. For changing the line height to 1.5 we use shortcut key :

65

a. Ctrl+1B.

b. Ctrl + 2

c. Ctrl + 3D.

d. Ctrl + 5

6. We can insert a page number at

a. Header.

b. Footer

c. Both Header and Footer

d. None

7. _______can be used to change the thickness of a line.

a. Line Width

b. Line Height

c. Line Style

d. None of these

8. For selecting the Symbol dialog box, which menu is used?

a. Insert

b. Table

c. Format

d. Tools

9. Which is the default font size in MS-WORD

a. 12 pt

b. 8 pt

c. 6 pt

d. None of these

10. Which menu bar is used to add bibliography?

a. Insert

b. Home

c. References

d. None of these

66

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT VI: MAKING SMALL PRESENTATION

STRUCTURE

6.0 Objectives

6.1 Introduction: Basics of Power Point

 6.1.1 Exploring the Parts of the Power Point Window

 6.1.2 Creating Presentation

 6.1.3 Saving the Power Point Presentation

 6.1.4 Entering and Editing Text

 6.1.4.1 Font Formatting

 6.1.4.2 Change Case

 6.1.4.3 Inserting and Deleting Slides in a Presentation

6.2 Inserting Word Table

 6.2.1 Add a Row or Column to a Table

 6.2.2 Delete a Row or Column from a Table

6.3 Inserting Spreadsheet Worksheet into Power Point

 6.3.1 Adding Pictures and Other Objects

 6.3.2 Inserting Video Clips

 6.3.3 Running a Slide Show

 6.3.4 Transition and Slide Timings

 6.3.5 Automating the Slide Show

6.4 Summary

6.5 Practice Questions

67

6.0 OBJECTIVES

 To know the basics of presentation software

 To Insert, Delete, Update the slides in a presentation

 To Add Clip Art and Pictures in the PowerPoint.

 To Set the timings for Slide Show

6.1 INTRODUCTION: BASICS OF POWER POINT

Power Point is an application program developed and distributed by Microsoft as a part of

Microsoft office suit. It is very powerful, easy-to-use graphical presentation software that

allows the user to create electronic slide show of presentations. It is widely used to show an

important information and data in an organized manner. Power Point is used to display text,

table, charts, graphics, audio and videos in the slides and it involves various tools like word

processing, graphing and drawing etc. In this module, we will learn how to work with

Microsoft Power Point and how to create exciting and interactive presentations [7][8].

First of all, you have to start the Microsoft Power Point from the start button of your windows

as shown in Figure 6.1.

Figure: 6.1 Open Microsoft Power Point in Windows 10

6.1.1 Exploring the Parts of the Power Point Window

Power point window will appear as shown in Figure 3.2 at start-up and the various areas in a

standard PowerPoint file are labelled. It provides the basic information of the graphical user

interface of the window which is further helpful to the user to learn easily. The different

labels of power point window are explained as follows: The different tabs for power point

window is shown below:

 File Tab

This tab represents the backstage view that helps the user to create new file, open a file and

print the presentation. The Save and Save as buttons are also user File Tab. Various design

templates are shown in File Tab when user clicks on New button.

 Ribbon

The ribbon of power point window consists of the following components:

 Tabs: Tabs will be shown on the top of the ribbon along with the relevant

command such as Home, Insert, Design, Layout and View.

68

 Groups: Groups are used to arrange commands that belong to same group on the

basis of the function and the name of every group is displayed below the group on

the Ribbon. For example, clipboard, font, paragraph, styles and editing are the

names of groups displayed on the ribbon.

 Commands: Groups contain the related commands in the form of small icons

 Title Bar

It appears on the top part of the power point window. It displays a name of the file along

with the name of the application program that is Microsoft PowerPoint. It also contains small

button for save, undo, redo on the left corner and minimize, maximize and close buttons on

the right corner of the title bar.

 Quick Access Toolbar

It appears just below to the ribbon in power point window. Quick Access Toolbar is used to

place all the most frequently used commands inside it. It can be customized according to the

requirement of the user.[4]

 Slide

It is the working area of power point presentation or the place where the information is

represented of displayed. User can make the presentation by adding different layout or

pictures, text boxes in this section of the window. It can be viewed as portrait or landscape as

per the requirement.

Figure: 6.2 Power Point Presentation and parts of the window

 Slide Pane

Slide pane displays all the slides in sequence in the form of small icons for every slide. User

can add or delete slides in this slide pane. The slides can also be rearranges here.

6.1.2 Creating Presentation

When Power Point window will open then by default a slide appears as shown in Figure 6.2.

This slide has two placeholders or text boxes. Additional text boxes can be added from the

Insert tab. To start creating presentation just click on “Click to add title” (title placeholder) or

text box a blinking cursor will appear. Click once on “click to add subtitle” and add the

subtitle of the slide or the other information that you want to present. You can also add table,

image or graph in the subtitle box. But if you need to create more new presentation then

follow the steps:

69

 Click the File tab to view new button that is available under the backstage view of

File Tab, further click on new button then consequently window shown in Figure 6.3

will be displayed.

 The user can take any of the templates shown on the screen or can search for a

specific template from search bar to find something more specific or click on the

Blank Presentation.

Figure: 6.3 Creating a New presentation in Power Point

6.1.3 Saving the Power Point Presentation

Power Point has two ways to save the presentation Save and Save as. These two options have

similar operation but there is a significant difference also:

Save: When you create a presentation, then save command is used to save the changes which

you have done. Save option is used to choose a file name and its location the first time. Then,

click on the Save command to save it with the same name and same location.

Save As: This command is used to create a copy of the presentation at new location while

keeping the original file as it is. By using Save As, You can select a different name and/or

different location for the copied version.

Once you have finished the power point presentation and want to save it for future use then

click on the File button in the menu bar. Then this Figure 6.4 will appear to you and click on

the save or save as button and select the location from the given options such as computer,

OneDrive or the other place by clicking on add a place.

Figure: 6.4 Saving a Power Point Presentation using Save As

Steps to Save a Presentation:

1. Save command is selected from the file menu or from the Quick Access Toolbar.

2. The dialog box will appear to you, where you can select the location to save the file

along with the name of the file to be filled in the text box.

3. The Save As dialog box will displays as shown in Figure 6.5.

4. After clicking the save button the presentation will be saved.

70

5. The key combination of Ctrl+S will also perform the same function as save option.

Figure: 6.5 Saving a presentation

6.1.4 Entering and Editing Text

Power Point allows users to enter text to the slide or to the text box also. The entered text can

be arranged or displayed in desirable font, style, size and colour.

The new text can be added to the slide by clicking the tile box or subtitle box and then cursor

will appear.

 The default text shown in the content box will automatically disappear.

 The added text initially follows the default formatting but latter the user can change

the font or style.

 If you want to edit the text that has been entered previously then click in the text box

or the placeholder box and change the text.

 Figure: 6.6 Entering and Editing the Text

6.1.4.1 Font Formatting

It is the part of editing and entering text in a slide to make it more presentable. It can be

modified using formatting toolbar. It includes different tasks:

 Font: It is used to change the style of the Font.

 Font Size: Font Size can be selected from the size box.

 Text appearance: It helps to change the appearance of text either in Bold, Italic or

Underline etc.

Steps to edit the font setting using Format Menu.

 Select the text which you need to format

 Click the „Format‟ menu from the Menu bar and select the font. The Font dialog

box will be appeared

 Choose the appropriate option from the dialog box like font size, type of font, font

style etc.

 Click on OK to obtain the result after formatting

71

6.1.4.2 Change Case

It is also used for editing the text in case of changing the case of letters either Capital to

Small or Small to Capital.

Steps to change the Case

 Select the Format from Menu bar

 Select Change Case from the drop down Menu

 Select appropriate case from the options like Sentence Case, Lowercase, Uppercase,

Title Case and Toggle Case.

 Click on OK.

6.1.4.3 Inserting and Deleting Slides in a Presentation

By default, the presentation contains only one slide at the beginning. The user can insert any

number slides as per the requirement. The following steps are taken to add a new slide in

power point:

 Firstly, click on the Home tab, then further click on the small arrow on the New Slide

command from the ribbon.

 The power point will ask you to choose the slide layout from the shown layouts and

choose the slide as per the requirement.

 After selecting a slide layout then a new slide will be shown as below. Click any

placeholder and enter the new text.

72

Delete slides: To delete a slide from your presentation if the slide is no more required. You

have to choose the slide from the slide pane appearing on the left side the power point

window, then press the Backspace key or Delete on your keyboard to delete the slide.

6.2 INSERTING WORD TABLE

A table is a collection of cells organized in the form of rows and columns. The tables are used

for variety of tasks for presenting textual information and numerical data. To insert a table in

power point presentation, follow the steps:

 Click on the Insert tab and then choose the Table command.

 Select the desirable number of rows and column that you want to take in a table. The

example below is showing a table with six rows and six columns (6x6) is inserted:

 The table is created now and will be displayed on the current slide.

 Click inside any of the cell in the table and add text to it.

73

6.2.1 Add a Row or Column to a Table

A new row or column can be added to table once it is created. The following are the steps to

insert new row or columns:

 Click a cell adjacent to which a new row or column is required.

 Click the Layout tab or right click in the cell.

 Search the Rows & Columns group from the ribbon. Then, select the options from

given in the ribbon like to insert a new row, select any of the option either Insert

Below or Insert Above. To insert a new column, select any of the option like

Insert Left or Insert Right.

 After that a new row or column will be added to the table

6.2.2 To Delete a Row or Column from a Table

 Any row or column can be deleted. Choose the blank row at the bottom of the

table as shown in the figure below.

 Click Layout tab under the Rows and Columns group on the ribbon, click the

Delete command, which will ask you to select delete columns, delete rows or

delete table options.

 The select row or column is deleted after selecting the delete option from the

menu.

6.3 Inserting Spreadsheet Worksheet into Power Point

Using the Insert Object tool, insert data from your Excel spreadsheet as an object. This will

add the contents of the most recently accessed worksheet into PowerPoint to view. To insert

Excel spreadsheet, follow the steps:

 To start, open your PowerPoint presentation and press the Insert tab on the ribbon

bar.

74

 To insert your Excel data, click the Object button. This may appear as a large or small

icon, depending on your current screen resolution and the size of the PowerPoint

window.

 This will open an insert object dialogue box. To add your Excel data, press the Create

from file radio button, then press Browse to find and select your Excel spreadsheet.

 To add your data to PowerPoint, press the OK button. The data will be inserted as an

object onto your PowerPoint slide, which you can then resize and manipulate.

 By double clicking the table any required can be made to the spreadsheet data.

6.3.1 Adding Pictures and Other Objects

Objects are any element that can be added in PowerPoint. A text label is an object. An image

is an object. Graphs and charts are objects. Any element within a slideshow is an object.

Since any addition to a slide is considered an object, there are numerous options in the

"Insert" tab.

 Click on the Insert tab, which will display all insert options such as Pictures, online

pictures, screenshot and photo album.

75

 After clicking on the picture button, a dialog box will be display as shown below.

Then choose the desired picture and press Insert button.

 The selected picture will appear on the current slide.

6.3.2 Inserting Video Clips

Video Clips add the liveliness to the presentation. It allows to insert a video into the slide and

can be played it during presentation.

Steps to insert a Video Clip:

 Select the Insert Tab and Click on the Video drop down arrow from the Media

Group and Select Video on My PC option.

 The Insert Video dialog box will be used to locate and select the desired

video file, then click on the insert option.

 Format and Playback tabs under Video Tools can be used to Insert a Video

by clicking on the Format Tab.

 Click on the Play button present at the extreme left of the ribbon.

6.3.3 Running a Slide Show

Once the presentation is finished then it is ready to run and slide show to its audiences. To

run the slide show, follow the steps:

76

 Select the Start button icon from the Quick Access Toolbar and slide show of the

presentation will appear or other way to run slide show is from your keyboard by

pressing the F5 key from the function keys available on the top of the keyboard.

 The slide show will provide you full-screen mode of your presentation.

 By clicking the mouse or pressing the spacebar from the keyboard will help to move

to next slide.

 The arrow keys of the keyboard help to move the slide forward or backward for the

presentation.

 To exit presentation mode the Esc key, need to be pressed from the keyboard.

6.3.4 Transition and Slide Timings

You can add special effect between each slide of your PowerPoint presentation, by using

the feature slide transitions. A transition is a special visual effect that make the slide show

attractive and eye-catching. By default, there is no transition effect on the slide. It can be

added to the presentation in the following manner:

To apply a transition

 Choose the particular slide from the Slide Navigation pane to apply transition. The

slide shown below will appear after the transition.

 Click the Transitions tab from the menu tab of power point, then explore the

transition effects from “Transition to This Slide group”. By default, none is selected

to each slide.

 All the transition effects can be explored by clicking the more drop-down arrow.

 Select the transition from the group to apply on the selected slide. It would be useful

to automatically preview the transition.

77

 If you want to apply the transition effect to all the slides then go to ribbon in right

corner, look into the Timing group click on the “Apply To All” option and then

same transition effect will be applied to all slides of your presentation.

6.3.5 Automating the Slide Show

 Go to the Slide Show tab in the menu bar, then click on Set Up Slide Show button to

automate the slide show.

 The Set Up Show dialog box will be display to you and you need to select the relevant

options from Show type, Show options, Show slides, Advance slides and Multiple show

monitors for the presentation and click Ok.

 Click on “Transitions” tab from the menu bar.

 Then go to “Advance Slide” area and select check box option “After”, setup the

elapse time for the presentation to advance to the next slide.

78

6.4 Summary

 The presentation can be created, saved and edited using various features.

 Power point has the ability to import data from other applications like Word,

Excel and other applications.

 Other objects like Video clips, Pictures and Audio Clips can be added.

 Slide Show can be seen by pressing F5 or Slide Show option.

 Transition effects can be appeared during the slide show.

 Slide Transition Time is the Time during which the Slide will be active. It can

be set by using Transitions Tab.

6.5 PRACTICAL EXERCISE

Q: 1 Make a presentation of 3 slides to describe yourself with different layouts (e.g.,

use title and content layout). Use automatic slide advancement effect by 5 seconds.

Q: 2 Create a presentation with 5 slides on the topic “Basics of Computer”. Add

picture, change background colour for each slide and change the design theme of your

presentation.

Q: 3 Make slides with your introduction and academic qualification and insert your

picture at right side. Insert the current date and time in the footer and slide number.

Q: 4 Prepare a presentation with animation and transition for any organization with

minimum five slides using facet design theme.

Q: 5 Make table of 5 rows and 2 columns and insert the following data on the first slide

and colour the table of your choice.

Items Sales (Amount)

Apple 12000

Mango 10000

Grapes 20000

Orange 15000

Multiple Choice Questions:

Q 1: Which of the following tool enables you to add text to a slide without using the

standard placeholders [19]?

A. Text tool

B. Line tool

C. Drawing tool

D. Auto shapes tool

79

Q 2: What happens if you edited an image inserted in PowerPoint?

A. The original file which was inserted is not modified

B. The original file that was inserted is changed

C. The original file is modified when you save presentation

D. None of above

Q3: What happens if you select first and second slide and then click on New Slide

button on toolbar?

A. A new slide is being inserted as the first slide in presentation

B. A new slide is inserted as the second slide in presentation

C. A new slide is inserted as the third slide in presentation

D. None of above

Q4: In a presentation of PowerPoint, the special effects used to introduce slides are

known as -

A. Custom Animation

B. Transitions

C. Annotations

D. None of the above

Q5: Which of the following shortcut key is used to start the slideshow?

A. Using F5 key

B. Using F3 key

C. Using F1 key

D. Using F6 key

Q6: Which of the following is the default standard layout in PowerPoint?

A. Blank slide

B. Title and content slide

C. Title slide

D. None of the above

Q7: Which of the following fill effects can be used to fill the background of the slide?

A. Picture

B. Gradient

C. Texture

D. All of the above

Q8: Which of the following option is correct to insert the chart as part of the

PowerPoint presentation?

80

A. Insert -> Chart

B. Edit -> Chart

C. View -> Chart

D. All of the above

Q9: Which of the following are the uses of the PowerPoint presentation?

A. It can be used for project presentations

B. Communication of planning

C. Used to represent the data in an attractive way

D. All of the above

Q10: Is it possible to convert a PowerPoint presentation into a video?

A. Yes

B. No

C. May be

D. Can't say

81

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT VII: USING SPREADSHEET STATISTICAL FUNCTIONS

STRUCTURE

7.0 Objectives

7.1 Introduction

7.2 Statistical Functions

 7.2.1 SUM()

 7.2.2 COUNT()

 7.2.3 AVERAGE()

 7.2.4 PRODUCT()

 7.2.5 POWER()

 7.2.6 SQRT()

 7.2.7 MAXIMUM and MINIMUM

 7.2.8 MEDAIN

 7.2.9 MODE()

 7.2.10 STDEV.S()

 7.2.11 ABS()

 7.2.12 QUARTILE

 7.2.13 PERCENTILE

 7.3.14 COUNTA and COUNTBLANK

 7.2.15 CORREL

 7.2.16 LOGICAL OPERATIONS (IF, AVERAGEIF, SUMIF, COUNTIF)

 7.2.17 SUMIF ()

 7.2.18 COUNTIF ()

7.3 Summary

7.4 Practice Questions

82

7.0 OBJECTIVES

 To know about the Mathematical Functions such as COUNT, SUM, AVERGAE,

PRODUCT, POWER and SQRT functions

 To use the MAX and MIN functions to calculate the highest and lowest values

from a set of cells.

 To learn about copy and paste formulas without formats applied to a cell location.

 To implement various Statistical Functions like MODE, MEDIAN, and MEAN etc.

 To design and implement Logical Functions like IF, COUNTIF, SUMIF etc.

7.1 INTRODUCTION

A spreadsheet is an electronic graph sheet that divided into rows and columns and can help

arrange, calculate and sort data. The width of the rows and columns can be changed

according to the user‟s choice. The rows are marked with positive integers like 1 and columns

are marked with Alphabets like A. The rectangular boxes formed by the intersection of rows

and columns is known as cell. MS-EXCEL has 256 columns and 65536 rows in one

workbook. There are three worksheets per one workbook by default. Data can be represented

in numeric values, text, functions, formulas and references [15].

To analyze the data in MS-EXCEL, statistical functions can be used. This chapter will help

you to understand the meaning of the basic statistical functions.

7.2 STATISTICAL FUNCTIONS

There are many statistical functions like sum, count, median, mode, standard deviation, etc.,

are present in the MS Excel. It can also implement the logical operations like if, average if,

sumif, etc.

The following points needs to be take care while writing the format of a user defined function

 Each Function must start with „equal to‟ (=) sign

 Round braces are used to indicate the opening and closing of the function.

 Arguments are written within the parenthesis

 Commas can be used to separate the different arguments.

Example: The basic syntax of the function is shown below:

 Syntax=Function Name (Argument)

=SUM ((B3:H3)), 50, 90)

This function will sum the values from cells B3 to H3 along with the constants 50 and 90.

Statistical functions are used to analyze the statistical data. The results can also be

represented into Graphical or Pictorial form. To implement all these functions, this module

has used MS Excel 2016. Some of the statistical functions are shown below using Employee

Database as shown in Figure 7.1.

83

Figure 4.1: Employee Database

7.2.1 SUM()

Sum is a predefined function in the MS Excel. This function calculates the sum of the

numerical values present in the range of cells mentioned in the argument. The formula for

sum is =SUM (number1, [number2],..). For a range of cell, argument can be given as shown

in Figure 7.2.

Example- Find the sum of salary of all employee.

Result- =SUM (J4:J10)

 = 136000/-

Figure 7.2: Sum of Salary

7.2.2 COUNT()

During entries in the worksheet, it becomes difficult to recall the number of entries which we

have made in the worksheet. The Count function helps to count the number of cells within a

range of cells. An implementation can be seen in Figure 7.3, for Count the number of

employee in the company. The Syntax and example is written below:

Syntax: COUNT (cell_1:cell_n).

 =COUNT (J4:J10)

 Answer = 7

84

Figure 7.3: Counting the number of employees

If the user wants to count the number of entries without using cell references, then it could be

written as:

=COUNT (23, 24, 67, 78, 89, 90)

The result will be 6

=COUNT (“23”, 24, 67,78)

The result will be 4, as the text value is converted into numeric by default

7.2.3 AVERAGE()

This function calculates the average of the numbers specified in the argument. The formula to

calculate average is =AVERAGE (number1, [number2],).

Example: Find the average salary among all the employees of the company.

The result can be seen in Figure 7.4.

Syntax=AVERAGE (number 1, number2----)

Suppose you need to find out the average from J4 to J10 cell range, then it will be

calculated =AVERAGE (J4:J10)

=19428.57/-

Figure 7.4: Average Function

85

7.2.4 PRODUCT()

The PRODUCT function is inbuilt function multiplies the numbers and returns the product as

the output.

Syntax: PRODUCT(3,4,10), it returns the 120

Where Argument type : Number and return type is number

=PRODUCT(“4”,5, 3), the answer will be 60, it will take by default as number.

7.2.5 POWER()

The Power function will take two values of the specified cells for numeric constants, in the

syntax first value defines the number and second value as a power. It returns the results as the

power of a number.

Syntax=POWER(number, power)

Example1=POWER(2,3), Example2=POWER(“2”,3)

Answer will be 8 for both the examples, it will also take as numeric as a default argument.

7.2.6 SQRT()

This function will displays the square root of the positive number and returns the positive

number. The square root of negative number cannot be evaluated.

Syntax=SQRT(number)

Example1=SQRT(64), result will be 8

Example2=SQRT(“100”), results will be 10

7.2.7 MAXIMUM and MINIMUM

To find maximum and minimum value from a given set of values, MAX and MIN function

can be used respectively. See Figure 7.5 for its implementation.

 Syntax: Max(Number1,Number2,-------), Syntax of Min=Min(Number1, Number2----)

 Here return type: Number, Argument Type=Number

Example: Find the maximum and minimum salary given to the employee.

Result: =MAX(E4:E10) =MIN(E4:E10)

 =31000/- =13000/-

86

Figure 7.5: Maximum and Minimum Function

If the user write it in the constant form like =MAX(“78”,34,37,29), It will returns 78

because it will consider every argument as the constant term. MIN(“78”,34,37,29), it will

return 29 similarly it will also take every argument as the constant.

7.2.8 MEDIAN()

The median is the central score for a set of data that has been arranged in order of magnitude.

which is less affected by outliers and skewed data. In order to calculate the median, suppose

we have the data below: The median function finds the median of the numbers passed as an

argument.

The syntax for median function is =MEDIAN(number1, [number2],…..)

Example: Find the median salary from the employee data.(see Figure 7.6)

Result: =MEDIAN(E4:E10)

 =19000/-

Figure 7.6: Median Function

7.2.9 MODE()

Mode function calculates the most frequently occurring value from the given set of

arguments.

87

The syntax for mode function is =MODE(number1, [number2],…..).

Example:- Find the mode value of the salary column of the employee data.

Result: =MODE(E4:E10)

 =19000/-

Figure 7.7: Mode Function

7.2.10 STDEV.S ()

It estimates the standard deviation of the numbers give as an argument. If the arguments

consist logical values or text then STDEV.S ignores them. Its implementation can be seen in

Figure 7.8.

The syntan of this function is =STDEV.S(number1, [number2],…..).

Example:- Find the standard deviation of the employee data

Result: =STDEV(E4:E10)

 =6373.307

Figure 7.8: Standard Deviation Function

7.2.11 ABS()

ABS function finds the absolute value of a number. It returns a positive number if any

number is passed as an argument. Its syntax is =ABS(number).

Example: Find the product, square root and absolute value of the data given in Figure 7.9

88

Figure 7.9: Product, Square root and Absolute function

7.2.12 QUARTILE()

Quartile function returns the quartile of a given set of values. It can return first quartile,

second quartile, third quartile, maximum value and minimum value.

Syntax: =QUARTILE.INC(array, quart)

If quart=0, then returns minimum value

If quart=1, then returns 1
st
 Quartile

If quart=2, then returns 2
nd

 Quartile

If quart=3, then returns 3
rd

 Quartile

If quart=4, then returns maximum value

Example: Find the first, second, third quartile of student marks as shown in Figure 7.10

Figure 7.10: Quartile function

7.2.13 PERCENTILE()

This function calculates the kth percentile for the given set of arguments. The syntax for this

function is =PERCENTILE.INC(array,k_value)

Example: Find the 90
th

 percentile, 80
th

 percentile, 70
th

 percentile, 60
th

 percentile, 50
th

percentile of the student marks shown in Figure 7.11.

89

Figure 7.11: Percentile function

7.2.14 COUNTA and COUNTBLANK()

COUNTA function counts the non-empty cells from the given set of arguments. It means it

will count numbers, text, logical values, etc. Whereas COUNTBLAK counts the empty or

blank cell from the provided cell range in the argument.

Syntax: =COUNTA(value1,[value2],…)

 =COUNTBLANK(value1,[value2],…)

Example: Count the non-empty cell from the data given in figure 7.1. Also count the empty

cell from the given data

Figure 7.12: COUNTA and COUNTBLANK function

90

7.2.15 CORREL()

It calculates the correlation coefficient of the two given dataset or array.

Syntax: =CORREL(array1, array2)

Example: Find the correlation coefficient of the dataset given in figure 7.13

Figure 7.13: CORREL Function

7.2.16 LOGICAL OPERATIONS(IF, AVERAGEIF, SUMIF, COUNTIF)

IF is a logical operation that returns a value depending on the TRUE or FALSE result. The

syntax of this operation is =IF (logical_test, [value_if_true], [value_if_false]).

Example: Calculate the result as PASS or FAIL of student data as shown in figure 7.14.

Student will pass the examination only if marks is greater than 60.

Result:

Figure 7.14: IF Function

AverageIf operation calculates the average of the given set of values depending on the given

condition or criteria.

Syntax: =AVERAGEIF(array1,criteria,[array2],…)

91

Example: Find the average marks among students whose marks are greater than 50. See

figure 7.15

Figure 7.15: AVERAGEIF Function

7.2.17 SUMIF()

It is also a conditional function SumIf function is used to add up the range of cells satisfying

the conditions given by the user, condition is to be represented in double quotes. The syntax

below shows to calculate the sum of the given set of values depending on the given criteria.

Syntax: =SUMIF(array1,criteria,[array2],…)

Example1=SUMIF(A3:A10,”=Bob”,B2:B10),

It will answer the sum of marks whose name is Bob, answer for this example will be 57 only,

because only one value is there for only Bob.

Example2: Find the sum of the marks among students whose marks are greater than 65. See

Figure 7.16

Figure 7.16: SUMIF Function

92

7.2.18 COUNTIF()

CountIf() operation counts the cell from the given set of values depending on the given

condition.

Syntax: =COUNTIF(range of the values, “condition”)

Example=COUNTIF(B3:B10,”>75”)

Return Type: Number

Example: Find the number of students having marks greater than 75. See Figure 7.17

Figure 7.17: COUNTIF Function

7.3 SUMMARY

 Built in Functions are Pre-designed formulas in Excel to perform both simple and

complex functions. Built in Functions include Mathematical/Statistical and Logical

Functions etc.

 Statistical Functions SUM() is used to find the total of all the values

 AVERAGE(): To find the arithmetic mean of group of numbers

 PRODUCT(): To multiply given set of cell locations.

 POWER(): To calculate the raise to the power of any number

 SQRT(): The Positive Square root of a number

 MAX(), MIN(): To find the highest and minimum value from a set of cells

 MEDIAN(): To find the central number from a group of numbers

 MODE():To find the number which is frequently occurs from a set of numbers

 STDEV.S(): This function is for a set of numbers based on a sample.

 ABS(): Absolute value of any number.

 QUARTILE(),PERCENTILE()

 COUNTA(), COUNTBLANK(), COUNT() are used to quickly count the number of

items in a list.

 LOGICAL FUNCTIONS:SUMIF(), AVERAGEIF(), COUNTIF() are used to apply

the functions based on the condition.

 7.4 PRACTICE EXERCISE

 Q1. Differentiate between the following:

 Max() and Min() Functions

 SUMIF() and COUNTIF()

93

 MEDIAN and MODE

 SUM and COUNT

 COUNTA and COUNTBLANK

Q2. Calculate the average, mode, standard deviation of the data given below:

 Quarter 1 Quarter

2

Quarter

3

January

$400 $200 $350

 April $340 $140 $405

 June $107 $98 $55

Q3. The following data shows the inventory figures for 100-gallon tanks at something‟s

Fishy

 Something's Fishy

 100-Gallon Fish Tanks Inventory

 Amount

2-Jan Beginning

Inventory

24 Units @ $30.00 ?

14-May Purchase 20 Units @ $34.50 ?

10-Jul Purchase 33 Units @ $36.70 ?

2-Aug Purchase 33 Units @ $49.75 ?

Fish tanks available for

sale

? Cost of tanks available for

sale

 ?

 Enter the data into Excel in the same format and Find the amount for each date

 Calculate the cost of tanks available for each date

 How many total tanks are available for the sale?

Q4. Enter the data of 20 students for five subjects like Maths, Chemistry, Biology, English

and Hindi. Enetr the marks of each student out of 100. Find the student who scores first

division using logical functions by using conditions If total marks>=60, print a message

”First Division” Else IF Marks>50 Print:” Second Divison, Else IF marks>40, PRINT:

Third Divison, Else PRINT ”FAIL”

Q5. Use Logical operations to calculate the following

94

Sales ($ millions)

Quart. 1 500

Quart. 2 350

Quart. 3 495

Quart. 4 620

Which quarter

is the better?

Find the

maximum and

minimum sales

Compare

through logical

if

MCQ Based Questions

1. _______________ Function in Excel tells how many numeric entries are there.

a) COUNT

b) SUM

c) NUM

d) CHKNUM

2. Which is not a Function in MS Excel?

a) SUM

b) AVG

c) MAX

d) MIN

3. Functions in MS Excel must begin with ___

a) An () sign

b) An Equal Sign

c) A Plus Sign

d) A > Sign

4. Which function in Excel checks whether a condition is true or not ?

a) SUM

b) AVERAGE

c) COUNT

d) IF

https://www.onlineinterviewquestions.com/ms-excel-mcq/#collapseUnfiled20
https://www.onlineinterviewquestions.com/ms-excel-mcq/#collapseUnfiled20

95

5. Which of the following formulas is not entered correctly?

a) =10+50

b) =B7*B1

c) =B7+14

d) 10+50

6. Which of the following formulas will Excel Not be able to calculate?

a) SUM(Sales)-A3

b) SUM(A1:A5)*.5

c) SUM(A1:A5)/(10-10)

d) SUM(A1:A5)-10

7. Which function will be performed first in this formula?

=IF(SUM(C2:C4)>500,"Yes","No")

a) IF

b) SUM

Q8.Statistical calculations and preparation of tables and graphs can be done using

a) Adobe Photoshop b) Excel c) Notepad d) PowerPoint

Q9.Which function is used to count the cells using condition

a) SUMIF()

b) COUNT ()

c) COUNTIF ()

d. None of these

Q10.____Function is used to find the frequently used data

a) Mode ()

b)Median()

c) STDEV.S()

d) MEAN()

96

B.Sc.(DATA SCIENCE)

SEMESTER-I

FUNDAMENTAL OF IT

UNIT VIII: FORMAT TEXT BY USING FUNCTIONS

STRUCTURE

8.0 Objectives

8.1 Formatting Text

 8.1.1 Using UPPER, LOWER and PROPER

 8.1.2 Using LEFT, RIGHT and MID

 8.1.3 Using CONCATENATE

 8.1.4 Pivot Table

 8.1.5 Charts

 8.1.5.1 Bar or Column Chart

 8.1.5.2 Line Chart

 8.1.5.3 Area Chart

 8.1.5.4 Hierarchy Chart

 8.1.5.5 Pie Chart

 8.1.5.6 Doughnut Chart

 8.1.5.7 Statistic Chart

 8.1.5.8 Scatter or Bubble Chart

 8.1.5.9 Combo Chart

 8.1.6 Data Cleaning

 8.1.6.1 Removing Duplicate Values

 8.1.6.2 Parse Data using Text to Column

8.2 Summary

8.3 Practice Question

97

8.0 OBJECTIVES

 To know about various functions like Right, Left and Mid etc.

 To implement the text formatting using various functions such as Upper, Lower

Proper, and Concatenate etc.

 To create various charts like Pie chart, Area Chart, Bar Chart, Line chart etc.

 To generate the pivot tables

 To remove the duplicate values from the file

8.1 FORMATTING TEXT

To create a proper spreadsheet in Excel, there is a need to do formatting of the text of the

cells. There are some functions which can be used to format the text of the cell. These

functions have been implemented using MS EXCEL 2016. UPPER, LOWER, PROPER,

LEFT, RIGHT, MIDDLE, CONCATENATE, etc. are such functions to format the text.

8.1.1 Using UPPER, LOWER and PROPER

UPPER function is used to change the characters of text to capitals. LOWER function will

change the text to lower case. PROPER function changes only the first character of each

word to capital and rest of the characters to lower case. If a text contains numbers,

punctuation or special characters then these are not affected by UPPER, LOWER or

PROPER function[18].

Syntax of each function is given below: -

 =UPPER(text)

 =LOWER(text)

 =PROPER(text)

Here, argument text will be a cell number that contains a text. See the example shown in

figure 8.1

Figure 8.1: UPPER, LOWER and PROPER Function

98

Functions applied on row 2 are as follows:

 Cell B2: =UPPER(A2)

 Cell C2: =LOWER(A2)

 Cell D2: =PROPER(A2)

8.1.2 Using LEFT, RIGHT and MID

Some functions are used to retrieve the characters or substring from a given text. A text can

contain characters, numbers, special characters, punctuations and spaces. Such functions are

given below:

 LEFT function retrieves a specific number of characters from left side of a given text.

Syntax: =LEFT(text, [num_chars])

 RIGHT function retrieves a specific number of characters from right side of a given

text. Syntax: =RIGHT(text, [num_chars])

 MID function retrieves a specific number of characters from the middle of a given

text. Syntax: =MID(text, start_num, [num_chars])

Here,

 text will be a cell number.

 num_chars is the number of characters to be retrieved.

 start_num is the starting position of the characters to be retrieved.

An Example is given in the figure 8.2. In this example text is given in cell A1. Value of

num_chars is 8 and start char is 3.

Figure 8.2: LEFT, RIGHT, MID Function

8.1.3 CONCATENATE

CONCATENATE function joins the several text strings into one text string. The syntax of

the function is =CONCATENATE (text1, [text2], [text3],.).

Here, text can be a string or a cell number. A string will be represented within double quotes

(“”) as shown in the example given in the figure 8.3.

99

Figure 8.3: CONCATENATE Function

8.1.4 Pivot Table

Pivot table is the most useful tool of the MS-Excel. It allows us to extract the information

from a large, complex and detailed dataset. It arranges and summarize the complex dataset.

To implement this, an employee dataset is used as shown in figure 8.4 having 12317 rows.

Figure 8.4: Employee Dataset

Steps to create a pivot table is shown below: -

1. In Insert tab, click on the Pivot Table option as shown in Figure 8.5. A new window will

appear. In this, first option is to select the table or range. Second option is to create pivot

table on new worksheet or existing one. Select the appropriate option and click on OK.

100

Figure 8.5: Step-1 to Create Pivot Table

2. After this, new page will appear as shown in figure 8.6. Here, firstly select the fields to

include in the pivot table, then apply filters on it. According to the fields selected and

filters applied pivot table will be created.

Figure 8.5: Step-2 to Create Pivot Table

8.1.5 Charts

A chart is a visual representation of data present in both rows and columns. It analyze the

pattern and trends in the data sets. The dataset shown in figure 8.6 is used to prepare the chart

[9].

Figure 8.6: Dataset to create the charts

101

In Figure 8.7, some steps are mentioned that must be followed to create a chart:

1. Select the data to represent in the graph.

2. Click on the insert tab.

3. Select the appropriate chart type.

Figure 8.7: Creating a chart

There are various types chart available in MS-Excel 2016 version and that are:

 Bar or Column Chart

 Line Chart

 Area Chart

 Hierarchy Chart

 Pie Chart

 Doughnut Chart

 Statistical Chart

 Scatter or Bubble Chart

 Combo Chart

8.1.5.1 Bar or Column Chart

Bar chart is used to compare the values according to the categories. It is used when the order

of the categories doesn‟t matter. It is also known as column chart. An Example of Bar Chart

is shown in figure 8.8.

102

Figure 8.8: Bar or Column Chart

8.1.5.2 Line Chart

It shows the trends over categories or time (years, months, days). It represents the chart in the

form of line. Each line has many data points as shown in Figure 8.9.

 Figure 8.9: Line Chart

8.1.5.3 Area Chart

It represents the chart in the form of area in 2-D or 3-D. It shows the trends over categories or

time (years, months, days). An example of the Area chart is shown in Figure 8.10.

Figure 8.10: Area Chart

103

8.1.5.4 Hierarchy Chart

It represents the values of the dataset in hierarchical level. There are two ways to represent

the chart in hierarchy, Treemap and Sunburst. Treemap will show the proportion within the

hierarchical level as rectangles whereas Sunburst shows the proportion as rings. Its

implementation can be seen in Figure 8.11

Figure 8.11: Hierarchy Chart (Treemap and Sunburst)

8.1.5.5 Pie Chart

This type of chart represents the whole dataset in the form of proportion. Each proportion will

represent the category of the dataset. It can be represented in 2-D and 3-D. A 2-D

representation of the pie chart is shown in Figure 8.12.

Figure 8.12: Pie Chart (2-D)

8.1.5.6 Doughnut Chart

This chart type is similar to Pie chart. But here, chart is represented in the form of doughnut.

It is used when multiple series are present in the dataset. An example is shown in Figure 8.13.

104

Figure 8.13: Doughnut Chart

8.1.5.7 Statistic Chart

This chart type shows the statistical analysis of the data values. An example of company

production in the year 2016 is shown in Figure 8.14.

Figure 8.14: Statistic Chart

8.1.5.8 Scatter or Bubble Chart

Scatter chart compares the set of value and shows their relationship. It is also known as

bubble chart. Year wise relationship between the values is shown in Figure 8.15.

105

Figure 8.15: Scatter Chart

8.1.5.9 Combo Chart

Combo chart will combine various types if chart to highlight different information. It can be

customized. Any type of chart can be chose to make a combo chart. It is used when the range

of values varies widely or mixed type of data is present in the dataset. A combination of line

and column chart is shown in the Figure 8.16.

Figure 8.16: Combo Chart

8.1.6 Data Cleaning

In Excel analysis of various data values is performed. But there are many things that can go

wrong while creating a spreadsheet like improper cases, misspelled words, duplicate data,

unwanted spaces, etc. In this section, numerous ways to remove these errors will be

discussed.

8.1.6.1 Removing Duplicate Values

This method is used to deal with the duplicate data present in the dataset. There are two

actions, which can be taken on duplicate data: -

 Highlight the duplicate data

 Remove the duplicate data

The steps that must be followed to highlight the duplicate data is shown in Figure 8.17.

1. Select the data to check for duplicity.

2. In Home tab, click on the Conditional Formatting.

106

3. In Conditional formatting, click on the Highlight Cells Rules.

4. After this, click on the Duplicate Values.

Figure 8.17: Steps to Highlight Duplicate Data

After performing these steps, the duplicate data in the spreadsheet gets highlighted in red as

shown in figure 8.18.

Figure 8.18: Highlighting Duplicate Data

Duplicate data can be removed following the step given below: -

1. Select the data to check for duplicity.

2. In Data tab, click on the Remove Duplicates.

3. Then, a window will appear where one or more than column can be selected to delete the

duplicate data.

4. After selecting columns, click on OK button. (See the figure 8.19)

Figure 8.19: Steps to Remove Duplicate Data

The result of the above steps performed is given in the Figure 8.20.

107

Figure 8.20: Removing Duplicate Data

8.1.6.2 Parse Data using Text to Column

This method converts the selected text into columns on the basis of delimiter or fixed length.

It will parse the text and separate the data on the basis of spaces, delimiter like tab, semicolon

(;), comma (,), etc. Following steps must be followed to convert the text into columns:

1. Select the text to convert it into columns. Then go to Data tab and click on Text to

Columns. A window box will appear as shown in figure 8.21. Here the type of separator

is selected. Select Delimited for, tap, commas, etc. and Fixed width for space. After

choosing one of the options, click on Next.

Figure 8.21: Step 1 of conversion

2. After performing step 1, a window will appear showing the preview of the conversion. It

can be seen in Figure 8.22. Click on Next to go to the 3
rd

 step of the conversion.

Figure 8.22: Step 2 of conversion

3. This step allows us to format each column or cell going to be formed. See the Figure 8.23.

After performing the desired formatting, click on Finish.

108

Figure 8.23: Step 3 of conversion

4. Figure 8.24. Shows the conversion of the selected text into columns.

Figure 8.24: Conversion of text to columns

8.2 SUMMARY

 To convert lower case to Upper Case and Upper Case to Lower Case various inbuilt

functions has discussed like UPPER, LOWER and PROPER etc.

 To retrieve a specific number of characters from the LEFT, RIGHT or MIDDLE,

various functions like MID, LEFT, RIGHT are used.

 Pivot table is the most useful tool allows us to extract the information from a large,

complex and detailed dataset.

 Concatenate function is used to merge two or more than two strings.

 Insert Chart option is used to add any type of Chart like Line, Bar, Area chart etc.

 Data can be cleaned by removing duplicate values from the sheet.

8.3 PRACTICE QUESTIONS

1. A Travel Agent table is shown below:

109

Design a pivot table using above data, then by using filters, to view the average prices of

holidays that have either Travel Method of Plane or a Resort Name that starts with the

letter G.

2. A list of UK rides is shown in table below:

Open the spreadsheet in the folder above:

Change this data into a pivot table and calculate the overall average speed for taking all rides

that satisfy the following conditions:

 The Type should be Steel

 The Design is to be Sit Down

 The Amusement Park has the word towers somewhere in the title

3. A property portfolio is given below in the table:

Design a pivot table for the property portfolio to display:

 The asking price as the value in the field;

 The type of property to be in the rows;

 The location is to be in the columns;

 The remaining fields is to be in the filter area.

110

Convert the filters and aggregate functions to display a count of properties that have:

 4 bedrooms;

 A medium garden; and

 3 bathrooms.

4. Prepare a line chart and pie chart to compare the favorite films data for 26-40 years old

only.

5. Design a column 2-D chart of the data given below: -

Multiple Choice Questions

Q1. For the formula, which symbol used to specify the fixed rows or columns?

a. $

b.;

c. %

d. None of these

Q2. The function which is used within another function is called:

a. SUM Function

b. Nested Function

c. Text Function

d. All of these

 Q3.. ___________Formatting is used to delete duplicate values

111

 a. Conditional Formatting

 b. text Formatting

 c. Page Formatting

 d. All of these

 Q4.____________ function is used to extract the characters from the left

 a. LEFT

 b.. RIGHT

 c. M IDDLE

 d. None of these

 Q5. Which is the visual representation of data in Excel file

 a. Graphs

 b. Pie Charts

 c. Lines

 d. None of these

REFERENCES

1. https://www.slideshare.net/ravimishra155/word-excel-pp

2. http://www.tissa.co.za/businesssolutions/index.html

3. https://www.montclair.edu/information-technology/

4. http://docplayer.net/20240723-Introduction-to-word-2007.html

5.https://support.microsoft.com/en-us/office/insert-a-table-of-contents-882e8564-

0edb-435e-84b5-1d8552ccf0c0

6.https://cmusr.files.wordpress.com/2016/01/computer-application-1-

preparationsheet.pdf

7. http://lib.bbu.edu.az/read.php?file=142&file_type=pdf&item_type=lecture

8. https://link.springer.com/book/10.1007%2F978-1-4302-2950-6

9. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118093955

11. https://ability.com/support/ability2002manual.pdf

12. https://ugv.edu.bd/cbet/pdf/1581073061.pdf

13. https://link.springer.com/book/10.1007%2F978-1-4302-2953-7

14. https://cyber.olympiadsuccess.com/class-6-microsoft-word

15. https://www.scribd.com/document/221490432/How-to-Use-Microsoft-Excel

16.https://communities.geoplatform.gov/disasters/wpcontent/uploads/2018/11/Prelimi

nary-Developer-Guide-and-User-Manual.pdf

17. https://gov.texas.gov/files/disabilities/accessdocs/06-TemplatesStyles.pdf

18. https://excelchamps.com/excel-functions/

.

JAGAT GURU NANAK DEV

PUNJAB STATE OPEN UNIVERSITY, PATIALA
 (Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

B.Sc.(Data Science)

Semester I

BSDB31101T

Problem Solving using Computer

Head Quarter: C/28, The Lower Mall, Patiala-147001
Website: www.psou.ac.in

The Motto of Our University

(SEWA)

SKILL ENHANCEMENT

EMPLOYABILITY

WISDOM

ACCESSIBILITY

A
L

L
 C

O
P

Y
R

IG
H

T
S

 W
IT

H
 J

G
N

D
 P

S
O

U
,
P

A
T

IA
L

A

SE
LF

-I
N

ST
R

U
C

TI
O

N
A

L
ST

U
D

Y
 M

A
TE

R
IA

L
FO

R
 J

G
N

D
 P

SO
U

The Study Material has been prepared exclusively under the guidance of Jagat

Guru Nanak Dev Punjab State Open University, Patiala, as per the syllabi

prepared by Committee of experts and approved by the Academic Council.

The University reserves all the copyrights of the study material. No part of this

publication may be reproduced or transmitted in any form.

COURSE COORDINATOR AND EDITOR:

Dr. Amitoj Singh

Associate Professor

School of Sciences and Emerging Technologies

Jagat Guru Nanak Dev Punjab State Open University

LIST OF CONSULTANTS/ CONTRIBUTORS

Sr. No. Name

1 Dr. Vinay Kukreja

2 Dr. Virender Kadyan

3 Dr. Amitoj Singh

JAGAT GURU NANAK DEV PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

PREFACE

Jagat Guru Nanak Dev Punjab State Open University, Patiala was established in December

2019 by Act 19 of the Legislature of State of Punjab. It is the first and only Open University

of the State, entrusted with the responsibility of making higher education accessible to all,

especially to those sections of society who do not have the means, time or opportunity to

pursue regular education.

In keeping with the nature of an Open University, this University provides a flexible

education system to suit every need. The time given to complete a programme is double the

duration of a regular mode programme. Well-designed study material has been prepared in

consultation with experts in their respective fields.

The University offers programmes which have been designed to provide relevant, skill-based

and employability-enhancing education. The study material provided in this booklet is self-

instructional, with self-assessment exercises, and recommendations for further readings. The

syllabus has been divided in sections, and provided as units for simplification.

The University has a network of 10 Learner Support Centres/Study Centres, to enable

students to make use of reading facilities, and for curriculum-based counselling and

practicals. We, at the University, welcome you to be a part of this instituition of knowledge.

 Prof. Anita Gill

Dean Academic Affairs

B.Sc. (Data Science)

Core Course (CC)

Semester I

BSDB31101T: Problem Solving using Computers

Total Marks: 100

External Marks: 70

Internal Marks: 30

Credits: 4

Pass Percentage: 35%

Objective

Objective of this paper is to explain the basic of Python concepts objects, data structures and

concepts related to Methods and Functions in python. Paper explicate Object Oriented

Programming with Python and comprehend the concepts related to Python Generators and

file handling.

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

1. The syllabus prescribed should be strictly adhered to.

2. The question paper will consist of three sections: A, B, and C. Sections A and B will

have four questions from the respective sections of the syllabus and will carry 10

marks each. The candidates will attempt two questions from each section.

3. Section C will have fifteen short answer questions covering the entire syllabus. Each

question will carry 3 marks. Candidates will attempt any ten questions from this

section.

4. The examiner shall give a clear instruction to the candidates to attempt questions only

at one place and only once. Second or subsequent attempts, unless the earlier ones

have been crossed out, shall not be evaluated.

5. The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the

question paper and any ten short q uestions from Section C. They have to attempt questions

only at one place and only once. Second or subsequent attempts, unless the earlier ones have

been crossed out, shall not be evaluated.

Section A

Unit I: Introduction to Python: Python installation and setup, Command line Basics;

Python Objects and Data Structures Basics: Introduction to Python data types, Variable

assignments, Numbers, String, String methods, Lists

Unit II: Python Comparison Operators: Chaining comparison operators with logical

operators, Pass Break and continue.

Unit III: Program Flow Control: If Elif and Else statements in python, for loops, While

loops

Unit IV: Methods and Functions in python: Introduction to functions, Def keyword, User

defined functions, arguments and parameters, Parameter naming in python

Section B

Unit V: Object Oriented Programming: Introduction, Classes and objects, attributes and

methods, Inheritance and polymorphism, Special methods; Modules and Packages: Pip install

and PyPi.

Unit VI: Errors and Exception Handling: Introduction to errors, Built-in errors, raising

errors in python, Pylint overview

Unit VII: Python Generators: Yielding and Generator function, Making an iterable from a

generator, Generator expressions and performance.

Unit VIII: File handling in Python: Files in python, importing own files, Read and writing

text files, working with CSV, XML and JSON files.

Suggested Readings

1. Timothy Budd, Exploring Python, TMH, 1st Ed, 2011

2. Allen Downey, Jeffrey Elkner, Chris Meyers , How to think like a computer scientist :

learning with Python , Green Tea Pr, 2002

3. Paul Barry, Head First Python: A Brain-Friendly Guide, O′Reilly, 2
nd

 ed. 2016

4. Udemy, https://www.udemy.com/course/complete-python-bootcamp/

5. Udemy, https://www.udemy.com/course/python-the-complete-python-developer-course/

JAGAT GURU NANAK DEV PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

BSDB31101T PROBLEM SOLVING USING COMPUTER

COURSE COORDINATOR AND EDITOR: DR. AMITOJ SINGH

UNIT NO. UNIT NAME

UNIT 1 INTRODUCTION TO PYTHON

UNIT 2 PYTHON COMPARISON OPERATORS

UNIT 3 PROGRAM FLOW CONTROL

UNIT 4 METHODS AND FUNCTIONS

UNIT 5 OBJECT ORIENTED PROGRAMMING

UNIT 6 ERRORS AND EXCEPTION HANDLING

UNIT 7 PYTHON GENERATORS

UNIT 8 FILE HANDLING

`

1

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT I: INTRODUCTION TO PYTHON

STRUCTURE

1.0 Objectives

1.1 Introduction

1.2 Introduction to Python

1.3 Python Usage

1.4 Development Environment

1.5 Python installation and Setup

 1.5.1 Python installation on Windows

 1.5.2 Python Installation on Mac

 1.5.3 Python Installation on Linux

1.6 Command Line Basics

1.7 Variables

 1.7.1 Variables Reassignment

 1.7.2 Multi-variable Assignment

1.8 Basic Data Types

 1.8.1 Numeric

 1.8.2 String

 1.8.2.1 String Methods

 1.8.3 Boolean

2

1.9 Basic Data Structure in Python

 1.9.1 Lists

 1.9.2 Tupless

 1.9.3 Dictionary

1.10 Self Check Question

1.11Summary

1.12 End Question

3

1.0 OBJECTIVES

 Learn the fundamentals of installing Python in different Operating Systems

 Work with different data types of Python

 Get deep insights about how to work with different data structures like lists, tuples, sets

and dictionary.

 Students will be able to make programs related to the above-mentioned concepts.

1.1 INTRODUCTION

This module targets to inculcate python basics, data structures, and its operations in user minds

so that they can build basic programs by using these concepts extensively. This module is

developed by keeping the graduate learners in mind. Python is a very user-friendly language and

is widely used by professional developers in different applications like artificial intelligence, web

applications, and data analytics, etc. Python is recognized as one of the fastest-growing

languages among different types of users. In the module, how to install python on different

platforms is elaborated along with basic data types with appropriate programs so that learners

will understand the concept. The main target of this module to cover data structures like Lists,

tuples, dictionary, and sets with suitable programs.

1.2 PYTHON

Guide van Rossum (Dutch Programmer) is the creator of the Python programming language and

it was invented in the year 1989. Its first public release was in 1991. Python is managed and

distributed by Python Software Foundation. Python is very user-friendly, free to use and easy to

learn if you are fresher in programming too [1]. This is popularly known as one of the powerful

languages and open-source. Python is an interpreted and high-level language. Programmers have

to focus on what to do in the tasks instead of how to do the tasks.

1.3 PYTHON USAGE

Python is used for the development of various applications in different fields. Some of these are

mentioned below:

a) Web programming

b) Mobile Applications

c) Game development

d) Data Science and Data Visualization

e) Data Analytics

f) Frontend (GUI) development

g) Network programming

h) System Administrator

i) Machine learning and Artificial Intelligence

j) Web scrapping applications

k) Embedded applications

4

1.4 DEVELOPMENT ENVIRONMENT

There are three popular and common platforms. These are:

a) Terminal based or Shell-based

b) IDLE (Spyder IDE, PyCharm IDE)

c) Python notebook (Jupyter)

1.5 PYTHON INSTALLATION AND SETUP

 If python is installed you can check the version of Python installed in your system by the

following command.

C:\> python –version

 To know the current location where your python is installed, you can use the below-

mentioned command

C:\> where.exe python

If Python is not installed in your system then you have to install python according to your

operating system. Below are the steps for installation according to your operating system.

1.5.1 Python installation on Windows

There are different ways of installing Python on windows and these are listed [2] as:

A) Package from Microsoft Store

B) Full Installer Package

C) Windows Subsystem for Linux

A) Package from Microsoft Store

One of the easiest, upfront and interactive ways of installing python on windows is with the help

of app from the Microsoft store. If any of the beginners want to install Python, this is the only

suggested way. Select the python version which you want to install on your machine and then

click GET button on that suitable version, as it helps in downloading the python file. After that

click on INSTALL ON MY DEVICES and select the device where you want to install the

software. Now, select and click the button INSTALLNOW, after proper installation, you will see a

message of installation congratulations.

B) Full Installer Package

If you are an advance or intermediate developer then this way of downloading from Python.org

is a recommended step as it helps to control the things during installation set up. Go to the site

and select the latest Python 3 release under Python Release for Windows and also select

Windows x86-32 or Windows x86-64 executable installer and download the appropriate version.

Now, double-click the downloaded file and look for the different options on the dialog box that

appears after double-clicking the installer file. The first one is the default path which is set for

5

current Windows users. The second feature is to select for customization installation where users

can select the features which they want to install like pip and IDLE also. The third one is to

install a launcher for all users. This has a checkbox that is ticked default. It means all users can

access py.exe whereas if you untick this checkbox, then only current can access py.exe. The

fourth feature is to Add python to the path. This has a checkbox that is unticked by default and it

is up to the user whether the user wants to add python in the environment path or not. After

working on these, you can go to click on the button INSTALL NOW and after proper installation,

you will see a message of installation congratulations.

C) Windows Subsystem for Linux (WSL)

You can run a virtual Linux in Windows system directly with the help of WSL. Python can be

used with the help of the Linux platform here.

1.5.2 Python Installation on Mac

There are different ways of installing Python on macOS and these are listed [2] as:

A) Package from the official installer

B) Package Manager (Homebrew)

A) Package from the official installer

The most recommendable way of downloading is Python.org as it helps to control the things

during installation set up. Go to the site and select the latest Python 3 release under Python

Release for Mac OS X and also select macOS 64 bit executable installer and download the

appropriate version. Now, double click the downloaded file and click continue button a few

times until you reach software agreement and then click Agree button and you will see a dialog

box where destination location with total space is shown and the user can change the destination

location and then click on INSTALL NOW button and after proper installation, you will see a

message of installation congratulations.

B) Package Manager (Homebrew)

First, install homebrew package manager unless ignore if it is already in the system. Go to

browser and open it and type http://brew.sh/ and copy the command for install homebrew from

there and open a Window terminal and paste that command and it will start homebrew

installation process and suitably type your macOS password when it is asked in the installation

process. This will take few minutes and after successful installation of this package manager,

install python by using the command brew install python3.

1.5.3 Python Installation on Linux

There are different ways of installing Python on Linux and these are listed [2] as:

A) Package manager of machine OS

http://brew.sh/

6

B) Building from source code

A) Package manager of machine OS

One of the easiest and popular methods for installing python on the Linux platform. This is done

by running a command on the command line.

B) Building from source code

This is a typical harder method of installation when compared with the package installer method.

This step involves a set of commands for installing python along with that take care of

dependencies that are required for properly running the python code.

1.6 COMMAND LINE BASICS

The command-line interface is a text-based interpreter that helps in the interaction of the user

with a running program. Executable commands are written on this and the appropriate function is

done by the operating system according to the command. Python executable command is run by

writing python program name in front of keyword python [3].

Example1: Message printing example and save the program as niceprog1.py (.py is the extension

of python)

print("CSE-CA")

print("Mechatronics")

Now, how to run this program with the help of the command line and what will be the output of

that command line.

Run the following command and press enter at end of the command:

C:\User\Python>python niceprog1.py

The output will be after running the above command is

CSE-CA

Mechatronics

If you want some data elements should be passed to the Python program using the command line

then pass data elements values with python file name by putting up space as delimiter. These

data elements that are used with space are known as command-line arguments.

Example 2: Command Line Arguments Program (Save this file as niceprog2.py)

import sys

print("The 1st argument in Command Line is",sys.argv[1])

print ("The 2nd argument in Command Line is",sys.argv[2])

7

Run the following command and press enter at end of the command:

C:\User\Python>python niceprog2.py “CSE-CA” “Mechatronics”

The output will be after running the above command is

The 1st argument in Command-Line is CSE-CA

The 2nd argument in Command-Line is Mechatronics

1.7 VARIABLES

Variables store the data and these are reserved memory spaces. There is no command available

to declare variables unlike C/C++/Java has commands to declare variables. Here in python, only

the „=„operator is used for assigning value to a variable.

Example 3:

str_BDay_Boy_Name="Vinay Stylish" #String variable

float_BDay_Boy_Age=21.6 #Float Variable

int_Bday_Boy_License_Num=12234562#Integer Variable

print(str_BDay_Boy_Name)

print(float_BDay_Boy_Age)

print(int_Bday_Boy_License_Num)

#Output

Vinay Stylish

21.6

12234562

NO7E: # is used to comment the line. # is used for single-line comment

1.7.1 Variables Reassignment

A variable can be assigned a value many times but the value that is assigned latest is considered

for consideration.

Example 4: Variables Reassignment

float_BDay_Boy_Age=21.6 #Float Variable

float_BDay_Boy_Age=43.98

print(float_BDay_Boy_Age)

#Output

8

43.98

1.7.2 Multi-variable Assignment

When different variables are assigned with a same value that is the concept of multi-variable

assignment.

Example 5: Multi-variable Assignment

int_var1=int_var2=int_var3=156 # Multivariable assignment

print(int_var1)

print(int_var2)

print(int_var3)

print(id(int_var1)) # id is used to get the memory address of the variable

print(id(int_var2))

print(id(int_var3))

int_var3=20

print(int_var3)

print(id(int_var3))

#Output

156

156

156

8790917690608

8790917690608

8790917690608

20

8790917686256

NOTE: Same value is pointing to the same reserved memory and variables int_var1, int_var2

and int_var3 having the same reserved memory as they point towards the same value. When the

value is changed to 20 of int_var3, its memory address is also changed.

1.8 BASIC DATA TYPES

Data types are associated with every value. In object-oriented python, everything is treated as

object. Objects are variables and classes are data types of these variables [4]. The basic data

types are mentioned as:

9

1.8.1 Numeric

i) Integer

ii) Float

iii) Complex

1.8.2 Strings

1.8.3 Boolean

1.8.4 Numeric

The numeric value is associated with numeric data type in python programming. The numeric

data type can be integer, float or complex numbers. They are presented as int, float or complex

respectively.

Integer numbers – These are whole numbers and can be positive or negative. No limit is

restricted to how long can be an integer number. The memory is the only constraint for setting up

the integer value.

Float numbers – These are real numbers with a fraction or decimal points. For scientific notation,

e or E is used with integer numbers whether they are positive or negative.

Complex numbers – It consists of real and imaginary part.

Example 6: Numeric data type example

float_BDay_Boy_Age=21.6 #Float Variable

int_Bday_Boy_License_Num=12234562#Integer Variable

complex_Bday_Gift=2+5j # Complex number

print(type(float_BDay_Boy_Age))

print(type(int_Bday_Boy_License_Num))

print(type(complex_Bday_Gift))

#Output

<class 'float'>

<class 'int'>

<class 'complex'>

Example 7: Binary, Octal and Decimal Numbers Representation and their data type.

octal_var1=0o12

hexa_var2=0x16

binary_var3=0b1011

10

print(octal_var1)

print(type(octal_var1))

print(hexa_var2)

print(type(hexa_var2))

print(binary_var3)

print(type(binary_var3))

#Output

10

<class 'int'>

22

<class 'int'>

11

<class 'int'>

Example 8: Deep insights of floating points

float_var1=.56e7

float_var2=56.2e-3

print(float_var1)

print(float_var2)

#Output

5600000.0

0.0562

1.8.2 Strings

They are a group or sequence of characters and strings data types are represented as str. The use

of single quotes and double quotes are used for strings [5].

Example 9: Usage of single quote and double quotes for printing strings

print('Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID') # Usage of

Single quotes

print("Do follow social distancing") # Usage of double quotes

print('Properly use mask')

print("Avoid unnecessary shopping and walking-out")

11

#Output

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

Do follow social distancing

Properly use mask

Avoid unnecessary shopping and walking-out

Example 10: Another usage of single quotes and double quotes

print('Take both vaccination(")s with a normal 4 to 6 weeks gap and say bye to COVID') # Usage

of Single quotes

print("Do follow(')s social distancing") # Usage of double quotes

print('Take both vaccination\"s with a normal 4 to 6 weeks gap and say bye to COVID') # Usage

of Single quotes

print("Do follow\'s social distancing") # Usage of double quotes

#Output

Take both vaccination(")s with a normal 4 to 6 weeks gap and say bye to COVID

Do follow(')s social distancing

Take both vaccination"s with a normal 4 to 6 weeks gap and say bye to COVID

Do follow's social distancing

Example 11: Usage of triple single quotes for printing single and double quotes in one print

statement.

print('''Take both vaccination(')s with a normal 4 to 6 weeks gap and say bye(") to COVID. Do

follow social distancing''')

#Output

Take both vaccination(')s with a normal 4 to 6 weeks gap and say bye(") to COVID. Do follow s

ocial distancing

Example 12: Usage of triple double quotes for printing single and double quotes in one print

statement.

print("""Take both vaccination(')s with a normal 4 to 6 weeks gap and say bye(") to COVID. Do

follow social distancing""")

#Output

Take both vaccination(')s with a normal 4 to 6 weeks gap and say bye(") to COVID. Do follow s

ocial distancing

12

1.8.2.1 String Methods

i) String slicing

Accessing characters from the string is called string slicing. For slicing, the colon „:‟ is used. For

better understanding see example 12A.

ii) Updating strings

The whole string can be updated but the characters of strings cannot be updated. For better

understanding see example 12A.

iii) Deleting strings

del keyword is used to delete the whole string as shown in example 12A.

Example 12A: Slicing, Updating and deleting operations in string

str_var='Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID'

print(str_var)

print(str_var[5:14]) # Print elements from 5 to 13 and exclude 14

print(str_var[-12:-2])

Print elements from -12 to -1 and exclude -1.

#At last, index is -1 value is D and -2 is I and -12 is b

str_var='Hey COVID, you will be completely over by 2022. I think!!!'

print(str_var)

str_var2='Hey COVID, you will be completely over by 2022. I think!!!'

print(str_var2)

del str_var2 # Deleted str_var2

str_var[0]='Z' # This cannot be done in string

#Output

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

both vacc

bye to COV

Hey COVID, you will be completely over by 2022. I think!!!

Hey COVID, you will be completely over by 2022. I think!!!

TypeError: 'str' object does not support item assignment

iv) Formatting Method

13

format() method is used to do formatting in strings and {} braces are used for formatting and

they act as placeholders for arguments. These can be positional as well as keyword arguments.

See example 12B for the usage of the format() method.

Example 12B: Program to show deeper understanding of format method

str_var1="The first dose of {0} and second dose of {1} saves lives from attack of COVID

{2}".format("injection1","injection2",2019)

print(str_var1)

print(type(str_var1))

str_var2="The first dose of {} and second dose of {} saves lives from attack of COVID

{}".format("injection1","injection2",2019)

print(str_var2)

print(type(str_var2))

str_var3="The first dose of {val1} and second dose of {val2} saves lives from attack of COVID

{val3}".format(val1="injection1",val2="injection2",val3=2019)

print(str_var3)

print(type(str_var3))

str_var4="{0:.3f}".format(2/7) # Here.3f tell how many decimal points you need

print(str_var4)

print(type(str_var4))

str_var5="{0:o}".format(54) # Convert into octal format

print(str_var5)

print(type(str_var5))

str_var6="{0:b}".format(54) # Convert into binary format

print(str_var6)

print(type(str_var6))

#Output

The first dose of injection1 and second dose of injection2 saves lives from attack of COVID 201

9

<class 'str'>

14

The first dose of injection1 and second dose of injection2 saves lives from attack of COVID 201

9

<class 'str'>

The first dose of injection1 and second dose of injection2 saves lives from attack of COVID 201

9

<class 'str'>

0.286

<class 'str'>

66

<class 'str'>

110110

<class 'str'>

1.8.3) Boolean

This is one of the inbuilt data types in python programming and this data type can take only two

values i.e. True or False. When checking of type of a variable is performed and it shows <‟class

bool‟> then it is Boolean data type [6].

Example 13: Boolean Basic Understanding Program

var_bool1=True

var_bool2=False

print(type(var_bool1))

print(type(var_bool2))

print(type(var_bool1==var_bool2))

#Output

<class 'bool'>

<class 'bool'>

<class 'bool'>

NOTE: bool() function can be used to get the values in form of True or False

Example 14: bool() function usage

int_var1 = 19

print(bool(int_var1))

int_var2 = 0

print(bool(int_var2))

15

float_var3 = 17.89

print(bool(float_var3))

float_var4 = -17.89

print(bool(float_var4))

#Output

True

False

True

True

Explanation: Any value other than 0 is treated as True in the above example of bool() unless it is

treated as False.

1.9 BASIC DATA STRUCTURES IN PYTHON

Data Structures help in managing, handling, dealing and storing the data. They help in traversing,

modifying and updating the data. Different operations can be performed on the data with the help

of data structures. This helps in controlling the functionalities involved in getting the proper data

output.

The basic data structures of python are:

1.9.1 Lists

1.9.2 Tuples

1.9.3 Dictionary

1.9.4 Sets

1.9.1 Lists

This data structure helps in storing different data types. This is created using a square bracket [].

The data types can be strings, other lists or integers. The list elements can be changed even after

its creation. This is known as mutable property. Addresses are assigned to every element of the

list, this is known as an index of the list. Two types of indexes are there one is positive and the

other one is negative. While traversing in a list when the user starts from 0 to the last element of

the list, it is called positive index. When the user traverse from the last (i.e. index=-1) to the start

is called negative-index [7]. The different basic operations that can be performed on the list are

mentioned as:

 The list can be created empty as well as initialized with different types of elements.

 Elements can be inserted in list using append(), extend() and insert() functions. These

functions usage is explained in example 15.

16

 Elements can be deleted in the list using remove(), pop() and remove() functions. The del

keyword is also used to delete elements in the list. The explanation is given in example

16.

 Accessing elements of the list is explained in example 17.

Example 15: Program for List creation (empty, initialization with elements) and Insertion in list

(Usage of insert, extend and append functions) [7]

mixed_list1=[] # Empty list creation

print(type(mixed_list1)) # Check the data type

print(mixed_list1) # Printing the empty list

mixed_list2 = [2,"injection1",23.56,"injection1",23.56]

Adding heterogeneous elements to the mixed_list2

print(type(mixed_list2)) #Check the data type

print(mixed_list2) # Printing the mixed_list2 elements

mixed_list1.extend([2,"injection1"])

#Extend function is used to add elements one by one in the empty list (mixed_list1)

print(mixed_list1)

mixed_list1.append([23.56,"Wear Mask Properly","Rules for Social Distancing"])

#Append function is used to add all elements as single element in mixed_list1 and added at end

of list

print(mixed_list1)

INDEXING IN LIST STARTS FROM 0

Adding element at INDEX 2 i.e. after value of injection1

mixed_list1.insert(2,"injection2") # injection2 is inserted at index 2

print(mixed_list1)

#Output

<class 'list'>

[]

<class 'list'>

[2, 'injection1', 23.56, 'injection1', 23.56]

[2, 'injection1']

17

[2, 'injection1', [23.56, 'Wear Mask Properly', 'Rules for Social Distancing']]

[2, 'injection1', 'injection2', [23.56, 'Wear Mask Properly', 'Rules for Social Distancing']]

Example 16: Program for deleting elements in the list using different ways [7]

mixed_list1=[2, 'injection1', 'injection2', 23.56, 'Wear Mask Properly', 'Rules for Social

Distancing']

print(mixed_list1)

Remove function is used to delete the elements using value and it deletes the first occurrence

of value

mixed_list1.remove('Wear Mask Properly') # 'Wear Mask Properly' element is removed from the

list

print(mixed_list1)

Pop is used to remove the element from the list by passing index as the argument in pop

function.

If index is not given then last element of the list is deleted

pop_element=mixed_list1.pop(3) # Element is removed at index 3 using pop function

print("popped element is",pop_element)

print(mixed_list1)

#del keyword is used to delete the element using the index value

del mixed_list1[2] # Element is deleted at index 1

print(mixed_list1)

Clear function is used to remove the whole list

mixed_list1.clear()

print(mixed_list1)

#Output

[2, 'injection1', 'injection2', 23.56, 'Wear Mask Properly', 'Rules for Social Distancing']

[2, 'injection1', 'injection2', 23.56, 'Rules for Social Distancing']

popped element is 23.56

[2, 'injection1', 'injection2', 'Rules for Social Distancing']

18

[2, 'injection1', 'Rules for Social Distancing']

[]

Example 17: Program to show ways of accessing list elements

mixed_list1=[2, 'injection1', 'injection2', 23.56, 'Wear Mask Properly', 'Rules for Social

Distancing']

print(mixed_list1) # Accessing all list elements

print(mixed_list1[5])

print(mixed_list1[3:5])

Slicing Method is used here, [starting element index : end element range-1].

[3:5] here denotes go from index 3 to 5-1 i.e. 4

Access elements from index 3 to 4 and exclude 5 (Last element of range is excluded)

print(mixed_list1[-4:-2])

When access from last, index values from last are -1,-2,-3 and so on

When index is -4,by calculating from last it is "injection2"

Index is -2,by calculating from last it is "Wear Mask Properly"

Range is -4 to -2 i.e Access elements from -4 to -3 and exclude -2 (Last element of range is

excluded)

See below access elements of list using loop

for mixed_var1 in mixed_list1: # one by one elements of list are accessing

 print(mixed_var1)

#Output

[2, 'injection1', 'injection2', 23.56, 'Wear Mask Properly', 'Rules for Social Distancing']

Rules for Social Distancing

[23.56, 'Wear Mask Properly']

['injection2', 23.56]

2

injection1

injection2

23.56

Wear Mask Properly

Rules for Social Distancing

19

1.9.2 Tuples

Tuples exactly work like lists of python but they are immutable i.e. it elements cannot be

changed. They are created using () or tuple() function. They also store heterogeneous elements.

While creating () are optional as can be seen in example 18. The different basic operations that

can be performed on the tuple are mentioned as [7]:

 Tuple can be created empty as well as initialized with different types of elements. It can

be created with () brackets, without () brackets and tuple() function. Tuple() function has

one optional argument that consists of an iterator like lists, tuples, dictionary, etc. See

example 18 for a better understanding.

 Tuple concatenation using „+‟ operator. An example is shown in 18.

 Tuple elements cannot be removed or deleted due to their immutable property.

Immutable property is explained in example 19. But, the whole tuple can be deleted using

„del‟ keyword as shown in example 20.

 Slicing method used in tuples as mentioned in example 21.

Example 18: Tuple elements creation and accessing program

mixed_tuple1= () # Empty tuple creation

print(type(mixed_tuple1)) # Check the data type

print(mixed_tuple1) # Printing the empty tuple

Adding heterogeneous elements to the mixed_tuple2

mixed_tuple2 = (2,"injection1",23.56,"injection1",23.56)

print(type(mixed_tuple2)) #Check the data type

print(mixed_tuple2) # Printing the mixed_tuple2 elements

Without bracket creating tuple elements

mixed_tuple3 = 2,"injection1",23.56,"injection1",23.56

print(type(mixed_tuple3)) #Check the data type

print(mixed_tuple3) # Printing the mixed_tuple3 elements

For concatenating elements in tuple '+' is used

mixed_tuple3=mixed_tuple3 + ("bye_covid",576,"huge effort required")

print(mixed_tuple3) # Printing the mixed_list2 elements

Creation of tuple elements using tuple function

mixed_tuple4= tuple() # Empty tuple creation with no argument in tuple() function

20

print(type(mixed_tuple4)) # Check the data type

print(mixed_tuple4) # Printing the empty tuple

tuple() is used when list is passed as argument

mixed_list =[2,3,17,67]

mixed_tuple4= tuple(mixed_list) # In tuple()function, list is passed as argument

print(type(mixed_tuple4)) # Check the data type

print(mixed_tuple4) # Printing the empty tuple

#Output

<class 'tuple'>

()

<class 'tuple'>

(2, 'injection1', 23.56, 'injection1', 23.56)

<class 'tuple'>

(2, 'injection1', 23.56, 'injection1', 23.56)

(2, 'injection1', 23.56, 'injection1', 23.56, 'bye_covid', 576, 'huge effort required')

<class 'tuple'>

()

<class 'tuple'>

(2, 3, 17, 67)

Example 19: Program to show immutable property of tuples

mixed_tuple2 = (2,"injection1",23.56,"injection1",23.56)

mixed_tuple2[1]="vaccination1" # This cannot be done as it tries to change element value of

tuple.

print(mixed_tuple2)

#Output

TypeError: 'tuple' object does not support item assignment

Example 20: Program to delete the whole tuple using „del‟ keyword

mixed_tuple2 = (2,"injection1",23.56,"injection1",23.56)

print(mixed_tuple2)

del mixed_tuple2

print(mixed_tuple2)

21

#Output

(2, 'injection1', 23.56, 'injection1', 23.56)

NameError: name 'mixed_tuple2' is not defined

Example 21: Program for slicing and accessing elements of tuples

mixed_tuple2 = (2,"injection1",23.56,"injection1",23.56)

print(mixed_tuple2[1:3])

print(mixed_tuple2[-4:-1])

print(mixed_tuple2[:])

print(mixed_tuple2[:3])

print(mixed_tuple2[::-1])

for mixed_var1 in mixed_tuple2:

 print(mixed_var1)

#Output

('injection1', 23.56)

('injection1', 23.56, 'injection1')

(2, 'injection1', 23.56, 'injection1', 23.56)

(2, 'injection1', 23.56)

(23.56, 'injection1', 23.56, 'injection1', 2)

2

injection1

23.56

injection1

23.56

1.9.3 Dictionary

In python programming, the dictionary can be created using {} brackets and it consists of keys

and values where two keys cannot be the same in a dictionary but values can be repeated and of

different datatype in a dictionary, Keys are immutable. Many keys and values can be there in the

dictionary but they are separated using a comma operator as shown in syntax. Nesting of

dictionaries is also possible like lists.

Syntax:

Dictionary_name = { key1:value, key2:value ……. Key n:value}

22

The different basic operations that can be performed on the dictionary are mentioned as [7]:

 Dictionary creation and accessing elements as mentioned in example 22. Empty

dictionary and elements in the dictionary are created using {} and dict() function is also

used to create a dictionary. Accessing elements of dictionary can be used keys and get()

function.

 Updation and insertion elements in the dictionary as shown in example 23.

 Deletion of elements in a dictionary using del keyword, clear() function, pop() function

as shown in example 24.

 Nesting of dictionaries as shown in example 25.

Example 22: Creation of dictionary

base_dnary={} # Empty dictionary creation

print(base_dnary)

mixed_dnary = {'BdayBoyName':'XYZee', 2:'injections', 2019:'Year'}

print(mixed_dnary) # Whole dictionary is printed

print(mixed_dnary[2])# key is 2nd and its value is printed

print(mixed_dnary['BdayBoyName'])#Key value of 'BdayBoyName' is printed

print(mixed_dnary.get(2)) # get method is used to access value

mixed_dnary2=dict({'BdayBoyName':'XYZee', 2:'injections', 2019:'Year'})

print(mixed_dnary2)

print("Using keys() method")

for key_elements in mixed_dnary2.keys(): # Accessing elements using keys() method

 print (key_elements, mixed_dnary2[key_elements])

print("Using items() method")

for key_elements, val_elements in mixed_dnary2.items(): # items() method

 print (key_elements, val_elements)

print(mixed_dnary[0])

#Generate error as key 0 is not present and it does not take index 0 into consideration

#Output

{}

{'BdayBoyName': 'XYZee', 2: 'injections', 2019: 'Year'}

23

injections

XYZee

injections

{'BdayBoyName': 'XYZee', 2: 'injections', 2019: 'Year'}

Using keys() method

BdayBoyName XYZee

2 injections

2019 Year

Using items() method

BdayBoyName XYZee

2 injections

2019 Year

KeyError: 0

Example 23: Program for inserting and updating elements in dictionary [8]

mixed_dnary = {'BdayBoyName':'XYZee', 2:'injections', 2019:'Year'}

print(mixed_dnary)

mixed_dnary[2]='doses of injections' # Updating elements using key

print(mixed_dnary)

mixed_dnary['Mask']='Wear properly' # Insert new key and value in dictionary

print(mixed_dnary)

#Output

{'BdayBoyName': 'XYZee', 2: 'injections', 2019: 'Year'}

{'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year'}

{'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year', 'Mask': 'Wear properly'}

Example 24: Program to show deletion of elements in a dictionary

mixed_dnary = {'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year', 'Mask': 'Wear

properly'}

mixed_dnary2= {'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year', 'Mask': 'Wear

properly'}

print(mixed_dnary)

print(mixed_dnary2)

del mixed_dnary['Mask'] # deleting a particular key and value using 'key'

24

print(mixed_dnary)

mixed_dnary2.pop(2019) # pop(key) put key value as argument to delete key and value from

dictionary

print(mixed_dnary2)

mixed_dnary2.popitem() # popitem() randomly delete any key and value from dictionary

print(mixed_dnary2)

mixed_dnary2.clear()# Removing all elements of 2nd dictionary using clear function

print(mixed_dnary2)

del mixed_dnary # Whole dictionary is deleted

print(mixed_dnary)

#Output

{'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year', 'Mask': 'Wear properly'}

{'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year', 'Mask': 'Wear properly'}

{'BdayBoyName': 'XYZee', 2: 'doses of injections', 2019: 'Year'}

{'BdayBoyName': 'XYZee', 2: 'doses of injections', 'Mask': 'Wear properly'}

{'BdayBoyName': 'XYZee', 2: 'doses of injections'}

{}

NameError: name 'mixed_dnary' is not defined

Example 25: Program to show the concept of nesting of dictionary

mixed_new_dnary1={'Trade':'CSE-CA',2:123,'E2':234,4:{'1st':'basic','2nd':888,3:'style'}}

print(mixed_new_dnary1)

print(mixed_new_dnary1[2]) # Accesing value when key is 2

print(mixed_new_dnary1[4]['1st']) # Accesing value when key is '4' and again its key is 1st

print(mixed_new_dnary1[4]) # Accessing value even if it is dictionary while using key '4'

#Output

{'Trade': 'CSE-CA', 2: 123, 'E2': 234, 4: {'1st': 'basic', '2nd': 888, 3: 'style'}}

123

basic

{'1st': 'basic', '2nd': 888, 3: 'style'}

1.9.4 Sets

25

Sets are a collection data structure and these are unordered (i.e. elements cannot be accessed

using the index), mutable. Sets do not contain duplicate elements i.e. they are unique.

Syntax:

mixed_set = set(iterable_object)

where iterable_object can be strings, list, tuple and any other iterable object.

Example 26: Program to understand basic concept of sets

mixed_set=set(["injection1","Wear Mask",2, "Social Distancing"])

print(mixed_set) # Look at its output, it is unordered

print(type(mixed_set))

mixed_set.add("injection2") # Add new element in set

print(mixed_set) # Look at its output, it is unordered

print(len(mixed_set)) # len function is used to know the length of set

#Output

{'Wear Mask', 2, 'Social Distancing', 'injection1'}

<class 'set'>

{2, 'Social Distancing', 'injection1', 'injection2', 'Wear Mask'}

5

1.10 SELF-CHECK QUESTIONS

A) Which of the options are true for the following statements:

Statement 1: List is mutable

Statement 2: Tuple is mutable

Statement 3: List is immutable

Statement 4: Tuple is immutable

a) Statement 1 and Statement 2 are correct

b) Statement 1 and Statement 4 are correct

c) Statement 2 and Statement 3 are correct

d) All are correct

B) What will be the output of the following code?

print(("CSE-CA ")+("Mechatronics"))

26

a) CSE-CA Mechatronics

b) CSE-CAMechatronics

c) Mechatronics

d) CSE-CA

C) Choose the correct option where indexing is not valid for doing opertaions.

a) Lists

b) Dictionary

c) Strings

d) Tuples

D) What will be the output?

str_var4="{0:.3f}".format(8/11)

print(str_var4)

a) 0.727

b) 0.728

c) 0.726

d) 0.730

E) Print the appropriate output of the following code

mixed_list1=[2, 'injection1', 'injection2', 23.56, 'Wear Mask Properly', 'Rules for Social Distancin

g']

print(mixed_list1[-3])

a) 23.56

b) injection2

c) Rules for Social Distancing

d) Wear Mask Properly

1.11 SUMMARY

This module helps the students in understanding how different types of variables are used and

what type of operations can be performed on these different variables along with appropriate

examples. Deep discussions about lists, tuples, dictionary, and sets have been done. Different

operations related to these data structures have been explained along with the output of different

examples. This module helps the students in building up the basic blocks of python that are

required for doing hard problems or competitive problems at later stages.

1.12 UNIT END QUESTIONS

1) Construct a program to add two lists of the same size having integer numbers.

2) Which is the correct option for the following code (Note: Read carefully)

mixed_tuple=[55,34,89,165]

27

mixed_tuple.pop(2)

print(mixed_tuple)

a) Error

b) [55, 34, 165]

c) [55, 34, 89]

d) [55, 89, 165]

3) Correct way of selecting 67 as output from the code is:

mixed_tuple = ("COVID_19", [13, 25, 36, 67], (15, 675, 543))

a) print(mixed_tuple[1][3])

b) print(mixed_tuple[2][3])

c) print(mixed_tuple[2][2])

d) print(mixed_tuple[1][2])

4) List down the operation that can be performed on dictionary with appropriate examples.

5) A tuple in python can be created without () brackets (True/False)

6) What will be the output of the below-mentioned code

mixed_tuple = 13, 17, 23, 78, 141

mixed_tuple[3] = 90

print(mixed_tuple)

a) (13, 17, 23, 78, 141)

b) (13, 17, 23, 90, 141)

c) (13, 17, 90, 78, 141)

d) Error

 7) What will be the output of the below-mentioned code

mixed_list1 = 13, 17, 23, 78, 141

mixed_list1[3] = 90

print(mixed_list1)

a) [13, 17, 23, 78, 141]

b) [13, 17, 23, 90, 141]

c) [13, 17, 90, 78, 141]

d) Error

28

REFERENCES

[1] https://beginnersbook.com/2018/01/introduction-to-python-programming/

[2] https://realpython.com/installing-python/

[3] https://www.tutorialspoint.com/How-do-we-access-command-line-arguments-in-Python

[4] https://www.programiz.com/python-programming/variables-datatypes

[5] https://realpython.com/python-data-types/

[6] http://localhost:8888/notebooks/Untitled30.ipynb?kernel_name=python3

[7] https://www.edureka.co/blog/data-structures-in-python/

[8] https://www.tutorialspoint.com/python/python_dictionary.htm

https://beginnersbook.com/2018/01/introduction-to-python-programming/
https://realpython.com/installing-python/
https://www.tutorialspoint.com/How-do-we-access-command-line-arguments-in-Python
https://www.programiz.com/python-programming/variables-datatypes
https://realpython.com/python-data-types/

29

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT II: PYTHON COMPARISON OPERATORS

STRUCTURE

2.0 Objectives

2.1 Introduction

2.2 Logical Operators

2.2.1 Types of Logical Operators

2.2.1.1 Logical AND

2.2.1.2 Logical OR

2.2.1.3 Logical NOT

2.3 Precedence of Logical Operators

2.5 Order of Evaluation of Logical Operators

2.5 Comparison Operators

2.5.1 Chaining of Comparison Operators

2.6 Usage of break, continue and pass statements

2.6.1 Break Statement

2.6.2 Continue Statement

2.6.3 Pass Statement

2.7 Practice Questions

2.8 Summary

30

2.0 OBJECTIVES

 Having knowledge about logical operators

 Students will be able to understand chaining comparison operators.

 Students will be inculcated concepts like break, continue and pass statements deeply

and clearly.

 Students can build programs using relational, logical, identity and membership

operators.

2.1 INTRODUCTION

This module helps the students in better understanding of logical operators. The different

types of logical operators (and, or, not) are elaborated with many programming examples.

Truth tables along with flowcharts are also mentioned for clearly understand the logical

operators. The next topic is followed with precedence of logical operators and appropriate

programs are mentioned to explain this topic briefly. This unit also targets to explain chaining

comparison operators. Before deeply understanding this concept, firstly comparison

operators, identity operators and membership operators are explained and then these are

explained with chaining programming examples also. The difference between equal to

operator and is operator is clearly explained followed with not equal to operator and is not

operator. For explaining both differences clearly, python programming examples are given.

Statements like break, continue and pass are discussed with programming examples.

Distinction between pass and comments ae also assessed and mentioned. These whole things

are necessary for doing complex problems and projects. This unit is followed with self-

checked questions and summary of the whole topic. At last, practice questions are mentioned.

2.2 LOGICAL OPERATORS

 It is used when decision making has to be performed on multiple conditions. Condition is the

operand and it is assessed with a True of False. Example: have_injection1 and

have_injection2

2.2.1 Types of Logical Operators

In Python, three logical operators are used for conditional statements. The operators with its

symbols are mentioned in Table 2.1.

Table 2.1: Logical operators with symbols

Operator Symbol Name Narrative (Comparison between two conditions)

and Logical AND 1. Returns True if both operands are True

2. Returns False if one of the operands is False

Or Logical OR 1. Returns True if one of the operands is True

2. Returns False if both operands are False

Not Logical NOT 1. Returns True if operand is False

2. Returns False if operand is True

2.2.1.1 Logical AND

Logical AND operator returns True if both operands are True unless it returns False. The

truth table is mentioned in table 2.2 and its flow diagram is shown in figure 2.1.

Table 2.2: Truth Table for Two Conditions using Logical AND

31

Condition1 Condition2 Output (Condition1 or Condition2)

True True True

True False False

False True False

False False False

Condition1 and Condition2

Condition1=True
No

Output is False

Yes

Output is False

Condition2=True

Output is True

YesNo

Figure 2.1: Flowchart: Logical AND

Example 1: Use of Logical AND

#variables with initial values

have_injection1=True

have_injection2=True

have_fever=False

have_headache=False

Condition with use of LOGICAL AND

have_injection1 and have_injection2

Output

True

Condition with use of LOGICAL AND

have_injection1 and have_fever

#Output

False

Condition with use of LOGICAL AND

have_fever and have_injection2

#Output

False

Condition with use of LOGICAL AND

have_fever and have_headache

#Output

32

False

Example 2: Make a python program in which get the input from user as CGPA of student, if

CGPA is between 8 to 10 (including both 8 and 10) then print is message ‘Outstanding’ and

if it is between 6 to 8 (including 6 only) then print a message ‘Average’ and if it lies between

4 to 6 (including 4 only) then print a message ‘Hard Work Needed’ and if it lies between 0 to

4 then print a message ‘Fail’.

Solution:

CGPA = float(input("Enter CGPA ")) #Input for CGPA from the user

if CGPA >=8 and CGPA <=10: # Check CGPA between 8 to 10, (including 8 and 10 both)

 print("Outstanding")

if CGPA >=6 and CGPA <8: # Check CGPA between 6 to 8, (including 6 only)

 print("Good Job")

if CGPA >=4 and CGPA <6: # Check CGPA between 4 to 6, (including 4 only)

 print("Hard Work Needed")

if CGPA >=0 and CGPA <4: # Check CGPA between 0 to 4, (including 0 only)

 print("Fail")

if CGPA < 0: # Check CGPA should not be less than 0 then print Wrong Input

 print("Wrong Input")

if CGPA > 10: # Check CGPA should not be more than 10 then print Wrong

Input

 print("Wrong Input")

Test Case 1:

Enter CGPA 8.1

#Output

Outstanding

Test Case 2:

Enter CGPA -1

#Output

Wrong Input

Test case 3:

Enter CGPA 11.3

#Output

Wrong Input

2.2.1.2 Logical OR

Logical OR operator returns True if any one of the operand is True unless it returns False.

The truth table is mentioned in table 2.3 and its flow diagram is shown in figure 2.2.

Table 2.3: Truth Table for Two Conditions Using Logical OR

Condition1 Condition2 Output (Condition1 or Condition2)

True True True

True False True

False True True

33

False False False

Condition1 or Condition2

Condition1=True
Yes

Output is True

No

Output is True

Condition2=True

Output is False

NoYes

Figure 2.2: Flowchart: Logical OR

Example 3: Use of Logical OR

#variables with initial values

have_injection1=True

have_injection2=True

have_fever=False

have_headache=False

Condition with use of LOGICAL OR

have_injection1 or have_injection2

Output

True

Condition with use of LOGICAL OR

have_injection1 or have_fever

#Output

True

Condition with use of LOGICAL OR

have_fever or have_injection2

#Output

True

Condition with use of LOGICAL OR

have_fever or have_headache

#Output

False

34

Example 4:

Make a python program and input three integer numbers from the user if either one of the

number is positive then print ‘Atleast one of them is positive’ else print ‘All three numbers

are negative’

Solution:

number1 = int(input()) #Input first number from the user

number2 = int(input()) #Input second number from the user

number3 = int(input()) #Input third number from the user

if number1>=0 or number2 >= 0 or number3>=0: # Check if any number is positive

 print("Atleast one of them is positive")

else:

 print("All three numbers are negative")

Test Case 1:

100

-300

-900

#Output

Atleast one of them is positive

Test Case 2:

-700

-12300

-18000

#Output

All three numbers are negative

Test Case 3:

0

-12

-23

#Output

Atleast one of them is positive

2.2.1.3 Logical NOT

Logical NOT operator returns True if the operand is False and returns False if the operand is

True. The truth table is mentioned in table 2.4 and its flow diagram is shown in figure 2.3.

Table 2.4: Truth Table for Logical NOT

Condition Output (not(Condition))

True False

False True

35

not(Condition)

Condition=True
Yes

Output is False

No

Output is True

Figure 2.3: Flowchart: Logical NOT

Example 5: Use of Logical NOT

#variables with initial values

have_injection1 = True

have_fever = False

Condition with use of LOGICAL NOT

not(have_injection1)

Output

False

Condition with use of LOGICAL NOT

not(have_fever)

Output

True

2.3 PRECEDENCE OF LOGICAL OPERATORS

Table 2.5 shows the precedence of logical operators.

Table 2.5: Precedence of Logical Operators

Operator Name Symbol Precedence Level

Logical NOT Not 1

Logical AND And 2

Logical OR Or 3

Example 6:

#variables with initial values

have_injection1=True

have_injection2=True

have_fever=False

have_headache=False

#Condition with Multiple Logical Operators

if have_fever == True or have_injection1==True and not(have_headache):

 print("CovidChances")

else:

36

 print("NoCovidChances")

#Output

CovidChances

Explanation of Example 6:

In above example 6, first ‘not’ operator is executed for not(have_headache) and the value

becomes True, then ‘and’ operator is executed for (have_injection1==True and True) and the

value becomes True and at last ‘or’ operator is executed for have_fever or True and the value

becomes True, the final output is CovidChances.

Example 7:

#variables with initial values

have_injection1=True

have_injection2=True

have_fever=False

have_headache=False

#Condition with Multiple Logical Operators

if have_fever == True and have_injection1==True or have_headache==True:

 print("CovidChances")

else:

 print("NoCovidChances")

#Output

NoCovidChances

Explanation of Example 7:

In above example 7, first ‘and’ operator is executed for (have_fever == true and

have_injection1==True) and the value becomes False, then ‘or’ operator is executed for

(False or have_headache==True) and the value becomes False and the final output is

NoCovidChances.

2.4 ORDER OF EVALUATION OF LOGICAL OPERATORS

Python evaluates the expression from left to right if there are multiple operators in the

expression.

Example 8:

#variables with initial values

have_injection1=True

have_injection2=True

have_fever=False

have_headache=False

#Condition with Multiple Logical Operators

if have_headache == True or have_fever==True and have_injection1==True and

have_injection2==True:

 print("CovidChances")

else:

 print("NoCovidChances")

#Output

37

NoCovidChances

Explanation: In example 8, firstly ‘and’ operator is implemented as it has higher precedence

then all other operators. There are two ‘and’ operators in above expression, so order of

evaluation of logical operators is from left to right, so firstly (have_fever==True and

have_injection1) is evaluated and its output is False and then this output is evaluated as

(False and have_injection2==True) and the output is again False and then last operation is

performed i.e. (have_headache == True or False) and for the final output else part will work

and it is NoCovidChances.

Example 9:

#variables with initial values

have_injection1=True

have_injection2=True

have_fever=False

have_headache=False

#Condition with Multiple Logical Operators

if have_headache == True or not(have_fever==True) and have_injection1==True and

have_injection2==True:

 print("CovidChances")

else:

 print("NoCovidChances")

#Output

CovidChances

Explanation: In example 9, firstly ‘not’ operator is executed as it has higher precedence then

all other operators in the expression and the output of not(have_fever==True) becomes True

and then ‘and’ operator is implemented as (True and have_injection1==True) and the output

is true and then this output is used as (True and have_injection2==True) and the output is

True and then it is used as (have_headache==True or True) and the final output is True so

else part is executed and it results in CovidChances.

Example 10: Make a python program to find out a year is leap year or not using Logical

operators.

Basic Understanding: First of understand the basics of leap year, a year always divided by 4

is not a leap year. Surprised, yes but it is true. A year when divided by 4 it should not be

divided by 100 then it is a leap year. If it is divided by 100 then it should be divided by 400

for being a leap year unless it is not a leap year

Solution:

Python Program to check whether a year is leap year or not using Logical Operators

normal_year = int(input())

if normal_year%400 == 0 or normal_year%4 == 0 and normal_year%100 != 0:

 print("Leap Year")

else:

 print("Not a Leap Year")

38

Hints: firstly ‘and’ operators is executed and then ‘or’ operator is executed

Test case 1:

1008

#Output

Leap Year

Test case 2:

2000

#Output

Leap Year

Test case 3:

1900

#Output

Not a Leap Year

2.5 COMPARISON OPERATORS

These operators compare the operand values and on the basis of these results, it returns True

or False. The list of comparison operators used in python are:

a) < (less than operator)

It checks condition whether left hand side value is less than right hand side value. After

comparing these values, it returns True or False. If condition is True then it returns True else

False.

Example:

i) 17 < 23

Output: True

ii) 28 < 23

Output: False

b) > (greater than operator)

It checks condition whether left hand side value is greater than right hand side value. After

comparing these values, it returns True or False. If condition is True then it returns True else

False.

Example:

i) 17 > 23

Output: False

ii) 28 > 23

Output: True

c) <= (less than and equal to operator)

It checks condition whether left hand side value is less than and equal to right hand side

value. After comparing these values, it returns True or False. If condition is True then it

returns True else False.

Example:

i) 17 <= 23

Output: True

39

ii) 28 <= 23

Output: False

iii) 17 <= 17

Output: True

d) >= (greater than and equal to operator)

It checks condition whether left hand side value is greater than and equal to right hand side

value. After comparing these values, it returns True or False. If condition is True then it

returns True else False.

Example:

i) 17 >= 23

Output: True

ii) 28 >= 23

Output: False

iii) 17 >= 17

Output: True

e) == (equal to operator)

It checks condition whether left hand side value is equal to right hand side value. After

comparing these values, it returns True or False. If condition is True then it returns True else

False.

Example:

i) 17 == 23

Output: False

ii) 180== 180

Output: True

f) != (Not equal to operator)

It checks condition whether left hand side value is not equal to right hand side value. After

comparing these values, it returns True or False. If condition is True then it returns True else

False.

Example:

i) 17 != 23

Output: True

ii) 180!= 180

Output: False

g) is (identity operator)

is operator is used to check whether both operands point to the same object or not. This is

different from ==. In equal to operator, it is checked whether both operand have same value

but here is operator checks whether both operands point to the same object or not [1].

Example :

#List1 is initialised with four values

mixed_list1 = [34,45,89,123]

40

List2 is initialised with four values

mixed_list2 = [34,45,89,123]

List 3 is assigned values of List1 (Note: Both will have same address)

mixed_list3 = mixed_list1

#Printed the elements of List1

print(mixed_list1)

#Printed the elements of List2

print(mixed_list2)

#Printed the elements of List3

print(mixed_list3)

Here address of List1 is printed

print(id(mixed_list1))

Here address of List1 is printed

print(id(mixed_list2))

Here address of List1 is printed

print(id(mixed_list3))

Here, values are checked of both operands

if mixed_list1 == mixed_list2:

 print("Both mixed-list1 and mixed_list2 have equal value")

else:

 print("Both mixed-list1 and mixed_list2 have not equal value")

if mixed_list1 == mixed_list3:

 print("Both mixed-list1 and mixed_list3 have equal value")

else:

 print("Both mixed-list1 and mixed_list3 have not equal value")

if mixed_list2 == mixed_list3:

 print("Both mixed-list2 and mixed_list3 have equal value")

else:

 print("Both mixed-list2 and mixed_list3 have not equal value")

Here checking of operands point to the same object or not

if mixed_list1 is mixed_list2:

 print("Both mixed-list1 and mixed_list2 point to the same object")

else:

 print("Both mixed-list1 and mixed_list2 do not point to the same object ")

if mixed_list1 is mixed_list3:

 print("Both mixed-list1 and mixed_list3 point to the same object")

else:

 print("Both mixed-list1 and mixed_list3 do not point to the same object ")

if mixed_list2 is mixed_list3:

41

 print("Both mixed-list2 and mixed_list3 point to the same object")

else:

 print("Both mixed-list2 and mixed_list3 do not point to the same object ")

#Output

[34, 45, 89, 123]

[34, 45, 89, 123]

[34, 45, 89, 123]

89447112

89448072

89447112

Both mixed-list1 and mixed_list2 have equal value

Both mixed-list1 and mixed_list3 have equal value

Both mixed-list2 and mixed_list3 have equal value

Both mixed-list1 and mixed_list2 do not point to the same object

Both mixed-list1 and mixed_list3 point to the same object

Both mixed-list2 and mixed_list3 do not point to the same object

h) is not (identity operator)

is not operator is used to check whether both operands do not point to the same object . This

is different from !=. In not equal to operator, it is checked whether both operand have not

same value but here is operator checks whether both operands do not point to the same

object.

Example:

#List1 is initialised with four values

mixed_list1 = [34,45,89,123]

List2 is initialised with three values

mixed_list2 = [34,89,123]

List 3 is assigned values of List1 (Note: Both will have same address)

mixed_list3 = mixed_list1

#Printed the elements of List1

print(mixed_list1)

#Printed the elements of List2

print(mixed_list2)

#Printed the elements of List3

print(mixed_list3)

Here address of List1 is printed

print(id(mixed_list1))

Here address of List1 is printed

print(id(mixed_list2))

Here address of List1 is printed

print(id(mixed_list3))

Here, values are checked of both operands

42

if mixed_list1 != mixed_list2:

 print("Both mixed-list1 and mixed_list2 have not equal value")

else:

 print("Both mixed-list1 and mixed_list2 have equal value")

if mixed_list1 != mixed_list3:

 print("Both mixed-list1 and mixed_list3 have not equal value")

else:

 print("Both mixed-list1 and mixed_list3 have equal value")

if mixed_list2 != mixed_list3:

 print("Both mixed-list2 and mixed_list3 have not equal value")

else:

 print("Both mixed-list2 and mixed_list3 have equal value")

Here checking of operands point to the same object or not

if mixed_list1 is not mixed_list2:

 print("Both mixed-list1 and mixed_list2 do not point to the same object")

else:

 print("Both mixed-list1 and mixed_list2 point to the same object ")

if mixed_list1 is not mixed_list3:

 print("Both mixed-list1 and mixed_list3 do not point to the same object")

else:

 print("Both mixed-list1 and mixed_list3 point to the same object ")

if mixed_list2 is not mixed_list3:

 print("Both mixed-list2 and mixed_list3 do not point to the same object")

else:

 print("Both mixed-list2 and mixed_list3 point to the same object ")

#Output

[34, 45, 89, 123]

[34, 89, 123]

[34, 45, 89, 123]

89101000

89101512

89101000

Both mixed-list1 and mixed_list2 have not equal value

Both mixed-list1 and mixed_list3 have equal value

Both mixed-list2 and mixed_list3 have not equal value

Both mixed-list1 and mixed_list2 do not point to the same object

Both mixed-list1 and mixed_list3 point to the same object

Both mixed-list2 and mixed_list3 do not point to the same object

43

i) in (membership operator)

This operator checks whether the given value is present in the sequence or not. It evaluates to

True if it is present else False.

Examples:

i) var_int1=459

mixed_list1 = [23,459,478,65]

if var_int1 in mixed_list1:

 print("Variable value is present in the given list")

else:

 print("Variable value is absent in the given list")

Output: Variable value is present in the given list

ii) var_int1=455

mixed_list1 = [23,459,478,65]

if var_int1 in mixed_list1:

 print("Variable value is present in the given list")

else:

 print("Variable value is absent in the given list")

Output: Variable value is absent in the given list

j) not in(membership operator)

This operator checks whether the given value is not present in the sequence or not. It

evaluates to True if it is not present else False.

Examples:

i) var_int1=459

mixed_list1 = [23,459,478,65]

if var_int1 not in mixed_list1:

 print("Variable value is not present in the given list")

else:

 print("Variable value is present in the given list")

Output: Variable value is present in the given list

ii) var_int1=455

mixed_list1 = [23,459,478,65]

if var_int1 not in mixed_list1:

 print("Variable value is not present in the given list")

else:

 print("Variable value is present in the given list")

Output: Variable value is not present in the given list

44

2.5.1 Chaining of Comparison Operators

All the above-mentioned comparison operators gives the output in the form of True or False.

While doing chaining using comparison operators, it is done arbitrarily [2].

Chaining can be better understood by the following example:

int_var1 > int_var2

int_var2 > int_var3

For above, chaining can be done like

int_var1 > int_var2 > int_var3

Syntax:

Operand1 operator1 Operand2 operator2 Operand3 operator3 Operand4 ….

Always process chaining from left to right as precedence of comparison operators is same.

Example 11: Program 1 of Chaining to understand the concept

int_var1 = 189

int_var2 = 174

int_var3 = 67

Firstly check int_var1 >int_var2

print(int_var1 > int_var2)

Now, Check int_var2 > int_var3

print(int_var2 > int_var3)

Do chaining and check the output

print(int_var1 > int_var2 > int_var3)

Above chaining is equivalent to

if (int_var1 > int_var2 and int_var2 > int_var3):

 print(True)

else:

 print(False)

#Output

True

True

True

True

45

Example 12: Program 2 for deeper understanding of chaining operator

int_var1 = 189

int_var2 = 474

int_var3 = 267

Firstly check int_var1 >int_var2

print(int_var1 < int_var2)

Now, Check int_var2 > int_var3

print(int_var2 > int_var3)

Do chaining and check the output

print(int_var1 < int_var2 > int_var3) # Perfectly Legal

Above chaining is equivalent to

if (int_var1 < int_var2 and int_var2 > int_var3):

 print(True)

else:

 print(False)

#Output

True

True

True

True

Example 13: Program 3 of Chaining

int_var4=34

print(27<int_var4<35)

print(37<int_var4<45)

print(27<int_var4>14)

print(27<int_var4>67)

print(34==int_var4>17)

print(34==int_var4>67)

#Output

46

True

False

True

False

True

False

Example 14: Chaining operators complex programs

int_var1=28

int_var2=28

int_var3=37

Here checking int_var1 and int_var2 has same address and int_var3 is having different address

print(int_var1 is int_var2 is not int_var3)

Addresses can be checked

print(id(int_var1))

print(id(int_var2))

print(id(int_var3))

print(int_var1 is not int_var2 is int_var3)

int_var4=12

print(int_var1 is int_var2 is not int_var3 > int_var4)

Above left to right will work

int_var5=9

print(int_var1 is int_var2 is not int_var3 > int_var4 >int_var5)

int_var6=89

print(int_var1 is int_var2 is not int_var3 > int_var4 >int_var5< int_var6)

int_var7=76

print(int_var1 is int_var2 is not int_var3 > int_var4 >int_var5< int_var6 >int_var7)

#Output

True

8790643746032

8790643746032

8790643746320

47

False

True

True

True

True

Example 15: Another program for chaining

Variables with initial values

int_var1=28

int_var2=28

int_var3=37

print(int_var1==int_var2)

int_var4=0

print(int_var4 < int_var1==int_var2)

int_var5=0

print(int_var4 < int_var1==int_var2 <int_var5)

int_var6=45

print(int_var4 < int_var1==int_var2 >int_var6)

#Output

True

True

False

False

Example 16: Chaining with usage of ==,!=,is, is not with lists

#List1 is initialised with four values

mixed_list1 = [34,45,89,123]

List2 is initialised with three values

mixed_list2 = [34,89,123]

List 3 is assigned values of List1 (Note: Both will have same address)

mixed_list3 = mixed_list1

48

#Printed the elements of List1

print(mixed_list1)

#Printed the elements of List2

print(mixed_list2)

#Printed the elements of List3

print(mixed_list3)

Here address of List1 is printed

print(id(mixed_list1))

Here address of List1 is printed

print(id(mixed_list2))

Here address of List1 is printed

print(id(mixed_list3))

First if-else

if mixed_list1 != mixed_list2 is not mixed_list3:

 print("The first if condition is True")

else:

 print("The first else part is worked")

#Second if-else

if mixed_list1 != mixed_list3 is not mixed_list2:

 print("The second if condition is True")

else:

 print("The second else part is worked")

Third if-else

if mixed_list2 != mixed_list3 is not mixed_list1:

 print("The third if condition is True")

else:

 print("The third else part is worked")

Fourth if-else

if mixed_list1 != mixed_list2 is mixed_list3:

 print("The fourth if condition is True")

else:

 print("The fourth else part is worked")

Fifth if-else

49

if mixed_list1 != mixed_list3 is mixed_list2:

 print("The fifth if condition is True")

else:

 print("The fifth else part is worked")

sixth if-else

if mixed_list2 != mixed_list3 is mixed_list1:

 print("The sixth if condition is True")

else:

 print("The sixth else part is worked")

seventh if-else

if mixed_list1 is not mixed_list2 == mixed_list3:

 print("The seventh if condition is True")

else:

 print("The seventh else part is worked")

eight if-else

if mixed_list1 is not mixed_list3 == mixed_lis2:

 print("The eight if condition is True")

else:

 print("The eight else part is worked")

ninth if-else

if mixed_list2 is not mixed_list3==mixed_list1:

 print("The ninth if condition is True")

else:

 print("The ninth else part is worked")

tenth if-else

if mixed_list1 is mixed_list2 == mixed_list3:

 print("The tenth if condition is True")

else:

 print("The tenth else part is worked")

eleventh if-else

if mixed_list1 is mixed_list3 == mixed_list2:

 print("The eleventh if condition is True")

else:

 print("The eleventh else part is worked")

50

twelveth if-else

if mixed_list2 is mixed_list3==mixed_list1:

 print("The twelfth if condition is True")

else:

 print("The twelfth else part is worked")

#Output

[34, 45, 89, 123]

[34, 89, 123]

[34, 45, 89, 123]

90139784

90139720

90139784

The first if condition is True

The second else part is worked

The third else part is worked

The fourth else part is worked

The fifth else part is worked

The sixth if condition is True

The seventh else part is worked

The eight else part is worked

The ninth if condition is True

The tenth else part is worked

The eleventh else part is worked

The twelfth else part is worked

2.6 USAGE OF BREAK, CONTINUE AND PASS STATEMENTS

2.6.1 Break Statement

The keyword break is used to interrupt the running loop. Basically, this is intentional. When

break statement is encountered, the flow goes to immediate step after the loop [3].

Syntax:

break

Example 17: Usage of break with while loop

int_var1 = 5

while int_var1<15:

 if int_var1 == 9:

 break

 print(int_var1)

 int_var1 = int_var1+1

print("Outside loop now")

51

#Output

5

6

7

8

Outside loop now

Example 18: Usage of break with for loop

for int_var1 in range(5,15):

 if int_var1!=9:

 print(int_var1)

 else:

 break

print("Outside loop now")

#Output

5

6

7

8

Outside loop now

Example 19: Search an element in the list

mixed_list1 = [12, 3, 24, 45, 89, 108, 23]

item_find = int(input("Enter the item you want to find out from the list"))

num_elements = len(mixed_list1)

flag=0

for i in range(0, num_elements):

 if (mixed_list1[i] == item_find):

 flag=1

 break

if flag==0:

 print("Element is not present in array")

else:

 print("Element is present in array")

Test Case 1:

#Input

Enter the item you want to find out from the list88

#Output

52

Element is not present in array

Test Case 2:

#Input

Enter the item you want to find out from the list12

#Output

Element is present in array

Test Case 3:

#Input

Enter the item you want to find out from the list108

#Output

Element is present in array

2.6.2 Continue Statement

The keyword continue is used to end the current iteration of the loop and iterate the next iteration

of the loop [4].

Syntax:

continue

Example 20: Usage of continue with while loop

int_var1 = 5

while int_var1<15:

 int_var1 = int_var1+1;

 if int_var1 == 9:

 continue

 print(int_var1)

print("Outside loop now")

#Output

6

7

8

10

11

12

13

14

15

Outside loop now

53

Example 21: Usage of continue with for loop

for int_var1 in range(5,15):

 if int_var1!=9:

 continue

 else:

 print(int_var1)

print("Outside loop now")

#Output

9

Outside loop now

2.6.3 Pass Statement

pass statement is simply does not do anything. It can be used in loops, functions, classes etc. It is

different from comments. As interpreter ignore comments whereas interpreter does not ignore

pass statement.

Syntax

pass

Example 22: Program to show Without pass statement, an error will occur

for int_var1 in [12,23,89,56,235]:

#Output

SyntaxError: unexpected EOF while parsing

Example 23: Program with relation to example 22 but with using pass

for int_var1 in [12,23,89,56,235]:

 pass

After executing the above statements, No error will be generated

Example 24: pass with function and loop

str_var1 = "JagatOpenUniversity"

for new_var1 in str_var1:

 if new_var1 =='O' or new_var1=='U':

 print("Pass statement is exceuted when value is O and U")

 pass

54

 print(new_var1)

def fun_pass():

 pass

print("Now fun_pass() is called")

fun_pass()

print("After fun_pass() calling, nothing is printed as pass statement is in fun_pass()")

#Output

J

a

g

a

t

Pass statement is exceuted when value is O and U

O

p

e

n

Pass statement is exceuted when value is O and U

U

n

i

v

e

r

s

i

t

y

Now fun_pass() is called

After fun_pass() calling, nothing is printed as pass statement is in fun_pass()

2.7 SELF-CHECKED QUESTIONS

A) What will be the output of the following code:

for int_var1 in range(3):

 for int_var2 in range(3):

 if int_var2==2:

55

 break

 print(int_var1,end=" ")

a) 0 0 1 1 2 2 b) 0 1 0 1 0 1 c) 0 1 2 0 1 2 d) 0 1 0 2 0 3

B) Select the best option for the following code:

for int_var1 in range(3):

 for int_var2 in range(3):

 if int_var2==2:

 break

 print(int_var2,end=" ")

a) 0 0 1 1 2 2 b) 0 1 0 1 0 1 c) 0 1 2 0 1 2 d) 0 1 0 2 0 3

C) Write the output of the following code

for int_var1 in range(6):

 for int_var2 in range(6):

 if int_var2==2:

 continue

 print(int_var2,end=" ")

D) Write the output of the following code

for int_var1 in range(6):

 for int_var2 in range(6):

 if int_var2==2:

 continue

 print(int_var1,end=" ")

E) Mention the output of the code

for int_var1 in range(3):

 for int_var2 in range(3):

 if int_var2==2:

 pass

 print(int_var2,end=" ")

2.8 SUMMARY

After reading this unit, students will be able to differentiate between all logical operators and

they will know where they have to use which operator. When students are working on break and

continue statements. There is a lot of confusion, how these statements will work. Appropriate

programming examples are given to provide deeper understanding of these concepts. The unit

gives programming examples related with logical operators, chaining comparison operators, pass

statement. Overall, this unit helps in building complex programs. Students can differentiate pass

56

statement and comments. This unit targets to build logical concepts so that they can do MCQ,

predict the output of the code along with programs construction.

2.9 PRACTICE QUESTIONS

A) Which of the following will not be printed when the Python3 cod3 is run

for str_var1 in 'JagatOpenUniversity':

 if str_var1 == 'O' or str_var1=='U':

 continue

 print('The string alphabet is :' + str_var1)

a) The string alphabet is :a

b) The string alphabet is :U

c) The string alphabet is :e

d) The string alphabet is :n

B) How many times ‘?’ will be printed when the following code is executed on Python3

platform.

for int_var1 in [5, 8, 10]:

 for int_var2 in [5,6,7,8,9,10]:

 if int_var1!=int_var2:

 continue

 print('?')

a) 1

b) 3

c) 4

d) 6

C) How many times ‘?’ will be printed when the following code is executed on Python3

platform.

for int_var1 in [5, 8, 10]:

 for int_var2 in [5,6,7,8,9,10]:

 if int_var1!=int_var2:

 break

 print('?')

a) 1

b) 3

c) 4

d) 6

57

D) Mention the output of the following code

int_var1=12

int_var2 = 37

int_var3 =23

print(int_var2> int_var1==int_var3)

E) Mention the output

int_var1=12

int_var2 = 37

int_var3 =12

print(int_var2> int_var1==int_var3 < int_var2)

F) Predict the output

int_var1 = 1

while True:

 if int_var1%9 == 0:

 break

 print("The output when this statement is executed",int_var1)

 int_var1=int_var1+4

print("At the end, you are out of the loop and this line is printed")

G) Predict the output

int_var1 = 1

while int_var1<19:

 if int_var1%9 == 0:

 int_var1=int_var1+1

 continue

 print("The output when this statement is executed",int_var1)

 int_var1=int_var1+4

print("At the end, you are out of the loop and this line is printed")

H) Choose the correct option after running the following code:

int_var1 = 1

while int_var1<19:

 if int_var1%2 == 0:

 int_var1=int_var1+1

 continue

 if int_var1%9 == 0:

58

 int_var1=int_var1+1

 pass

 print(int_var1,end=" ")

 int_var1=int_var1+4

a) 1 5 10 15 b) 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17

c) 1 5 9 13 17 d) 1 3 5 7 9 11 13 15 17

I) Select the best option after running the following code

int_var1 = 1

while int_var1<19:

 if int_var1%2 == 0:

 int_var1=int_var1+1

 continue

 if int_var1%11 == 0:

 int_var1=int_var1+1

 break

 print(int_var1,end=" ")

 int_var1=int_var1+4

a) 1 5 9 13 17

b) 1 3 5 7 9 11 13 15 17

c) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J) What will be the correct output of the following code

bool_var1 = False

while True:

 print(True)

 break

K) What will be the correct output of the following code

bool_var1 = True

while True:

 print(True)

 break

L) Differentiate pass and comments statement in python programming

M) Construct a program to find out whether 179 is a prime number or not.

N) With the help of logical operators, find out the largest of four numbers.

O) List out the differences between break and continue.

59

P) Mention the precedence level of logical operators and explain with a suitable example

which shows precedence level usage.

Q) List the usage of ‘is operator’ and ‘is not operator’ with suitable example.

REFERENCES

[1] https://www.geeksforgeeks.org/difference-operator-python/

[2] https://www.tutorialspoint.com/chaining-comparison-operators-in-python

[3] https://www.programiz.com/python-programming/break-continue

[4] https://www.w3schools.com/python/ref_keyword_continue.asp

https://www.tutorialspoint.com/chaining-comparison-operators-in-python
https://www.programiz.com/python-programming/break-continue

60

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT III: PROGRAM FLOW CONTROL

STRUCTURE

3.0 Objectives

3.1Introduction

3.2 Flow Control

 3.2.1 Conditional Statements

 3.2.1.1 Simple if statement

 3.2.1.2 if-else statement

 3.2.1.3 if elif else statement Or Chained Conditional statements

 3.2.1.4 Nested Conditions

 3.2.2 Shorthand Notations

 3.2.2.1 Shorthand Notations for if

 3.2.2.2 Shorthand Notations for if else

 3.2.2.3 Shorthand Notations for 3 if elif else

3.3 Loops

 3.3.1 While Loop

 3.3.1.1 Use of else with while loop

 3.3.2 for loop

 3.3.2.1 Iterating over Sequences using Index

 3.3.2.2 Use of else with for Loop

 3.3.3 Nested Loop

3.4 Self-Check Questions

3.5 Summary

3.6 Practice Questions

61

Python
Program

Flow

Conditional
Statements

Loops
Function

Calls

3.0 OBJECTIVES

 Learn in detail about conditional statements followed by syntax and coding programs.

 Shorthand notations learning with syntax and examples

 Familiarize with different types of loops.

 Detailed learning about nested loops along with coding examples.

3.1 INTRODUCTION

This module targets to give deep insights into conditional statements like if, if-else, if-elif-else,

nested if-else. Syntax along with examples are also mentioned. Program examples are like leap

year, even-odd number, whole number or not, greatest among three numbers and four numbers,

etc. Conditional statements help in knowing the execution order of code statements. The

statements like if, if-else, etc. help in making the decision and repeat certain blocks to do a

particular task. For repeating the tasks, loops are used extensively. For and while loops are used

to iteratively repeat tasks. Syntax and examples related to loops are mentioned in detail. How

else part works with for and while loop is explained. Followed by loops working on lists, iterable

objects, etc. This module helps the users in getting knowledge about different conditional

statements and loops. Functions calls will be explained in the next module.

3.2 FLOW CONTROL

Any program written in any programming language has a certain flow and the flow tells the

order in which the programming language code flows. Generally, the programming language

code control flow is controlled by the following:

1. Conditional Statements

2. Loops

3. Function Calls

3.1 Python Control Flow

3.2.1 Conditional Statements

Conditional statements are also known as conditional constructs or conditional expressions. They

perform different actions depending upon the evaluation of the conditions either True or False.

The conditions use different operators like arithmetic, relational, comparison, etc. The

conditional statements consist of the following types:

62

1. Simple if statement

2. if-else statement

3. if elif else statement or Chained Conditional Statements

4. Nested Conditions

3.2.1.1 Simple if Statement

Simple if statement is one of the commonly used conditional statements in mostly all

programming languages for decision making. The keyword used for this conditional statement is

“if”. The “if” keyword is followed with a condition and this condition is „True‟ then a certain

indented block of code is executed that is inside “if” block otherwise not. The syntax is

mentioned below:

Syntax:

If (condition):

 block of statement(s)

Rest of the statements

In the above syntax, if condition is True then both block of statement(s) and rest of the statements

will be executed and if condition is False then only rest of the statements will be executed.

Example 1: # Check a number is even

number1=16 # Variable with initialization

if(number1%2==0): # if condition

 print("Even Number")

print("This statement of the code is always printed") #Rest of the statements

#Output

Even Number

This statement of the code is always printed

Example 2: # Check a number is even

number1=15 # Variable with initialization

if(number1%2==0): # if condition

 print("Even Number")

print("This statement of the code is always printed") #Rest of the statements

#Output

This statement of the code is always printed

Example 3: # Check chances of COVID

have_fever = True # Variable with initialization

if(have_fever): # if condition

 print("Chances of COVID")

print("This statement of the code is always printed") #Rest of the statements

#Output

Chances of COVID

63

This statement of the code is always printed

Example 4: Check Chances of COVID Variant

have_fever = False # Variable with initialization

if(have_fever): # if condition

 print("Chances of COVID")

print("This statement of the code is always printed") #Rest of the statements

#Output

This statement of the code is always printed

3.2.1.2 if-else Statement

This conditional statement uses the keyword if-else. if condition is True then block of if

statement(s) is executed and if condition is False then else part i.e. a block of else statement(s) is

executed. The syntax is mentioned below:

Syntax:

if (condition():

 block of if statement(s)

else:

 block of else statement(s)

Example 5: # Check Immunization Improves for COVID or Not

have_injection1 = True

have_injection2 = True

if(have_injection1 == True and have_injection2==True):

 print("Immunization improves for COVID")

else:

 print("Higher chances of prone to COVID")

#Output

Immunization improves for COVID

Example 6: Check Number is even or odd

number1=15

if(number1%2==0):

 print("Number is Even")

else:

 print("Number is Odd")

#Output

Number is Odd

Example 7: Check whether a number is a whole number or not

x = 0.87

if (x - int(x) == 0):

64

 print("Whole Number")

else:

 print("Has decimals")

#Output

Has decimals

Example 8: Find the greater element between two integer elements (Assumption is that both

elements cannot be equal)

number1=int(input())

number2=int(input())

if number1>number2:

 print("Number1 is greater")

else:

 print("Number2 is greater")

Test case 1:

#Input Elements

122

213

#Output

Number2 is greater

Test case 2:

#Input Elements

422

113

#Output

Number1 is greater

3.2.1.3 if elif else Statement Or Chained Conditional Statements

This statement is used to control multiple conditions in the program. The if condition is False

then elif is used to control multiple conditions.

Syntax:

if(conidtion1):

 block of statement(s) of if

elif(condition2):

 block of statement(s) of elif

elif(condition3):

 block of statement(s) of elif

.................

.................

.................

else:

 block of statement(s) of else

#NOTE: else part is optional, the program will work if you do not use else part in the code too.

Example 9: # Compare two integer numbers

number1=int(input())

number2=int(input())

65

if number1>number2:

 print("Number1 is greater")

elif number1<number2:

 print("Number 2 is greater")

else:

 print("Both numbers are equal")

Test case 1:

#Inputs

122

213

#Output

Number2 is greater

Test case 2:

#Inputs

422

113

#Output

Number1 is greater

Test case 3:

#Inputs

333

333

#Output

Both numbers are equal

Example 10: Check whether a positive number is two digit, three digit, four digit or greater that

four digit number and print an appropriate message.

user_number=int(input())#input from the user

if user_number>=0 and user_number <=9:

 print("Single Digit Number")

elif user_number >=10 and user_number <=99:

 print("Two Digit Number")

elif user_number >=100 and user_number <=999:

 print("Three Digit Number")

elif user_number >=1000 and user_number <=9999:

 print("Four Digit Number")

else:

 print("Number is greater than Four Digit Number")

Test Case 1:

#Input

10

66

#Output

Two Digit Number

Test Case 2:

#Input

9989

#Output

Four Digit Number

Test Case 3:

#Input

6748309

#Output

Number is greater than Four Digit Number

Example 11: Check whether a year is a leap year or not

NOTES for Basic Understanding: Leap year is a year if it is divided by 400. If it is not divided

by 400 then check is it divided by 100, if it is divided by 100 then it is not a leap year. If a

number is neither divisible by 100 nor 400 then only check whether a given number is divided by

4, if it is divided by 4 then it is a leap year unless it is not a leap year.

normal_year = int(input())

if (normal_year%400 == 0):

 print("Leap Year")

elif (normal_year%100 == 0):

 print("Not a Leap Year")

elif (normal_year%4 == 0):

 print("Leap Year")

else:

 print("Not a Leap Year")

Test Case 1:

#Input

2000

#Output

Leap Year

Test Case 2:

#Input

1900

#Output

Not a Leap Year

Test Case 3:

#Input

2020

#Output

Leap Year

Test Case 4:

#Input

2021

#Output

Not a Leap Year

67

3.2.1.4 Nested Conditions

Nested conditions consist of nested if as well as nested if-else. In the nested if, we have multiple

if in outer if block. In the nested if-else block, we have if-else statements inside other if or else or

both blocks. The important thing is here to take care of indentation and it is the way to know the

level of nesting.

Syntax of nested if:

if condition1():

 if condition2():

 if condition3():

 …….

 …….

 block3 of statement(s)

 block 2 of statement(s)

 block 1 of statement(s)

else:

 block of statement(s)

Syntax of nested if-else:

if condition1():

 if condition2(): #optional if-else

 block of if statement(s)

 else:

 block of else statement(s)

else:

 if condition3(): #optional if-else

 block of if statement(s)

 else:

 block of else statement(s)

 Example 12: Find the greatest of three integer numbers (Assume that all three numbers are

distinct)

number1=int(input())

number2=int(input())

number3=int(input())

if number1>number2:

 if number1>number3:

 print("number1 is greatest")

 else:

 print("number3 is greatest")

else:

 if number2>number3:

68

 print("number2 is greatest")

 else:

 print("number3 is greatest")

Test case1:

#Inputs

23

36

47

#Output

number3 is greatest

Test case2:

#Inputs

67

50

56

#Output

number1 is greatest

Test case3:

#Inputs

145

567

444

#Output

number2 is greatest

Example 13: Check whether a year is a leap year or not

normal_year = int(input())

if normal_year%4==0:

 if normal_year%100==0:

 if normal_year%400==0:

 print("Leap Year")

 else:

 print("Not a Leap Year")

 else:

 print("Leap Year")

else:

 print("Not a Leap Year")

Test Case 1:

#Input

2000

#Output

Leap Year

Test Case 2:

69

#Input

1900

#Output

Not a Leap Year

Test Case 3:

#Input

2020

#Output

Leap Year

Test Case 4:

#Input

2021

#Output

Not a Leap Year

Example 14: Find the greatest of four integer numbers (Assume that all four numbers are

distinct)

number1=int(input())

number2=int(input())

number3=int(input())

number4=int(input())

if number1>number2:

 if number1>number3:

 if number1>number4:

 print("number1 is greatest")

 else:

 print("numbe4 is greatest")

 else:

 if number3> number4:

 print("number3 is greatest")

 else:

 print("number4 is greatest")

else:

 if number2>number3:

 if number2>number4:

 print("number2 is greatest")

 else:

 print("numbe4 is greatest")

 else:

 if number3> number4:

 print("number3 is greatest")

 else:

 print("number4 is greatest")

Test Case1:

$inputs

11

21

25

45

#output

number4 is greatest

Test Case2:

$inputs

70

23

45

34

12

#output

number2 is greatest

Test Case3:

$inputs

104

210

250

145

#output

number3 is greatest

Test Case4:

$inputs

678

246

298

484

#output

number1 is greatest

3.2.2 Shorthand Notations:

3.2.2.1 Shorthand Notation for if

Syntax:

if (condition): if-statement

Example 15: Check a number is Even Number

number1=16

if number1%2==0: print("Even Number")

#Output

Even Number

3.3.2.2 Shorthand Notation for if else

Syntax:

if-statement(s) if (condition) else else-statement(s)

Example 16: Check whether a number is even or odd

number1=int(input())

print("Number is Even") if number1%2==0 else print("Number is Odd")

Test Case 1

#input

15

#output

Number is Odd

Test Case 2

#input

28

#Output

Number is Even

Example 17: Check whether a number is a whole number or not

x = 0.87

71

print("Whole Number") if(x - int(x) == 0) else print("Has decimals")

#Output

Has decimals

Example 18: Find greater of two elements

number1=int(input())

number2=int(input())

print("number1 is greater") if(number1>number2) else print("number2 is greater")

Test Case1:

#Inputs

25

67

#Output

number2 is greater

Test Case2:

#Inputs

475

143

#Output

number1 is greater

3.2.2.3 Shorthand Notation for if elif else

Example 19: Compare two integer numbers

number1=int(input())

number2=int(input())

print("Number1 is greater") if number1>number2 else print("Both numbers are equal") if

number1==number2 else print("Number2 is greater")

Test case 1:

#Inputs

122

213

#Output

Number2 is greater

Test case 2:

#Inputs

422

113

#Output

Number1 is greater

Test case 3:

#Inputs

72

333

333

#Output

Both numbers are equal

3.3 LOOPS

Loops execute a specific block of code that contains many statements and this block is executing

repetitively. Two types of loops are there in python:

a) while loop

b) for loop

In loops, three things to be taken care and these are mentioned below:

a) Initialization

b) Condition

c) Increment/Decrement

In initialization, variables are initialized to certain values. In the condition part, conditions are

specified that tells how many times the loop will be executed repetitively. The third part is

increment or decrement of the values of variables that are used in the condition part so that loop

will be stopped after performing a particular task.

3.3.1 While Loop

This loop iterate over a block of code repetitively or repeatedly until the condition is satisfied or

True and when it becomes dissatisfied or False, the program jumps after the immediate line of

the loop. The important thing is how to group many statements in a block. This is done by

indentation.

Syntax:

initialization

while(condition):

 statement 1

 statement 2 #optional

 …….

 …….

 …….

 statement n #optional

 increment/decrement # Order of statements and increment/decrement is not specific

Example 20: Print first 4 natural numbers

var=1 # var is a counter that will execute from 1 to 4

num=4 # Till this loop should go

while var<=num:

 print(var,end=" ") # end=" " is used to print each element with a space

73

 var=var+1

#Output

1 2 3 4

Explanation:

Step 1. var is initialized with value 1.

Step 2. num is initialized with value 4 as the condition will go till this value.

Step 3. Condition is checked (1 <= 4) as var=1 and num=4 and it is true.

3a) 1 is printed 1st time with space.

3b) Value of var is updated to 2.

Step 4. Condition is checked (2 <= 4) as var=2 and num=4 and it is true.

4a) 2 is printed 2nd time with space.

4b) Value of var is updated to 3.

Step 5. Condition is checked (3 <= 4) as var=3 and num=4 and it is true.

4a) 3 is printed 3rd time with space.

4b) Value of var is updated to 4.

Step 6. Condition is checked (4 <= 4) as var=4 and num=4 and it is true.

4a) 4 is printed 4th time with space.

4b) Value of var is updated to 5.

Step 7. Condition is checked (5 <= 4) as var=5 and num=4 and it is false.

Step 8. The flow goes outside the while loop

Example 21: Make a program to find sum of first 15 natural numbers.

sum_numbers = 0 #initialise variable sum_numbers=0, it will store sum of first 15 numbers

num=15 # Till this loop should go

var=1 # var is a counter that will execute from 1 to 15

while var<=num:

 sum_numbers=sum_numbers+var #everytime loop runs var value is added to sum_numbers

 var=var+1

print("Sum is ",sum_numbers)

#output

Sum is 120

Example 21: Print sum of numbers from 10 to -5 using while loop.

74

var=10 # var is a counter that will execute from -5 to 10

num=-5 # Till this loop should go

sum_numbers = 0 #initialise variable sum_numbers=0

while var>=num:

 sum_numbers=sum_numbers+var #everytime loop runs var value is added to sum_numbers

 var=var-1 # decrement the var

print("Sum is ",sum_numbers)

#Output

Sum is 40

3.3.1.1 Use of else with While Loop

As discussed, the loop iterates over a block of code repetitively or repeatedly until the condition

is satisfied or True and when it becomes dissatisfied or False, the program jumps after the

immediate line of the loop. The else part is executed when the condition becomes False or

dissatisfied. Only break and exceptions can hold the execution of else part.

Syntax:

initialization

while(condition):

 statement 1

 statement 2 #optional

 …….

 …….

 …….

 statement n #optional

 increment/decrement # Order of statements and increment/decrement is not specific

else: #optional

 statement(s)

Example 22: Make a program to find sum of first 15 natural numbers by using else with while

loop.

sum_numbers = 0 #initialise variable sum_numbers=0, it will store sum of first 15 numbers

num=15 # Till this loop should go

var=1 # var is a counter that will execute from 1 to 15

while var<=num:

 sum_numbers=sum_numbers+var #everytime loop runs var value is added to sum_numbers

 var=var+1

else:

 print("Sum is ",sum_numbers)

#output

Sum is 120

75

3.3.2 For Loop

In python, „for loop‟ is used to iterate over sequences like tuple, list, string, etc. and iterable

objects. It will iterate till the last value of the sequence

Syntax:

for variable in sequence: # Sequence can be list, tuple, string

 Body of for loop

Example 23: # Program to find the sum of first 15 natural numbers

sum_numbers = 0 #initialise variable sum_numbers=0, it will store sum of first 15 numbers

num=range(1,16)

iterate over the list

for var in num: # take one value from 1 till 15 after every iteration

 sum_numbers = sum_numbers+var

print("Sum is", sum_numbers)

#Output is

Sum is 120

Explanation:

First of all, understand the inbuilt range() function. range function syntax is range(start, stop,

step_size). By default, step_size is 1.

Here range(1,16) or range(1,16,1) are the same and this will generate numbers from 1 to 15,

remember 16 will not be generated. It will go to 15.

Example 24: # Program to find the sum of the first 15 natural numbers stored in a list

num = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] # List

sum_numbers = 0 #initialise variable sum_numbers=0, it will store sum of first 15 numbers

iterate over the list

for var in num:

 sum_numbers = sum_numbers+var

print("Sum is", sum_numbers)

#Output

Sum is 120

Example 25: Program to iterate over sequences

Iterating over a list

print("Iteration over List Sequence")

grad_l = ["CSE","ME","Civil","ECE"]

for var in grad_l:

 print(var,end=" ")

Iterating over a tuple

print("\nIteration over Tuple Sequence")

76

grad_t = ["CSE","ME","Civil","ECE"]

for var in grad_t:

 print(var,end=" ")

 # Iterating over a String

print("\nIteration over String")

grad_s = ["Btech"]

for var in grad_s:

 print(var,end=" ")

Iterating over Dictionary

print("\nIteration over Dictionary")

grad_d = dict()

grad_d['CSE']=1

grad_d['Civil'] =2

grad_d['ECE']=3

grad_d['ME']=4

for var in grad_d :

 print("%s %d" %(var, grad_d[var]))

#OUTPUT

Iteration over List Sequence

CSE ME Civil ECE

Iteration over Tuple Sequence

CSE ME Civil ECE

Iteration over String

Btech

Iteration over Dictionary

CSE 1

Civil 2

ECE 3

ME 4

3.3.2.1 Iterating over Sequences using Index

In the sequence, the index of the elements is used for iteration. The main idea here is to first

calculate the length of the sequence and then use the range function that helps in iteration till the

length of the sequence.

Example 26: Iteration over a sequence using index using range and len function

grad_l = ["CSE","ME","Civil","ECE"]

for index in range(len(grad_l)):

 print(index, grad_l[index])

#OUTPUT

0 CSE

77

1 ME

2 Civil

3 ECE

Example 27: Iteration over a sequence using enumerate function

grad_l = ["CSE","ME","Civil","ECE"]

for index,value in enumerate(grad_l):

 print(index,value)

#Output

0 CSE

1 ME

2 Civil

3 ECE

Example 28: Iteration over a sequence using zip function

grad_l = ["CSE","ME","Civil","ECE"]

for index in zip(range(len(grad_l)),grad_l):

 print(index)

#Output

(0, 'CSE')

(1, 'ME')

(2, 'Civil')

(3, 'ECE')

3.3.2.2 Use of else with for Loop

As discussed, for loop iterate till the last element of the sequence and sequence can be list, string,

tuple, and other iterable objects. The else part is executed when the block finishes the execution.

Syntax:

for variable in sequence: # Sequence can be list, tuple, string

 Body of for loop

else:

 Body of else block

Example 29: Print 0 to 6 numbers

num=int(input())

for var in range(num): # take one value from 0 till 6 after every iteration, as range goes till num1

 print(var,end=" ")

else:

 print(“Inside else block”)

#Input

7

#Output

78

0 1 2 3 4 5 6

Inside else block

3.3.3 Nested Loops

In python, one loop can be used inside other loops. while loop can be used within other while

loops, for loop can be used within other for loop, for loop can be used within while loop and

vice-versa.

Syntax for nested while loop

while(condition1): # Outer Loop

 while(condition2): # Inner Loop

 statement(s) # Inside Inner Loop

 statement(s) #

Syntax for nested for loop:

for var1 in sequence: # Outer loop

 for var2 in sequence: # Inner Loop

 statement(s) # Inside Inner Loops

 statement(s) #

NOTE: Many levels of nesting can be done for loops

Example 30 Print the following sequence using while loop

*

* *

* * *

* * * *

Note: There is tab space between elements in a line.

Explanation: First look outer loop is running, how many times. The vertically here shows the

outer loop execution. It shows four times. Now look at inner loop, try to understand the

following:

when outer loop runs 1st time, inner loop runs 1 time (horizontal values), print *

when outer loop runs 2nd time, inner loop runs 2 times (horizontal values), print * two times

with tab space

when outer loop runs 3rd time, inner loop runs 3 times (horizontal values), print * three times

with tab space

when outer loop runs 4th time, inner loop runs 4 times (horizontal values), print * four times

with tab space

Solution:

outer_var=1

while(outer_var<=4):

 inner_var=1

79

 while(inner_var<=outer_var):

 print('*',end="\t")#end="\t" for tab space between elements in a line

 inner_var=inner_var+1

 print("\n") #Next line

 outer_var=outer_var+1

Example 31: Print the following sequence using while loop

1

1 2

1 2 3

1 2 3 4

Note: There is tab space between elements in a line.

Explanation: First look outer loop is running, how many times. The vertically here shows the

outer loop execution. It shows four times. Now, look at the inner loop, try to understand the

following:

when outer loop runs 1st time, inner loop runs 1 time (horizontal values), print 1

when outer loop runs 2nd time, inner loop runs 2 times (horizontal values), print 1,2 with tab

space

when outer loop runs 3rd time, inner loop runs 3 times (horizontal values), print 1,2,3 with tab

space

when outer loop runs 4th time, inner loop runs 4 times (horizontal values), print 1,2,3,4 with tab

space

Solution

outer_var=1

outer_cond=int(input())

while(outer_var<=outer_cond):

 inner_var=1

 while(inner_var<=outer_var):

 print(inner_var,end="\t")

 inner_var=inner_var+1

 print()#New line

 outer_var=outer_var+1

#Input

4

#Output

1

1 2

1 2 3

1 2 3 4

80

Example 32: Print the following sequence using for loop

1

2 3

4 5 6

7 8 9 10

Solution (Step wise procedure is explained in Table 4.1)

var=1 # It is used to print 1 2 3 4 5 6 7 8 9 10

for outer_var in range(1, 5): # The loop will work for fout times i.e. 5-1=4

 for inner_var in range(outer_var):

 print(var, end=' ')

 var=var+1

 print()

Table 3.1: Example 32 step wise procedure explained

Step Numbers outer_var Var inner_var Printing Pattern

Step 1 1 1 1 1

Step 2 2 2

Step 3 2 2 1 1

2

Step 4 3 2 1

2 3

Step 5 4 3

Step 6 3 4 1 1

2 3

4

Step 7 5 2 1

2 3

4 5

Step 8 6 3 1

2 3

4 5 6

Step 9 7 4

Step 10 4 7 1 1

2 3

4 5 6

7

Step 11 8 2 1

2 3

4 5 6

7 8

81

Step 12 9 3 1

2 3

4 5 6

7 8 9

Step 13 10 4 1

2 3

4 5 6

7 8 9 10

Step 14 11 5

Step 15 5

Example 33: Print the following sequence

5 4 3 2 1

4 3 2 1

3 2 1

2 1

1

Solution (Step wise procedure is explained in Table 3.2)

outer_var=1

while(outer_var<=5):

 inner_var=6-outer_var

 while(inner_var>=1):

 print(inner_var, end='\t')

 inner_var-=1

 outer_var+=1

 print()

Explanation: In the print sequence column, due to the space limitation of a page, tab space is

shown as space.

Table 3.2: Step wise procedure of example 33

Step

Numbers

outer_var outer_var<=5 inner_var inner_var>=1 Print the

sequence

Step 1 1 1<=5 5 5>=1 5

Step 2 4 4>=1 5 4

Step 3 3 3>=1 5 4 3

Step 4 2 2>=1 5 4 3 2

Step 5 1 1>=1 5 4 3 2 1

Step 6 0 0>=1

Step 7 2 2<=5 4 4>=1 5 4 3 2 1

4

82

Step 8 3 3>=1 5 4 3 2 1

4 3

Step 9 2 2>=1 5 4 3 2 1

4 3 2

Step 10 1 1>=1 5 4 3 2 1

4 3 2 1

Step 11 0 0>=1

Step 12 3 3<=5 3 3>=1 5 4 3 2 1

4 3 2 1

3

Step 13 2 2>=1 5 4 3 2 1

4 3 2 1

3 2

Step 14 1 1>=1 5 4 3 2 1

4 3 2 1

3 2 1

Step 15 0 0>=1

Step 16 4 4<=5 2 2>=1 5 4 3 2 1

4 3 2 1

3 2 1

2

Step 17 1 1>=1 5 4 3 2 1

4 3 2 1

3 2 1

2 1

Step 18 0 0>=1

Step 19 5 5<=5 1 1>=1 5 4 3 2 1

4 3 2 1

3 2 1

2 1

1

Step 20 0 0>=1

Step 21 6 6<=5

Example 34: Print Armstrong Numbers between 50 to N (Nested for and while loop)

start_range = 50

end_range = int(input())

for chk_num in range(start_range, end_range + 1):

 order_num = len(str(chk_num))#number of digits in a number

 sum = 0

83

 temp_num = chk_num

 while temp_num > 0:

 digit = temp_num % 10

 sum += digit ** order_num

 temp_num //= 10

 if chk_num == sum:

 print(chk_num)# Armstrong Number printing

Test Case 1:

#Input

500

#output

153

370

371

407

Test Case 2:

#Input

200

#Output

153

Explanation: A number is said to be an Armstrong number of order n if

pqr… = p
n
 + q

n
 + r

n
 + ……. where n is number of digits in the number

Example: 370 = 3
3
 + 7

3
 + 0

3
 =370

Practice Questions

Example 35: Write a program to generate the pattern

1

10

101

1010

10101

101010

………..

………….

Sample Input 1:

4

Sample Output1:

1

10

84

101

1010

Sample Input 2:

3

Sample Output2:

1

10

101

Sample Input3:

6

Sample Output3

1

10

101

1010

10101

101010

Solution (Step wise procedure is explained in Table 3.3):

int_number=int(input())

outer_var=1

while outer_var<=int_number:

 count=1

 inner_var=1

 while inner_var<=outer_var:

 if count%2!=0:

 print("1",end="");

 else:

 print("0",end="");

 count=count+1

 inner_var=inner_var+1

 outer_var=outer_var+1

 print("")

Table 3.3: Step wise procedure of example 35 with int_numbers=5

Step

Numbers

outer_var Outer

Condition

count inner_var Inner

Condition

Printing

Sequence

Step 1 1 1<=5 1 1 1<=1 1

Step 2 2 2 2<=1

Step 3 2 2<=5 1 1 1<=2 1

85

1

Step 4 2 2 2<=2 1

10

Step 5 3 3 3<=2

Step 6 3 3<=5 1 1 1<=3 1

10

1

Step 7 2 2 2<=3 1

10

10

Step 8 3 3 3<=3 1

10

101

Step 9 4 4 4<=3

Step 10 4 4<=5 1 1 1<=4 1

10

101

1

Step 11 2 2 2<=4 1

10

101

10

Step 12 3 3 3<=4 1

10

101

101

Step 13 4 4 4<=4 1

10

101

1010

Step 14 5 5 5<=4

Step 15 5 5<=5 1 1 1<=5 1

10

101

1010

1

Step 16 2 2 2<=5 1

10

101

1010

86

10

Step 17 3 3 3<=5 1

10

101

1010

101

Step 18 4 4 4<=5 1

10

101

1010

1010

Step 19 5 5 5<=5 1

10

101

1010

10101

Step 20 6 6 6<=5

Step 21 6 6<=5

Example 36: Make a program that tells whether the input positive integer is the sum of four

consecutive numbers. Print „Thumbs Up‟ when it is the sum of four consecutive numbers else

print „Thumbs Down‟.

Input: A positive Integer

Output: Thumbs Up or Thumbs Down

Test Case1:

#Input

6

#Output

Thumbs Up #0+1+2+3

Test Case2:

#Input

16

#Output

Thumbs Down

Test Case3:

#Input

86

#Output

87

Thumbs Up # 20+21+22+23

Solution:

int_number=int(input())

temp_res=int_number//4

if(((temp_res-1 + temp_res-2 + temp_res-3 + temp_res)==int_number) or ((temp_res-1 +

temp_res-2 + temp_res + temp_res+1)==int_number) or ((temp_res-1 + temp_res + temp_res+1

+ temp_res+2)==int_number) or ((temp_res + temp_res+1 + temp_res+2 +

temp_res+3)==int_number)):

 print("Thumbs Up")

else:

 print("Thumbs Down")

Example 37: Make a program for finding out whether a number is a prime number or not.

Test Case 1:

#Input

7

#Output

Prime number

Test Case 2:

#Input

23

#Output

Prime number

Test Case 3:

#Input

72

#Output

Not a Prime number

Test Case 4:

#Input

700

#Output

Not a Prime number

Solution:

Method 1:

int_number =int(input())

flag_prime = True # flag variable

if int_number > 1:

88

 for var in range(2, int_number):

 if (int_number % var) == 0:

 flag_prime = False

 break

if flag_prime==True:

 print("Prime number")

else:

 print("Not a Prime number")

Method 2:

int_number =int(input())

if int_number > 1:

 for var in range(2, int_number):

 if (int_number % var) == 0:

 break

if (var==(int_number-1) or (var == int_number)):

 print("Prime number")

else:

 print("Not a Prime number")

Method 3:

int_number =int(input())

if int_number > 1:

 for var in range(2,int_number):

 if (int_number % var) == 0:

 print("Not a Prime number")

 break

 else:

 print("Prime number")

else:

 print("Not a Prime number")

3.4 SELF-CHECK QUESTIONS

1. Is else part is mandatory while using for and while loop? True/False

2. Is for loop can be nested in while loop? True/False

3. Is while loop can be nested in for loop? True/false

4. What is the output of the following code?

if 10+7==17:

 print("Yes")

else:

 print("No")

89

print("Last Line")

a) Yes

Last Line

b) No

Last Line

c) Yes

No

Last Line

d) Last Line

5. What is the output of the following code?

var = 6

if (var > 5):

 var = var * 3;

if (var > 10):

 var = 0;

print(var)

a) 0

b) 18

c) 18

0

d) None of these

3.5 SUMMARY

Conditional statements help the students in learning the flow of the program and these statements

can be executed in python when certain conditions are met. Different examples are elaborated for

if, if-else, if-elif-else along with nested conditional statements. The students will be able to

understand different types of loops like for and while. They will be able to make programs and

dry run their code. Step by step procedure has been explained with many examples of looping

constructs. This module targets to inculcate the basics of loops and conditional statements in

students.

3.6 Practice Questions

1. Which of the following statements will be executed in python version 3?

a) if (7,6): print("CSE-CA")

b) if (7,6):

 print("CSE-CA")

c) if (7,6):

 print("CSE-CA")

90

d) if (7,6):

print("CSE-CA")

2. Let two variables have been initialized as:

var1=23

var2=7

Write a python program to find the remainder when you divide var1 by var2 and assign

the result to a variable result_var?

3. Is the following code has valid syntax or not?

var1=12

var2=6

if var1 > var2: if var1 > 10: print('CSE-CA')

4. What will be the output of the following code?

x=12

y=6

if x < y: print('CSE')

elif y < x: print('CA')

else: print('CSE-CA')

a) CSE

b) CA

c) CSE-CA

d) Error

5. Correctly choose the options that will tell how many times the loop will work?

var1=-5

while var1>0:

 print("CSE")

 print("CA")

 print("CSE-CA")

 var1=var1+1

a) 0 times

b) -5 times

c) 5 times

d) Infinite times

6. What will be the output of the following code?

x = 2.00

if (x - int(x) == 0):

 print("Whole Number")

else:

 print("Has decimals")

91

a) Whole Number

b) Has decimals

c) 2.00

d) Error

7. What will the output of the following code?

sum_numbers = 0

num=range(7)

for var in num:

 sum_numbers = sum_numbers+var

print(sum_numbers)

a) 28

b) 21

c) 15

d) 0

8. Choose the correct output

grad_l = ["CSE","ME","Civil","ECE"]

for index in range(len(grad_l)):

 print(len(grad_l))

a) 4

4

4

4

b) 3

3

3

3

c) CSE

ME

Civil

ECE

d) None of the option is correct

9. Construct a program for doing a reverse of an N-digit number using for and while loop

both.

10. Elaborate differences between while and for loop.

92

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT IV: METHODS AND FUNCTIONS

STRUCTURE

4.0 Objectives

4.1 Introduction

4.2 Functions

 4.2.1 Inbuilt Functions

 4.2.2 User-Defined Functions

 4.2.2.1 Function Definition Arguments

 4.2.2.2 Special Case of Keyword Arguments

 4.2.2.3 Special Case of Positional Arguments

 4.2.2.4 Pass by Reference or Pass by Value

 4.2.3 Anonymous Function or Lambda Function

 4.2.3.1 Lambda with Filter Function

 4.2.3.2 Lambda Function with Map Function

 4.2.3.3 Lambda with Reduce Function

4.3 Self-check Questions

4.4 Summary

4.5 Practice Question

93

4.0 OBJECTIVES

 Familiarize how to build, define and write functions

 Learn how to use different types of arguments in the function definition

 Learn and examine how lambda functions are accessed and used.

 Usage of filter, map and reduce functions

4.1 INTRODUCTION

Functions are mainly used to perform particular tasks for programmers, users and associated

stock holders. They basically used to cope with the input and output of the computer programs.

The most important element in any real time projects is data and functions are the best and

effective way to deal with projects that can be small, medium, large as well as complex. When

we work on large and complex problems or projects, data duplication is a problem. To avoid this

drawback, codes are reusable with the help of functions. This module targets to give better

understanding of inbuilt functions, user-defined functions along with lambda functions. Different

examples of each type of functions are mentioned along with proper output. Many inbuilt

functions are explained like max(), abs(), type() etc., with proper syntax and programs. Various

programs of user defined functions are also elaborated. Different types of arguments in functions

passing are discussed with appropriate programs. Arguments like positional, keyword, default

and special cases of variable-length arguments. At the end, lambda functions explanation along

with filter function, map function and reduce function are described and discussed extensively

followed with self-check questions, summary and unit end questions.

4.2 FUNCTIONS

A function in python is a block of statements that do a particular work or task, this work or task

can be related to any logical, any computational or any evaluation task. The idea is to combine

the common statements such that code is reusable and helps in avoiding writing the same code

again and again. Functions help in dividing the larger programs into smaller blocks that help in

managing the whole program easily.

Functions are divided into two types:

1. Inbuilt functions

2. User-defined functions

3. Anonymous functions

4.2.1 Inbuilt functions

The python interpreter has many functions built into it and these functions have their pre-defined

functionalities. Some of these inbuilt functions are listed below:

a) abs()

b) print()

c) input()

94

d) chr()

e) max()

f) min()

g) int()

h) float()

i) type()

j) round()

Inbuilt Functions with Examples

a) abs() – This inbuilt function returns the absolute value of a number and this number can be

an integer, complex number or float. This function takes only one argument and it returns the

absolute value if the passed number is an integer or float number and it returns the magnitude

of the number if the passed number is complex.

Example 1: # Python code for abs() built-in function

int_var = -101 #Initialising variable with an integer value

float_var = -46.87 #Initialising variable with an float value

complex_var = (5 - 12j) #Initialising variable with an complex value

print("Absolute Value",abs(int_var))

print("Absolute Value",abs(float_var))

print("Absolute Value",abs(complex_var))

#Output

Absolute Value 101

Absolute Value 46.87

Absolute Value 13.0

b) print() – It generates the output from a passed value or many values. The output can be in the

form of a screen/standard output device or text stream file. In the print() function, you can

have more zero or more expressions and all these expressions are separated by using a

comma operator. print() functions have five arguments as expressions and these are

mentioned in syntax along with its explanation. All these arguments are optional and

keyword arguments.

Syntax:

print(*object, sep=' ', end='\n', file=sys.stdout, flush=False)

where

*object – object denotes the screen output and * indicates the number of objects as screen output.

sep – object denotes the screen output and is separated using the sep value. The default value of

sep=‟ „

end – It is used to print at the last

95

file – By default, its value is sys.stdout and must use import sys in the program if you use

sys.stdout and it helps in printing objects on the screen. You can also use any object having a

write(string) method instead of the default value.

flush – The internal buffer is forcibly flushed if its value is True. By default its value is False.

Example 2: Usage of print() with many objects

print("CSE","CA")

print("Btech")

print()

print("ECE","ME")

#Output

CSE CA

Btech

ECE ME

NOTE: At the end of the print() line, the new line is inserted as end=‟\n‟ by default. One more

thing to be noted in the first and fourth print() function, multiple objects are mentioned and when

they are printed there is space between them as sep=‟ „ by default.

Example 3: Usage of print() function with sep argument

print("CSE","CA",sep="\t")

print("Btech")

print()

print("ECE","ME",sep="**")

#Output

CSE CA

Btech

ECE**ME

Example 4: Usage of print() function with sep and end arguments

print("CSE","CA",sep="\t",end='\n\n')

print("Btech")

print()

print("ECE","ME",sep="**",end='&&')

#Output

CSE CA

Btech

96

ECE**ME&&

Example 4: Usage of print() function with file argument

Python_src_file =open(„python_basics.txt‟, ‟w‟)

print(“Jagat Guru Nanak Dev PSOU”, file= Python_src_file)

Python_src_file.close()

c) input() – In this inbuilt function, the user enters the input and then this inbuilt function

assesses this input expression whether it is correct or not. If it is correct then it is assigned to

the variable unless it generates a syntax error or an exception is raised.

Syntax:

input([prompt]) # here, prompt is optional

Example 5:

str_var = input("Enter Official name")

print(str_var)

int_var=int(input(" Enter Emp-Id")) #typecasting to integer, here int() is another inbuilt function

print(int_var)

float_var=float(input("Enter Gross Salary"))

typecasting to float, here float() is another inbuilt function

print(float_var)

#Output

Enter Official nameVinay

Vinay

Enter Emp-Id178

178

Enter Gross Salary26734.56

26734.56

d) chr() – This inbuilt function takes the parameter of integer type (valid Unicode) and it returns

a character corresponding to that passed integer.

Example 6: Print the characters using chr()

print(chr(79))

print(chr(107))

print(chr(1178))

print(chr(45))

#Output

O

k

97

Қ

-

e) max() – It takes a python object or many objects (optional) as argument(s) with another

argument „key‟ and it is optional. Key is the function that compares the objects. One more

argument is default and it is also optional. If an object is empty then the default value is used.

This function returns the maximum value if it is an integer or float object. If it is a string then

it returns a lexographic value. If the objects are iterable like lists, tuples, or dictionary then it

returns the largest item of the iterable.

Syntax:

max(object1,object 2, … object n, key, default)

Example 7: Usage of max() function with many objects as arguments

int_var1=45

float_var2=78.23

float_var3=34.893

max_var=max(int_var1,float_var2,float_var3)

print(max_var)

#Output

78.23

Example 8: Usage of max() function with list as an argument

list_var=[45,78.23,34.893]

max_var=max(list_var)

print(max_var)

#Output

78.23

Example 9: Usage of max() function with key=len as an argument

str_var1 = "CSE-CA"

str_var2 = "Btech"

str_var3 = "CSE-ME-ECE-CA"

max_var = max(str_var1, str_var2, str_var3,key = len)

print(max_var)

#Output

CSE-ME-ECE-CA

f) min() – This function returns the minimum value if integer or float values are passed as

argument(s). And it returns lexographic smallest value if the strings are passed as

argument(s).

98

Syntax:

min(object1, object2 …… object n, key, default)

where object 1 is integer, float, string, list, tuple, dictionary

object 2, object 3….. object n are optional

key is optional and this function takes all the passed objects and comparison is performed

the default value is allotted if the given objects are empty

Example 10: Usage of min() function with many objects as arguments

int_var1=45

float_var2=78.23

float_var3=34.893

min_var=min(int_var1,float_var2,float_var3)

print(min_var)

#Output

34.893

Example 11: Usage of min() function with list as an argument

list_var=[45,78.23,34.893]

min_var=min(list_var)

print(min_var)

#Output

34.893

Example 12: Usage of min() function with key=len as an argument

str_var1 = "CSE-CA"

str_var2 = "Btech"

str_var3 = "CSE-ME-ECE-CA"

min_var = min(str_var1, str_var2, str_var3,key = len)

print(min_var)

#Output

Btech

g) int() – This functions converts the specified value as argument into an integer number [1].

Syntax:

int(string, any_base)

where the string is a combination of elements of 1‟s and 0‟s

any_base indicates any base of the number

Example 13: Usage of int()

binary_var="110"

octal_var="110"

hexa_var="A0A"

99

decimal_convertfrom_binary=int(binary_var,2)

print(decimal_convertfrom_binary)

decimal_convertfrom_octal=int(octal_var,8)

print(decimal_convertfrom_octal)

decimal_convertfrom_hexa=int(hexa_var,16)

print(decimal_convertfrom_hexa)

$Output

6

72

2570

Example 14: Converting string to int()

str_var=input("Enter the string variable value")

print(str_var)

print(type(str_var))

int_var=int(input("Enter the string variable value"))

print(int_var)

print(101+int_var)

print(type(int_var))

#Output

Enter the string variable value123

123

<class 'str'>

Enter the string variable value123

123

224

<class 'int'>

h) float() – This inbuilt function converts the argument value of number or string into float

value [2], [3].

Syntax:

float([string or number])

Example 15: float() function usage

float_var1= (float(101))

print(float_var1)

print(type(float_var1))

float_var2= (float(101.67))

print(float_var2)

100

print(type(float_var2))

float_var3= (float("101.87"))

print(float_var3)

print(type(float_var3))

float_var4= (float(5e003))

print(float_var4)

print(type(float_var4))

float_var5= (float(5e-003))

print(float_var5)

print(type(float_var5))

float_var6= (float(False))

print(float_var6)

print(type(float_var6))

float_var7= (float(True))

print(float_var7)

print(type(float_var7))

float_var8= (float('abc'))

print(float_var8)

print(type(float_var8))

#output

101.0

<class 'float'>

101.67

<class 'float'>

101.87

<class 'float'>

5000.0

<class 'float'>

0.005

<class 'float'>

0.0

<class 'float'>

1.0

<class 'float'>

ValueError

i) type() – It is one method that is widely used for debugging and it returns the class type of the

object that Is passed as an argument to the type() method.

Example 16: Usage of type() inbuilt function

101

int_var=10

print(type(int_var) is int)

float_var = 10.45

print(type(float_var) is float)

list_var=[1,3,5]

print(type(list_var) is list)

tuple_var=(1,3,5)

print(type(tuple_var) is list)

float_var = 10.45

print(type(float_var) is not float)

tuple_var=(1,3,5)

print(type(tuple_var) is not list)

#Output

True

True

True

False

False

True

j) round() - This is one of the inbuilt functions in Python and it rounds off the number to the

parameter value (i.e. ndigits decimal) and if no parameter value is mentioned then it rounds

off to the nearest integer [5].

Syntax:

round(number, [ndigits decimal])

where

number is to whom which rounded to be done

ndigits decimal tell up to what decimals rounding of is required and it is optional

Example 17: round() function basic example without optional parameter

Use Case for integers

print(round(123))

Use Case for floating-point numbers

print(round(123.7))

Use Case for floating-point numbers

print(round(123.2))

Use Case for floating-point numbers

102

print(round(123.5))

#Output

123

124

123

124

Example 18: round() function basic example with optional parameter

print(round(15.455,2))

print(round(15.453,2))

print(round(15.457,2))

#Output

15.46

15.45

15.46

Example 19

print(round("CSE",2))

#Output

TypeError

NOTE: If any input other than the number is given in parameter value „number‟ then it generates

an error i.e. Type Error. If any input other than a number is given in parameter value „ndigits

decimal‟ then it generates and error i.e. TypeError.

4.2.2 User-Defined Functions

The functions that are defined by the user are known as user-defined functions. The user-defined

functions can have any name excluding space, pre-defined keywords, and any special character.

Syntax:

def function-name(parameters):

 statement(1)

 statement(2) #optional

 …………………. #optional

 …………………. #optional

 statement(n) #optional

 “””optional documentation string”””

 return #Optional return statement

where

def is the keyword and it tells the start of the function header

103

function-name differentiate the functions used in the program and it follows naming conventions

of identifiers and it is unique in nature.

parameters- they are also known as arguments, the values to the function are passed using

parameters or arguments and they are optional in the user-defined functions.

: colon tells the end of the function header

Optional documentation string- It is used to tell what the functions do in the program and they

are optional to define in the functions

statement(s) – the python user-defined function consists of one or more than one valid statements

return – This helps in returning the value from the function and it is optional in a user-defined

function.

Example 20: First Simple example of a function

Construct a user-defined function to print COVID message when it is called

def bye_COVID():

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

#Call the function to print COVID message

bye_COVID()

#Output

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

Do follow social distancing

Properly use mask

Avoid unnecessary shopping and walking-out

Example 21: Simple example with a parameter

Construct a user-defined function to print COVID message when it is called with a parameter

def bye_COVID(name):

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

Take input from the user

year_name=input("Enter the year in which it came into existence\n")

#Call the function to print COVID message

bye_COVID(year_name)

104

#Output

Enter the year in which it came into existence

19

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

Do follow social distancing

Properly use mask

Avoid unnecessary shopping and walking-out

Example 21: Simple example without passing an appropriate parameter

Construct a user-defined function to print COVID message when it is called with a parameter

def bye_COVID(name):

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

Take input from the user

year_name=input("Enter the year in which it came into existence\n")

#Call the function to print COVID message

bye_COVID()

#Output

Enter the year in which it came into existence

19

TypeError: bye_COVID() missing 1 required positional argument: 'name'

Example 22: Use of return statement in function

def sum_of_numbers(num_var1,num_var2,num_var3):

 variables_sum=num_var1+num_var2+num_var3

 return(variables_sum)

variables_summation=sum_of_numbers(13,45,78)

print("Sum is depicted as", variables_summation)

#Output

Sum is depicted as 136

Example 23: Use of return when strings are passed as arguments

Construct a user-defined function to print COVID message when it is called with a parameter

def bye_COVID(name,new_variant):

105

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

 total=name+new_variant

 return(total)

Take input from the user

year_name=input("Enter the year in which it came into existence\n")

variant_number=input("Enter the latest variant that is coming\n")

#Call the function to print COVID message

result=bye_COVID(year_name,variant_number)

print(result)

#Output

Enter the year in which it came into existence

2019

Enter the latest variant that is coming

2nd-variant

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

Do follow social distancing

Properly use mask

Avoid unnecessary shopping and walking-out

20192nd-variant

Example 25: Use of return without returning any value

def sum_of_numbers(num_var1,num_var2,num_var3):

 variables_sum=num_var1+num_var2+num_var3

 return

variables_summation=sum_of_numbers(13,45,78)

print(variables_summation)

#Output

None

NOTE: The arguments/parameters which are specified in the function definition are called

formal arguments whereas the arguments/parameters which are specified in the function call are

called actual arguments.

106

4.2.2.1 Function Definition Arguments or Function Formal Arguments

Four types of formal arguments are specified in user-defined functions and these are mentioned

below:

A) Positional or Required Arguments

B) Keyword Arguments

C) Default Arguments

D) Variable-length Arguments

A) Positional or Required Arguments

The correct position and an exact number of the arguments are passed to a function or in other

words function call and function definition number of arguments must be the same along with

the correct position of these arguments is required.

Example 26: Positional Arguments Program

def bye_COVID(injection1,injection2):

Look carefully, first argument have value of "True" and Second have "Yes" values

 if injection1=="True" and injection2=="Yes":

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

Take input from the user

var_vaccination1=input("Enter Yes or No if vaccination1 has been done or not\n")

var_vaccination2=input("Enter True or False if vaccination2 has been done or not\n")

#Call the function to print COVID message

bye_COVID(var_vaccination2,var_vaccination1) # Look arguments calling

#Output

Enter Yes or No if vaccination1 has been done or not

Yes

Enter True or False if vaccination2 has been done or not

True

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

Do follow social distancing

Properly use mask

Avoid unnecessary shopping and walking-out

Example 27: No Positional Arguments in Function Definition but Two Values Are Specified in

Function Calling

def bye_COVID(): # Look carefully, No formal argument

107

 if injection1=="True" and injection2=="Yes":

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

Take input from the user

var_vaccination1=input("Enter Yes or No if vaccination1 has been done or not\n")

var_vaccination2=input("Enter True or False if vaccination2 has been done or not\n")

#Call the function to print COVID message

bye_COVID(var_vaccination2,var_vaccination1) # Look arguments calling

#Output

Enter Yes or No if vaccination1 has been done or not

Yes

Enter True or False if vaccination2 has been done or not

True

TypeError: bye_COVID() takes 0 positional arguments but 2 were given

Example 28: Positional Arguments in Function Definition but no values are specified in Function

Calling

def bye_COVID(injection1,injection2): # Look carefully, Two Positional Arguments

 if injection1=="True" and injection2=="Yes":

 print("Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID")

 print("Do follow social distancing")

 print("Properly use mask")

 print("Avoid unnecessary shopping and walking-out")

Take input from the user

var_vaccination1=input("Enter Yes or No if vaccination1 has been done or not\n")

var_vaccination2=input("Enter True or False if vaccination2 has been done or not\n")

#Call the function to print COVID message

bye_COVID() # Look arguments calling

#Output

Enter Yes or No if vaccination1 has been done or not

Yes

Enter True or False if vaccination2 has been done or not

True

TypeError: bye_COVID() missing 2 required positional arguments: 'injection1' and 'injection2'

108

B) Keyword Arguments

When arguments are passed in the function call, they can or cannot be in the order as formal

arguments defined in the function definition. These things are achieved through keyword

arguments. Remember that keyword argument must match the arguments of formal arguments

[6].

Example 29: Keyword Arguments basic example 1

def BYE_COVID(var_string):

 print(var_string)

 return

function calling

BYE_COVID(var_string = "Take both vaccinations with a normal 4 to 6 weeks gap and say bye

to COVID")

#Output

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

Example 30: Keyword Arguments basic example 2

def BYE_COVID(var_string1,var_string2):

 print(var_string1)

 print(var_string2)

 return

function calling

BYE_COVID(var_string2 = "Take both vaccinations with a normal 4 to 6 weeks gap and say

bye to COVID", var_string1="Properly use mask")

#Output

Properly use mask

Take both vaccinations with a normal 4 to 6 weeks gap and say bye to COVID

C) Default Arguments

If in a function call, no explicit values are given then the formal arguments take default values

[8].

Example 31: Keyword Arguments usage in calling function

def BYE_COVID(precaution1, precaution2="injection2", precaution3="Mask",

precaution4="Social Distance",disease="COVID"):

 print("Take", precaution1, "followed with", precaution2, ",Wear", precaution3, "and Follow

rules of", precaution4,"that helps in avoiding", disease)

109

Keyword argument

BYE_COVID(precaution1="injection1")

Keyword arguments

BYE_COVID(precaution1="injection1",precaution3="N95 or Fully Covered Mouth/Nose

Mask")

Way of changing arguments

BYE_COVID(precaution3="N95 or Fully Covered Mouth/Nose

Mask",precaution1="injection1")

#Output

Take injection1 followed with injection2 ,Wear Mask and Follow rules of Social Distance that he

lps in avoiding COVID

Take injection1 followed with injection2 ,Wear N95 or Fully Covered Mouth/Nose Mask and Fo

llow rules of Social Distance that helps in avoiding COVID

Take injection1 followed with injection2 ,Wear N95 or Fully Covered Mouth/Nose Mask and Fo

llow rules of Social Distance that helps in avoiding COVID

Example 32: Deeper understanding of keyword arguments

def BYE_COVID(precaution1, precaution2="injection2", precaution3="Mask",

precaution4="Social Distance",disease="COVID"):

 print("Take", precaution1, "followed with", precaution2, ",Wear", precaution3, "and Follow

rules of", precaution4,"that helps in avoiding", disease)

Invalid keyword

BYE_COVID(do_precaution1="injection1") # Run this line individually

No argument passes

BYE_COVID() # Run this line individually

BYE_COVID(precaution2="inject","injection1") # Run this line individually

Output

TypeError: BYE_COVID() got an unexpected keyword argument 'do_precaution1'

TypeError: BYE_COVID() missing 1 required positional argument: 'precaution1'

SyntaxError: positional argument follows keyword argument

110

4.2.2.2 Special Case of Keyword Arguments

In this **kwargs as an argument in the function definition is used and it means you can pass any

number of keyword arguments along with variable length [7]. Remember the keyword name that

is passed in function call must match the keyword name of the function definition.

Example 33: Basic Example of variable length arguments

def usage_of_kwargs(**kwargs):

 print(kwargs)

usage_of_kwargs(injection1=True, Mask="Yes", injection2=True, age=67)

#Output

{'injection1': True, 'Mask': 'Yes', 'injection2': True, 'age': 67}

Example 34: Another way of printing elements of method defined in previous example 31

def usage_of_kwargs(**kwargs):

 for var_key, var_value in kwargs.items():

 print ("%s == %s" %(var_key, var_value))

usage_of_kwargs(injection1=True, Mask="Yes", injection2=True, age=67)

#Output

injection1 == True

Mask == Yes

injection2 == True

age == 67

Example 35: Another way of printing elements in keyword arguments

def usage_of_kwargs(**kwargs):

 for var_key, var_value in kwargs.items():

 print("The key is {} and its associated value is {}".format(var_key, var_value))

usage_of_kwargs(injection1=True, Mask="Yes", injection2=True, age=67)

#Output

The key is injection1 and its associated value is True

The key is Mask and its associated value is Yes

The key is injection2 and its associated value is True

The key is age and its associated value is 67

111

4.2.2.3 Special Case of Positional Arguments

In this *var_arguments are used in function definition and the var_argumentss are non-keyword

variable length arguments [6]. The * denotes to have any number of arguments.

Example 36: Usage of *var_arguments

def BYE_COVID(*var_arguments):

 for var_arg in var_arguments:

 print (var_arg)

BYE_COVID('Take injection1', 'Followed with injection2', 'Wear Mask Properly', 'Follow the

rules of Social Distance')

#Output

Take injection1

Followed with injection2

Wear Mask Properly

Follow the rules of Social Distance

Example 37: Program to show *var_arguments having extra arguments.

def BYE_COVID(var_argument1,var_argument2,*var_arguments):

 print("The first argument value is",var_argument1)

 print("The second argument value is",var_argument2)

 for var_arg in var_arguments:

 print (var_arg)

BYE_COVID('COVID GUIDELINES','READ PROPERLY','Take injection1', 'Followed with

injection2', 'Wear Mask Properly', 'Follow the rules of Social Distance')

#Output

The first argument value is COVID GUIDELINES

The second argument value is READ PROPERLY

Take injection1

Followed with injection2

Wear Mask Properly

Follow the rules of Social Distance

4.2.2.4 Pass by Reference or Pass by value

In python language, every variable is a reference. It means when we pass a variable to the

function, every time a new object is created with a new reference.

Example 38: Largest of three numbers

def max_three_numbers(var_number1,var_number2,var_number3):

112

 if var_number1>var_number2:

 if var_number1>var_number3:

 var_largest=var_number1

 else:

 var_largest=var_number3

 else:

 if var_number2>var_number3:

 var_largest=var_number2

 else:

 var_largest=var_number3

 return(var_largest)

var_number1=int(input())

var_number2=int(input())

var_number3=int(input())

print(max_three_numbers(var_number1,var_number2,var_number3))

#Output

Test case1:

#Inputs

23

36

47

#Output

47

Test case1:

#Inputs

67

50

56

#Output

67

Test case1:

#Inputs

145

567

444

#Output

567

Example 39: Program to know whether a year is leap year or not a leap year

113

def leap_or_notleap(normal_year):

 if normal_year%4==0:

 if normal_year%100==0:

 if normal_year%400==0:

 flag=1

 else:

 flag=0

 else:

 flag=1

 else:

 flag=0

 return(flag)

normal_year = int(input())

flag_value=leap_or_notleap(normal_year)

if flag_value==1:

 print("Leap Year")

else:

 print("Not a Leap Year")

#Output

Test Case 1:

#Input

2000

#Output

Leap Year

Test Case 2:

#Input

1900

#Output

Not a Leap Year

Test Case 3:

#Input

2020

#Output

Leap Year

Test Case 4:

#Input

2021

114

#Output

Not a Leap Year

Example 40: Find factorial of a given number using user defined functions

def num_factorial(formal_number):

 if formal_number == 0:

 return 1

 else:

 return formal_number * num_factorial(formal_number-1)

var_number=int(input("Enter the number for factorial computation\n"))

print("The factorial is", num_factorial(var_number))

#Output

Enter the number for factorial computation

7

The factorial is 5040

Example 41: Write a program to generate the pattern using functions

A

AB

ABA

ABAB

ABABA

ABABAB

………..

………….

Sample Input 1:

4

Sample Output1:

A

AB

ABA

ABAB

Sample Input 2:

3

Sample Output2:

A

AB

ABA

Sample Input3:

115

6

Sample Output3

A

AB

ABA

ABAB

ABABA

ABABAB

Solution (Step wise procedure is explained in table 4.1):

def pattern_making(int_number):

 outer_var=1

 while outer_var<=int_number:

 count=1

 inner_var=1

 while inner_var<=outer_var:

 if count%2!=0:

 print("A",end="");

 else:

 print("B",end="");

 count=count+1

 inner_var=inner_var+1

 outer_var=outer_var+1

 print("")

int_number=int(input())

pattern_making(int_number)

Table 4.1: Pattern making by assuming int_number=5

Step

Numbers

outer_var Outer

Condition

count inner_var Inner

Condition

Printing

Sequence

Step 1 1 1<=5 1 1 1<=1 A

Step 2 2 2 2<=1

Step 3 2 2<=5 1 1 1<=2 A

A

Step 4 2 2 2<=2 A

AB

Step 5 3 3 3<=2

Step 6 3 3<=5 1 1 1<=3 A

AB

116

A

Step 7 2 2 2<=3 A

AB

AB

Step 8 3 3 3<=3 A

AB

ABA

Step 9 4 4 4<=3

Step 10 4 4<=5 1 1 1<=4 A

AB

ABA

A

Step 11 2 2 2<=4 A

AB

ABA

AB

Step 12 3 3 3<=4 A

AB

ABA

ABA

Step 13 4 4 4<=4 A

AB

ABA

ABAB

Step 14 5 5 5<=4

Step 15 5 5<=5 1 1 1<=5 A

AB

ABA

ABAB

A

Step 16 2 2 2<=5 A

AB

ABA

ABAB

AB

Step 17 3 3 3<=5 A

AB

ABA

ABAB

ABA

117

Step 18 4 4 4<=5 1 A

AB

ABA

ABAB

ABAB

Step 19 5 5 5<=5 A

AB

ABA

ABAB

ABABA

Step 20 6 6 6<=5

Step 21 6 6<=5

4.2.3 Anonymous function or Lambda Function

The keyword used in the creation of lambda function is „lambda‟ and they are popularly known

as single line function. They are known as anonymous functions (a function without having a

name). They are different from normal functions as this function does not use keywords like

„return‟ and „def‟ [9].

Syntax:

Lambda multiple_arguments: expression

where expression returns an object and it is only one in the whole function

multiple_arguments used a comma to separate multiple arguments

Example 42: Example to differentiate between normal function and lambda function

def multiply_25(var_int1): # Normal function definition

 return var_int1*25

lambda_25 = lambda var_int1:var_int1*25 #lambda function definition

var_int1=int(input("User is entering the number which he/she is required to be multiply by 25 is

"))

print(multiply_25(var_int1))#Normal function calling

print(lambda_25(var_int1))#lambda function calling

#Input

User is entering the number which he/she is required to be multiply by 25 is 8

#Output

200

200

118

Example 43: Sum of three numbers for differentiating between def and lambda functions.

def summation_of_3num(var_int1,var_int2,var_int3):

 return var_int1+var_int2+var_int3

lambda_3num = lambda var_int1,var_int2,var_int3:var_int1+var_int2+var_int3

var_int1=int(input("User is entering the first integer number"))

var_int2=int(input("User is entering the second integer number"))

var_int3=int(input("User is entering the third integer number"))

print(summation_of_3num(var_int1,var_int2,var_int3))

print(lambda_3num(var_int1,var_int2,var_int3))

#Input

User is entering the first integer number23

User is entering the second integer number67

User is entering the third integer number40

#Output

130

130

4.2.3.1 Lambda with filter function

filter function is having two arguments, one argument is a function that helps in filtering and the

other argument is iterator like list, tuples, sets, etc. [10]. It returns values that are passing the

filtering condition. Only one iterator is passed in the filter function.

Syntax:

filter(lambda_function,iterator)

Example 44: Program to find out elements greater than 25 in a list

int_list1=[24,26,32,18,10,75]

result_greater_25 = filter(lambda var_int: var_int>25, int_list1)

print(type(result_greater_25))

print(list(result_greater_25))

#Output

<class 'filter'>

[26, 32, 75]

Explanation

1. In the first line, a list is defined with integer numbers.

119

2. In the second line, the result_greater_25 variable will store the values returned by the filter

function.

3. In the second line, list each element is run by lambda function, and when filtering criteria is

True (i.e. when list element > 25) then it returns its value.

4. In the third line, the type of the returned values are printed.

5. In the last line, the results are printed that are returned by the filter function.

Example 45: Program to multiple every element of list using filter function (look carefully at the

output)

int_list1=[24,26,32,18,10,75]

result_multiply_3 = filter(lambda var_int: var_int*3, int_list1)

print(list(result_multiply_3))

#Output

[24, 26, 32, 18, 10, 75]# Here value is not modified

4.2.3.2 Lambda function with Map Function

map function is having two arguments, one argument is a function and the other arguments are

iterator like list, tuples, sets, etc. The map function has one or more iterators. It returns the

modified values to the resultant variable.

Syntax:

map(lambda_function,iterator)

Example 46: Program to multiple every element of list using map function

int_list1=[24,26,32,18,10,75]

result_multiply_3 = map(lambda var_int: var_int*3, int_list1)

print(type(result_multiply_3))

print(list(result_multiply_3))

#Output

<class 'map'>

[72, 78, 96, 54, 30, 225]

Example 47: Map function with lists (swapcase converts lower to upper and vice-versa)

str_list1=['take InjecTion1','Followed with Injection2','wEAr MasK','FoLLOW RULES of social

distancing']

result_swapcase_alphabets = map(lambda var_chr: str.swapcase(var_chr), str_list1)

print(list(result_swapcase_alphabets))

120

#Output

['TAKE iNJECtION1', 'fOLLOWED WITH iNJECTION2', 'WeaR mASk', 'fOllow rules OF SO

CIAL DISTANCING']

4.2.3.3 Lambda with Reduce Function

The reduce function belongs to the functools module and this function is having two arguments,

one argument is lambda function and the other argument is iterator like list, tuple, sets, etc. This

function performs repetitive operation over the iterable elements in pairs and the new reduced

result is returned.

Syntax:

reduce(lambda_function, iterator)

Example 48: Factorial of a number using reduce function

from functools import reduce

int_list1 = [1,2,3,4,5,6]

print(reduce(lambda var1,var2:var1*var2, int_list1))

#Output

720

Explanation: Here, firstly 1 is multiplied with 2, then this result 2 is multiplied with 3, then this

result 6 is multiplied with 4, then this result 24 is multiplied with 5, then this result 120 is

multiplied with 6, and the final result of 720 is returned.

Example 49: Find smallest element in the list using reduce function

from functools import reduce

int_list1 = [-56,2,89,234,-78,-452]

print(reduce(lambda var1,var2:var1 if var1<var2 else var2, int_list1))

#Output

-452

4.3 SELF-CHECK QUESTIONS

1. Predict the following code output:

def output_func(var_int1,var_int2 = -17):

 print(var_int1,var_int2)

output_func(-89)

a) -89 -17 b) -17 c) -89 d) -17 -89

2. Look at the below code and what line says?

121

def output_func(var_int1,var_int2 = -17):

 print(var_int1,var_int2)

output_func(-89)

a) Function definition

b) Function calling

c) Function header

d) Function tail

3. If Function does not have a return statement, it automatically returns None (True/False)

4. In functions, positional arguments must follow keyword arguments (True/False)

5. Tell the output of the following code

var_int1=10

def summation_with_five(var_int1):

 var_int1=var_int1+5

 return var_int1

summation_with_five(5)

print("Value is=",var_int1)

a) Value is= 10

b) Value is= 15

c) Value is= 20

d) Error

4.4 SUMMARY

The students will be able to make different programs with the help of functions. This module

helps the students in understanding the concepts of inbuilt, user-defined and anonymous

functions. Different types of arguments that are used in functions are well explained with

suitable examples. Different inbuilt functions are mentioned, lambda function usage with map,

filter and reduce functions are elaborated. This chapter helps the students to know about the

reusability concept is important and functions play an important role in the reusability of code.

The students can now proceed with advanced concepts of python that will help them in making

projects.

4.5 PRACTICE QUESTIONS

1. The output of the following inbuilt function is

A. print(round(-14.2378,2))

B. print(type(type(type(float))))

C. print(max([-34,78,-89,-12,12]))

2. If you are not aware about the number of arguments to be passed in function definition, then

arbitrary arguments are used. (True / False)

3. Differentiate lambda function with map and reduce function

4. How *var_arguments and **kwargs are different and elaborate with an suitable program?

5. What is the code output?

122

var_int1 = 3

var_int3 = lambda var_int2: var_int2*var_int1**var_int2

print(var_int3(4))

a) 324 b) 36 c) 24 d) 496

6. A number of statements are included in anonymous function like lambda

a) True b) False

7. The correct output of the code is

print(float('1e-003'))

a) 0.001 b) 0.003 c) 0.01 d) 0.03

8. What will be printed?

 def bye_COVID():

 print('Take injections')

bye_COVID()

bye_COVID()

9. Use functions to construct a program for figuring out a number is prime or not.

10. Use functions to construct a program that helps in finding out the smallest of four integer

numbers.

REFERENCES

[1] https://www.geeksforgeeks.org/python-int-function/

[2] https://www.techbeamers.com/python-float-function/

[3] https://www.tutorialsteacher.com/python/float-method

[4] https://www.geeksforgeeks.org/python-type-function/

[5] https://www.programiz.com/python-programming/methods/built-in/round

[6] https://levelup.gitconnected.com/5-types-of-arguments-in-python-function-definition-

e0e2a2cafd29

[7] https://www.digitalocean.com/community/tutorials/how-to-use-args-and-kwargs-in-python-3

[8] https://www.geeksforgeeks.org/default-arguments-in-python/

[9] https://www.geeksforgeeks.org/python-lambda-anonymous-functions-filter-map-reduce/

[10] https://www.guru99.com/python-lambda-function.html

https://www.geeksforgeeks.org/python-int-function/
https://www.techbeamers.com/python-float-function/
https://www.tutorialsteacher.com/python/float-method
https://www.geeksforgeeks.org/python-type-function/
https://www.programiz.com/python-programming/methods/built-in/round
https://levelup.gitconnected.com/5-types-of-arguments-in-python-function-definition-e0e2a2cafd29
https://levelup.gitconnected.com/5-types-of-arguments-in-python-function-definition-e0e2a2cafd29
https://www.digitalocean.com/community/tutorials/how-to-use-args-and-kwargs-in-python-3
https://www.geeksforgeeks.org/default-arguments-in-python/
https://www.geeksforgeeks.org/python-lambda-anonymous-functions-filter-map-reduce/
https://www.guru99.com/python-lambda-function.html

123

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT V: OBJECT-ORIENTED PROGRAMMING

STRUCTURE

5.0 Objectives

5.1 Object-Oriented Programming (OOP)

5.2 Building Blocks of OOPS in Python

 5.2.1 Defining a Class

 5.2.2 Object Instantiation

 5.2.3 Invoking Methods

 5.2.4 Class Variable vs Instance Variable

5.3 Four Principles of OOPs

5.3.1 Encapsulation

5.3.2 Abstraction

5.3.3 Inheritance

5.3.4 Polymorphism

5.4 Special Methods in OOPS

5.5 Modules and Packages

5.5.1 In-built Modules

5.5.2 User-Defined Modules

5.5.3 Alternative form of import statement

124

5.5.4 Packages in Python

5.5.5 Python Packages vs Python Modules

5.5.6 Installing Python packages (pip-PyPi)

125

5.0 OBJECTIVES

In this chapter we address Python classes that can be used in a way similar to C structures, but

also in a complete object-oriented way. In the first two subsection, we shall explore the use of

classes as constructs for the benefit of readers who are not object-oriented programmers. The rest

of the chapter deals with Python's OOPs. This is just a summary of Python's structures and

constructs which is clear demonstration of object-oriented programming itself.

5.1 OBJECT-ORIENTED PROGRAMMING (OOP)

Object-oriented programming is a methodology in the programming sector that offers a tool for

structuring programmes to package properties and its corresponding behaviors. OOP is often

used by Python programmers because it makes programming more reusable and makes working

with bigger programs easier. The methodology is used to bind properties and privileges in order

to structure the program into individual objects. As a result, OOP finds it easy to follow the

principle of "Don't Repeat Yourself" (DRY).

OOPs often benefit from the ability of users to represent data as a single relationship to evolving

market issues. For e.g., if you were to build the programme representing the management

structure of your employees in such a way that the classes involved represent something such as

an employee and then objects are specific example or otherwise properties involving each

employee. Likewise, one can think of another example by considering the software as a kind of

factory mounting line such that a device part processes some raw material at each stage of the

assembly line and eventually with additional functionalities transforms it into a finished product.

Therefore, it is eventual that an object will include information such as raw or previously

manufactured materials on a line at each point of time, and actions, such as the movement

corresponding to every part on an assembly line.

Another traditional model for programming is procedural programming, which structures a

programme, in that it offers sequentially a series of steps in the form of functions and code

blocks to complete a task. The main takeover is that in Python OOP is not only represented by

the details, but also by the general structure of the program.

5.2 BUILDING BLOCKS OF OOPS IN PYTHON

5.2.1 Defining a Class

There are many reasons why Python allows developers to define new classes. Classes tailored to

a certain program would allow the application software to be created, debugged, read and

maintained more intuitively and easily.

A prototype specified by the user or user-defined prototype for an object which sets out a number

of attributes characterize the object belonging to the specific class. Since a class can be specified

once and repeated several times, OOP programmes keep you from repeating code. The attributes

include its data members and processes, which are obtained through the dot notation. Both

126

Python data types are classes, and Python gives you powerful tools to handle all aspects of the

actions of a class. With the class keyword, you can define a class as:

class ClassName:

 'Optional string for documentation purposes‟

 body

Here body is a set of Python statements, usually function definitions and variable assignments.

However, the assignments or function definitions are not necessary and the defined body may

only be a single line statement.

Many Python users, on the other hand, are unaware of Python's strong reliance on classes under

the hood until they learn what a class is, just as we have progressed in this class so far without

learning what classes are. The below code is an example of creating a null operation using pass

statement while defining Player class such that nothing happens on the execution of the below

sample code:

class Player:

 pass

By standard the class identifiers are in CapCase, i.e. the first letter is capitalized on each part

word to differentiate and making it much easier for the developer to read around.

5.2.2 Object Instantiation

Only the object's definition or outline is created when we define a class. There will be no

memory allocation until the object is created. True data or information is stored in the objector

instance inst as:

inst = ClassName()

Likewise, after defining the class you can build a new class type by calling the class name as a

function and this is generally referred to as a class instance.

One can create (we will name it new_player) an instance of the Player class and print the type of

the variable player_type as:

Player.py

class Player:

 player_type=”batsman”

127

new_player=Player()

print(type(new_player))

 Running the program will return the type of the variable as:

Output:

<class '__main__.Player'>

Further the value corresponding to instance of defined class can be done through the usage of dot

notation as:

Player.py

class Player:

 #class attribute

 player_type=”batsman”

new_player=Player()

print(new_player.player_type)

 Running the program will return the value of the variable as:

Output:

batsman

5.2.3 Invoking Methods

Classes may also have features such as methods that are only applicable to objects of that type.

These functions are specified within the class and perform any behavior that is beneficial to that

particular object category. Methods have two distinctions, much like functions:

● In order to make clear the relationship between the class and the method the methods are

specified in a class description.

● The method invoking syntax is distinct from the function call syntax

128

Player.py

class Player:

 #instance attributes

 def __init__(self, matches, name):

 self.matches = matches

 self.name=name

 def odi_history(self, runs):

 return “{} has scored {} number of runs”.format(self.name, runs)

 def t20_history(self, runs):

 return “{} has scored {} number of runs”.format(self.name, runs)

 def tennis(self):

 return “{} loves playing tennis”.format(self.name)

#object instantiation

new_player= Player(1987, “Rishabh Pant”)

#instance methods calling

print(new_player.odi_history(687))

print(new_player.t20_history(1056))

print(new_player.tennis())

5.2.4 Class Variable Vs Instance Variable

Class Variable is a variable that is shared by all instances of a class. Class variables are defined

within a class but outside any of the class's methods. Class variables are not used as frequently as

instance variables are. A class variable or instance variable that holds data associated with a

class and its objects. Defined apart from any method, class variables are usually placed below the

class header and before the constructor method and other methods by default.

An instance is an object that is constructed from a class and includes actual data, while a class is

the blueprint. It may refer to as a variable that is defined inside a method and belongs only to the

current instance of a class.

class Player:

129

 #class attribute

 player_type=”batsman”

 #instance attribute

 def __init__(self, matches, name):

 self.matches = matches

 self.name=name

#parametric instantiation of Player class

player1=Player(124, “Rohit Sharma”)

player2=Player(132, “Virat Kohli”)

class variable access

print(“Rohit Sharma is an opening {}”.format(player1.__class__.player_type))

print(“Virat Kohli is also a {}”.format(player2.__class__.player_type))

instance variable access

print(“{} has played {} matches”.format(player1.matches,player1.name))

print(“{} has played {} matches”.format(player2.matches,player2.name))

5.3 FOUR PRINCIPLES OF OOPS

5.3.1 Encapsulation

Encapsulation is performed by maintaining a private state of any object within a class. Other

objects will only call a list of public functions if this state is not accessible directly instead. Via

these functions the object maintains its own state and no other class can modify it unless

specifically permitted. You will have to use the methods presented to communicate with the

object.

5.3.2 Abstraction

Abstraction is an encapsulation expansion. Data are selected from a wider pool to only provide

the corresponding information.

5.3.3 Inheritance

Inheritance is one object's ability to acquire one or more of those properties corresponding to

another object. For example, a child inherits his/her parents' traits as well as behavior.

Reusability is a significant advantage of inheritance. You may reuse the existing class fields and

130

methods. There are different types of inheritances in Java: single, multiple, multi-level,

hierarchical, and hybrids.

We need a parent class and a child class to incorporate inheritance in the Python

programme. Let's see how these two classes can be formed:

#creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

As in the above program, we have created a parent class which was similar to that of

defining the normal class. So next, we create child class whose syntax is like similar to

method calling where Parent Class is an argument as represented below:

class childClass(parentClass):

 #body of child class

So, the example code of inheritance where child class is able to access the data members

of itself as well as the parent class is shown below:

creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

class Cricket(Sports):

131

 def no_hrs(self):

 print(“Cricket has broadcast time of 10 hours a day”)

#main() method

new_chn = Cricket()

print(new_chn.details())

print(new_chn.no_hrs())

Types of Inheritance in Python

The five types of inheritance is supported by python namely

a) Single Inheritance

A child class inherits all the features of a parent class in a single inheritance.

creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

class Cricket(Sports):

 def no_hrs(self):

 print(“Cricket has broadcast time of 10 hours a day”)

#main() method

new_chn = Cricket()

print(new_chn.details())

print(new_chn.no_hrs())

b) Multiple Inheritance

A class in Python can be derived from one base class and this type of inheritance is

referred to as multiple inheritance.

132

creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

class News:

 def no_hrs(self):

 print(“News has broadcast time of 10 hours a day”)

class Match(Sports,News):

 def time(self):

 print(“Match has broadcast time of 7 hours a day”)

#main() method

new_chn = Match()

print(new_chn.details())

print(new_chn.no_hrs())

print(new_chn.time())

c) Multilevel Inheritance

We also can inherit a derivative class and the succession of such process is known as

multilevel inheritance. In Python, it can be of some depth as:

creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

class News(Sports):

 def no_hrs(self):

 print(“Sports News has broadcast time of 10 hours a day”)

class Cricket(News):

133

 def time(self):

 print(“Cricket News has broadcast time of 7 hours a day”)

#main() method

new_chn = Cricket()

print(new_chn.details())

print(new_chn.no_hrs())

print(new_chn.time())

d) Hierarchical Inheritance

It is considered as hierarchical inheritance if there are more than one class inherited

from the base class. The characteristics typical in child class are included in the base

class in hierarchical inheritance.

creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

class News(Sports):

 def no_hrs(self):

 print(“Sports News has broadcast time of 10 hours a day”)

class Match(Sports):

 def time(self):

 print(“Cricket News has broadcast time of 7 hours a day”)

#main() method

new_chn1 = News()

new_chn2 = Match()

print(new_chn.details())

print(new_chn1.no_hrs())

print(new_chn2.time())

134

e) Hybrid Inheritance

The combination of various types of above-mentioned inheritance is called hybrid

inheritance.

creating parent class

 class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

class News(Sports):

 def no_hrs(self):

 print(“Sports News has broadcast time of 10 hours a day”)

class Match(Sports):

 def time(self):

 print(“Cricket News has broadcast time of 7 hours a day”)

class TalkShow(Sports, Match):

 def time(self):

 print(“Talk Show of match has broadcast time of 7 hours a day”)

#main() method

new_chn1 = TalkShow()

print(new_chn.details())

The super() function can be applied to in the inherited subclass of a parent class. The

super function returns a temporary superclass object, allowing access to its child class

through all its methods with an example as:

creating parent class

class Sports:

 channel=”star productions”

 def details(self):

 print(“The channel broadcasts the live updates from sports corner”)

#creating child class

135

class Cricket(Sports):

 def no_hrs(self):

 Super().details()

 print(“Cricket has broadcast time of 10 hours a day”)

#main() method

new_chn = Cricket()

print(new_chn.no_hrs())

5.3.4 Polymorphism

Polymorphism has a means for us of using a class much as its parent such that combining

forms are not confused. That being said, any subclass of children maintains its own

functions/methods. Polymorphism is an object-oriented programming term, meaning

multiple forms or different types. Polymorphism allows for one interface with the input

of several data types, classes and various inputs. On such process is method overriding or

function overloading is a kind of polymorphism in which a variety of methods can be

declared with the same name but different parameters and with different parameters

types. These strategies may play a similar or different role.

For example, the len function below takes string and list as an argument showing multi-

purpose form of the function:

len(“hello”)

len([1,2,3,4,5])

Polymorphic Classes and Methods

However, it is well known that there are different forms of cricket i.e., ODI, T20 and Test but

there are some attributes as well as methods which might remain same under such regard. Now

we will employ the technique of method overloading in such scenario where function will act

same as that of another class as shown below:

class Batsman:

 runs_scored=2000

 matches=40

 def calculate_average(self):

 return self.run_scored / self.matches

class Bowler:

136

 wickets_taken=50

 matches=30

 def calculate_average(self):

 return self.wickets_taken / self.matches

bat= Batsman()

bowl=Bowler()

print(“Average of a batsman: ”, bat.calculate_average())

print(“Average of a bowler: ”, bowl.calculate_average())

#Another form of writing

bat1= Batsman()

bowl1=Bowler()

for(obj in (bat1,bowl1)):

 obj.calculate_average()

5.4 SPECIAL METHODS IN OOPS

A set of special object methods is used in all integrated data forms. Double underscores (__)

often precede the names of special methods. The interpreter triggers these methods

automatically as the programme runs. For instance, a + b is mapped to an internal process,

and a.__add__(b), and likewise an indexing operation for defined list a[i], is mapped to

a.__getitem__(i). Each data type's behavior depends entirely on the selection of particular

methods it utilizes. For example, the __new()__ method in python is called implicitly before

the call of __init()__ method such that a new object is returned by __new()__ method and

then initialized by __init()__ method.

class Sports:

 def __new__(mtd):

 print ("Here__new()__ magic method is being invoked")

 inst = object.__new__(mtd)

 return inst

 def __init__(self):

 print ("Here __init__ magic method is being invoked")

 self.name=‟Virat‟

spr = Sports()

137

The output on the execution of above program is :

Here__new()__ magic method is being invoked

Here __init__ magic method is being invoked

Moreover, for the case of string operation, the special method __str()__ is useful. The usage

for the same is represented as below:

j=6

print(str(j))

print(int.__str(j)__)

 The output on the execution of above program is :

Output:

„6‟

„6‟

Below table entails the use of special methods in OOPS:

Most commonly used special methods in object-oriented python programming

Methods Description

__new__(cls,args)

The method is used as an alternative method of object

instantiation

__init__(self,args) This method is to be called by the above __new__

method for the intialisation purposes

__del__(self) Self-Destructor method

138

5.5 MODULES AND PACKAGES

In reality, in Python, there are three different ways of defining a module:

● Self-writing of the module itself in Python language

● A module like the re- (regular expression) module can be written in C and loaded

dynamically at runtime.

● An integrated module like the module of itertools is inherently contained in the

interpreter.

In all three cases: with the import statement, the content of a module are accessed in the same

manner.

5.5.1 In-built Modules

Generally, the in-built modules are stored in the directory where the python has been installed

and likewise all modules can be displayed using the following command on Python IDLE as:

>>> help(„modules‟)

 On running in the python IDLE, the output of the command is as:

The import statement as shown below is used for calling the in-built modules, such as an

example of system module (sys) in this case

139

import sys

Likewise, the resulting search path where all these modules are being located can be assembled

altogether from their respective sources of location as:

● The directory that was used for the input script or the actual directory whether the

interpreter is interactively running

● The directory list in the environment variable PYTHONPATH, if it has been set.

(PYTHONPATH's format depends on the OS but should be imitated as variable PATH

environment.)

● An installation-based directory list set up on the installation of Python

Below python code (path_mod.py) lists the resulting search path corresponding to the sys

module as:

path_mod.py

import sys #importing in-built module

print(sys.path)

The output on the execution of the code can be found as:

Output:

['', 'C:\\Users\\DELL\\AppData\\Local\\Programs\\Python\\Python38\\python38.zip',

'C:\\Users\\DELL\\AppData\\Local\\Programs\\Python\\Python38\\DLLs',

'C:\\Users\\DELL\\AppData\\Local\\Programs\\Python\\Python38\\lib',

'C:\\Users\\DELL\\AppData\\Local\\Programs\\Python\\Python38',

'C:\\Users\\DELL\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages']

5.5.2 User-Defined Modules

For implementing the case of self-written modules, the file (pmod.py) with extension .py needs

to be created containing string (str), list of earnings (ear), self-defined method and class (with no

specific operation)

140

pmod.py

#initialising string

str = “Ram is a student and does a part time job to meet his earnings”

#initialising list

l_ear = [1000,2000,3000]

#self-defined method

def savings(val):

 print(f‟val={val}‟)

class Test:

 pass

If mod.py is saved in a suitable location that you can eventually understand about importing the

self-written modules by creating another file (mod_test.py) at the same location of the previous

one.

mod_test.py

import pmod

print(pmod.str)

print(pmod.l_ear)

print(savings([„10000‟,‟20000‟,‟24000‟]))

x= pmod.Test()

print(x)

Once a module is imported, the location of its existence can be determined using the __file__

attribute as:

mod_exs.py

import re

print(re.__file__)

141

The output on the execution of the code can be found as:

Output:

'C:\\Users\\DELL\\AppData\\Local\\Programs\\Python\\Python38\\lib\\re.py'

5.5.3 Alternative form of Import Statement

An alternative type of the import statement may be imported directly to the caller's symbol table

by individual artefacts of the module with syntax as:

from <module-name> import <name(s)>

In such cases for the implementation of the same we can invoke the file pmod.py (used in 1.5.2)

as a module and create another python code file (anthr_import.py) for implementing the various

methods of using such an alternative form of import statement as:

anthr_import.py

from pmod import str, savings #module as defined in section 1.5.2

print(str)

print(savings ([„10000‟,‟20000‟,‟24000‟]))

Even the class being defined in the self-written module can be imported using this alternative

form of import statement as:

anthr_import.py

from pmod import Test #module as defined in section 1.5.2

x=Test()

print(x)

Furthermore, if user wishes to import the name of all objects being used in the specific module,

then he/she can opt for using * operation after import keyword in the aforementioned alternative

form of import statement as:

142

anthr_import.py

from pmod import * #module as defined in section 1.5.2

print(str)

print(savings ([„10000‟,‟20000‟,‟24000‟]))

x=Test()

print(x)

It is also possible to import the name of any module using user-defined alternative name. This is

done with an objective of avoiding any conflicts with previously defined names. The import

statement in such cases can be represented as:

from <module-name> import <name> as <alt-name>[, <name> as <alt-name> ….]

The entire module can also be imported using alternative name such that:

alt_mod.py

import pmod as ud_module

print(ud_module.str)

print(ud_module.savings ([„10000‟,‟20000‟,‟24000‟]))

5.5.4 Packages in Python

Essentially, a package is like a directory containing subpacks and modules. We can also use one

of the Python Package Index (PyPI) for our own projects when creating our own packages.

Suppose below is the directory structure for the user-defined modules or subpacks to be used

143

cricket

|-- batsman

| |-- run.py

| |-- __init__.py

| |-- matches.py

| `-- mom.py

|-- bowler

| |-- wickets.py

| |-- __init__.py

| |-- average.py

| `-- economy.py

A package in python must include the __init .py file, though this file may be an empty file.

However, only the immediate components are shipped while we import a package, not the sub

packages. It will raise an AttributeError if you want to access them.

So as an example, we type the following code to import a package:

package_exmp1.py

import cricket

print(cricket)

print(cricket.batsman)

5.5.5 Python Packages vs Python Modules

Now that all modules and packages have been revamped, let's see how differing they are:

● A module is a Python-coded format. However, a package is like a directory containing

subpackages and modules.

● The __init__.py file must be held by a package. This is not true of modules.

144

● We use the wildcard * to import anything from a module. But in packages, such

wildcard doesn't work.

5.5.6 Installing Python packages (pip-PyPi)

We learn how to use a pip to install and handle packages for Python in this section. Pip is the

default Python package manager. In the Python Standard Library, we can load additional

packages with pip.

On Python versions 3.4 or higher, pip comes pre-installed. However, if there are two versions of

python in the system, then there might be chance that there are two pips – one pip corresponding

to Python2 version (pip) and another pip corresponding to Python3 version. However, python2 is

near to the deprecation in near future such that pip alone refers to third version of Python i.e.,

Python3. Likewise, the following command in the console may be used to check for the

existence of pip:

>>> pip –version

Pip is a programme on the command line. A pip command will be added to be used with the

command prompt after launch. The standard pip syntax is:

pip <pip-arguments>

Various arguments linking to the pip command can be implemented where the examples for such

cases from installation to usage to removal of any package are defined in the block below:

pip install pandas #command to install pandas package

User can install the specified version of the package as:

pip install pandas==1.2.4 #installing specified version of pandas

Successfully installed pandas-1.2.4

For rechecking purposes, the user can run for the same command as during the installation of any

package as:

145

pip install pandas

Requirement already satisfied

To uninstall a package with PIP, enter the following command in the prompt (don't forget to

enter this command with a path of Python Scripts):

pip uninstall pandas

Successfully uninstalled pandas-1.2.4

In the era of data science, one is in hurry where user doesn‟t want to enter manually for every

single package but wants automation in such process. Therefore, pip allows the use of the

requirements file which contains all the name of python packages to be installed. For example,

let us consider the requirements.txt file containing the name of packages to be installed in the

system

requirements.txt

librosa

pandas

keras

tensorflow

Now user can invoke pip command and install all the packages and its corresponding

dependencies using single command

pip install -r requirements.txt

Likewise, one can search for the installed packages such that all packages containing the name or

similar identity as:

pip search pygame

146

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT VI: ERRORS AND EXCEPTION HANDLING

STRUCTURE

6.0 Objectives

6.1 Introduction

 6.1.1 Syntax Errors

 6.1.2 Exception

6.2 Built-in Exceptions

6.3 Raising Exceptions

6.3.1 raise statement

6.3.2 assert statement

6.4 Handling Exceptions

6.5 Using Pylint in Python

 6.5.1 Detecting Multi-statement with implicit continuation

 6.5.2 Using Operators

 6.5.3 Whitespaces following the use of comma, semicolon, or colon

147

6.0 OBJECTIVES

Sometimes the programme does not work at all while running a Python programme or the

programme runs but produces unexpected output or is strangely behavioral. This is when one of

the syntax or runtimes or logical errors arise in the code. Exceptions in Python are errors which

are automatically triggered. Exceptions can, however, be strongly triggered and managed by

computer code. We will be studying in this chapter about Python's exceptions such that the error

can be managed and caught easily rather than debugging the whole code again and again.

6.1 INTRODUCTION

The reason for an exception is typically outside of the programme itself. Incorrect input, an

improper IO device etc. are examples for the origination of such exceptions. Since the

programme ends suddenly with an exception, the system resources, e.g. files, might be

compromised. The exceptions should thus be properly dealt with so that the application is not

abruptly shut down.

It is crucial to understand before we grasp why exception handling and forms of built-in

exceptions supported by Python is needed to understand that an error and an exception are

different. Therefore, let us make an effort to grasp what errors are in Python before explaining

how to deal with problems. Errors are merely code errors that can be damaging leading to loss of

useful information/content available in the files/systems.

In Python, there are two kinds of errors:

6.1.1 Syntax Errors

If we have not followed the rules for the programming language when developing a programme,

syntax errors are identified. These errors are also called parsing errors. The interpreter does not

run the programme on a syntax error unless the mistakes have been corrected, the programme is

saved and re-started. If during shell mode, a syntax error occurs, Python shows the name of the

error and a little explanation of the mistake.

Errors cannot be managed whereas exceptions to Python may be dealt with at run time. An error

may be a (parse) syntax error, but many kinds of exceptions may happen during performance and

are not unreservedly inoperative. An error can point to significant flaws that should not be

detected by a sensible programme, whereas an exception might identify circumstances for an

application to attempt to capture. Errors are a sort of uncontrolled exception, and they can be

irretrievably handled by a programmer like an OutOfMemoryError.

6.1.2 Exceptions

Even though an expression or statement is syntactically accurate, an error might occur during its

implementation. For instance, try to open a non-existent file, zero-divide, etc. Such mistakes can

disturb regular programme execution and are known as exemptions.

An exception is an object from Python that is an error. If a mistake occurs during programme

execution, an exception is reported. The programmer must deal with this exception so that the

programme is not abnormally terminated. Therefore, a programmer may foresee and resolve such

148

erroneous scenarios in the design of a programme by the inclusion of the proper code for this

exception.

6.2 BUILT-IN EXCEPTIONS

In the compiler/interpreter, common exceptions are often defined. These are referred to as built-

in exceptions.

The standard library in Python is a comprehensive collection of built-in exceptions which

address common faults (exceptions) by giving the specified remedies for these mistakes. In the

case of any included exceptions, a relevant exception handler code is called that shows the

reason and the exception name raised. The programmer must take suitable measures to deal with

it. Some of the common built-in exceptions in Python are discussed in the table below:

Exception Description

SyntaxError Raised when a Python syntax error occurs.

ValueError Raised when an in-built data-type function has the appropriate type

of argument, arguments, but incorrect values are utilized

corresponding to the argument

IOError Raised for errors linked to the operating system.

KeyboardInterrupt Raised, generally by hitting Ctrl+c or Ctrl+z, after the user stops

running the programme.

SystemExit Raised using the in-built function of sys.exit().

ArithmeticError Base class for all numerical calculation mistakes.

OverflowError Raised when the maximum limit for a number type exceeds a

computation.

FloatingPointError Raised if a computation of the floating point fails.

ZeroDivisionError For all numeric types, its value is raised when division or modulo

by zero occurs.

AssertionError If the Assert statement fails, this exception is raised.

EOFError When the end of the file is reached and there is no input from either

the raw_input() or input() function, this exception is raised.

IndexError Raised if a sequence does not find an index.

NameError Raised when a local or global name space does not include an

identifier.

IndentationError Raised if not correctly provided indentation.

TypeError Raised when attempting an operation or function which is invalid

for the data type given.

6.3 RAISING EXCEPTIONS

The Python interpreter raises (throws) an exception every time an error is identified in a

programme. Exception managers are intended to run when there is a particular exception.

Program makers may also use raise and assert statements to forcibly raise exceptions in a

149

programme. When there is a derogation, no more statement is performed in the current code

block. An exception therefore means that the usual flow of the programme is interrupted and that

section of the programme is jumped into (exclusion handling code).

6.3.1 Raise Statement

The raise keyword, on the other hand, is used to raise an exception, whereas the try and except

blocks are used to handle exceptions. The syntax of raise statement is as:

raise [Exception [, args [, trback]]]

Here, in the above syntax, Exception is the exception type (e.g., NameError) and the argument is

the exception value. The argument is optional; the exception is None if not provided. Otherwise,

trback(traceback) is likewise an optional (and often seldom used) input, and the traceback object

for the exception is utilized if provided.

Only an exception handler (or a procedure called directly or indirectly by an exception handler)

can use raise without any expressions. The identical exception object that the handler got is re-

raised by a simple raise command. The handler is terminated, and the exception propagation

mechanism continues to look for other handlers that are appropriate. When a handler realizes that

it is unable to handle an exception it gets, and the exception should continue to propagate, it is

beneficial to use a raise without expressions.

Likewise, a string, a class or an object can be an exception. The classes with an argument that is

a class instance are mostly exceptions raised by the Python core. It is relatively straightforward

to define new exceptions and may be done as follows:

class SalaryRangeError(Exception):

 """Exception raised for errors in the input salary.

 """

 def __init__(self, sal, mes="Salary here is not in (2000, 10000) range"):

 self.sal = sal

 self.mes = mes

 super().__init__(self.mes)

sal = int(input("Enter the amount of salary: "))

if not 2000 < sal < 10000:

 raise SalaryRangeError(sal)

The output of the above code is produced as:

Output:

Enter the amount of salary: 12000

Traceback (most recent call last):

150

 File "<string>", line 13, in <module>

__main__.SalaryRangeError: Salary here is not in (2000, 10000) range

6.3.2 Assert Statement

The declaration of assert is used in Python to continue the execution if the particular condition is

true. If the condition assesses False, then with the supplied error message, the exception

AssertionError will be raised with syntax as follow:

assert condition [, ErrorMessage]

In Python an expression in the programme code is tested using a declaration. If the test result is

wrong, the exception is raised. This statement is usually used to validate the correct entry at the

beginning of the function or after a function call

def discount_offer(pr, dis):

 new_pr = int(pr['price'] * (1.0 - dis))

 assert 0 <= new_pr <= pr['price']

 return new_pr

clothes = {'name': 'Moda Clothes', 'price': 14000}

print(discount_offer(clothes,0.35)) #35% discount

discount_offer(clothes,2.00) #200% discount

As you can see, attempting an invalid discount generates an exception to AssertionError, which

links to the violated assumption. If one of these mistakes is ever encountered during the testing

of our online shop, it is easy to find out by looking at the trace with output as shown below:

Output:

9100

Traceback (most recent call last):

 File "<string>", line 12, in <module>

 File "<string>", line 3, in discount_offer

AssertionError

151

6.4 HANDLING EXCEPTIONS

The flow chart for the process of handling exception in python programming language is as

follows:

You may safeguard your programme by placing the suspended code in a block if you have a

questionable code which might produce an exception, it is recommended to include a statement

after the try: block, followed by an elegant bit of code to deal with the situation.

An exceptional except for a class that is the same class or the same base class (but not the other

way round – an exclusively clause listing a derived class is not consistent with a basic class) is

compatible with an except for a clause. For instance, in this order, the following code will

display B, C, D:

class Sports(Exception):

 pass

class Cricket(Sports):

 pass

class News(Cricket):

 pass

for cls in [Sports, Cricket, News]:

 try:

 raise cls()

 except News:

 print("This is news section of cricket")

 except Cricket:

152

 print("This is section of cricket game")

 except Sports:

 print("This is section of sports center")

On running the above code, the following output is being obtained:

Output:

This is section of sports center

This is section of cricket game

This is news section of cricket

There may be several test statements except statements for one attempt. The test block contains

statements that might produce different kinds of exceptions. This is considered as useful for the

developer‟s prospective such that a general excluding clause should cover any exception that

may also be provided. Moreover, one can put a different clause after such exception(s). The code

in the other block executes if the block tries: no exception is raised. Therefore, the use of other

block is a suitable area for code that needs little effort, thus ensuring protection of blocks while

coding for bigger enterprise applications. Below is an example of exception handling in file

systems:

#Exception handling alongside the use of file handling

try:

 f_obj = open("newfile.txt", "w") #opening file in writing mode

 f_obj.write("This is a check for exception handling!!") #writing file

except IOError:

 print "Error: Unable to find file or read data"

else:

 print "Successfully written content into the file"

 f_obj.close()

On running the above code, the following output is being produced:

Output:

Successfully written content into the file

However, exception handling was not useful in the above case as legitimate conditions for

opening the file were met as well as adequate. However, when we specify the wrong mode and

153

then start writing the file, then the try block executes to an exception. The illustration of such

case in file handling is shown below:

#exception handling alongside the use of file handling

try:

 f_obj = open("newfile.txt", "w") #opening file in writing mode

 f_obj.write("This is a check for exception handling!!") #writing file

except IOError:

 print "Error: Unable to find file or read data"

else:

 print "Successfully written content into the file"

 f_obj.close()

On running the above code, the following output is being produced:

Output:

Error: Unable to find file or read data

The try ... except the statement contains else optional clause, which must follow everything

except the provisions when present. It is advantageous if a trial clause does not trigger an

exception for code which must be performed. For instance, the below code details the use of

exception handling in such scenarios:

for i in sys.argv[1:]:

 try:

 f = open(i, 'r')

 except OSError:

 print('cannot open the file', arg)

 else:

 print(i, 'has', len(f.readlines()), ' number of lines')

 f.close()

Instead of adding more code to the test clause, the usage of the other clause is better, since it

avoids mistakenly catching an exception not produced by the code that is shielded from the test

unless statement. If an exception occurs, a value, also known as an argument for the exception,

may occur. The type and existence of the argument will depend on the kind of exception. The

exception clause can specify an exception name variable. The variable is linked with the

argument specified in instance.args to an exception instance.

154

6.5 USING PYLINT IN PYTHON

The knowledge of the other programmes is one of the main issues of the day. Even worse,

situations when there is no informative stuff in the code, such as comments or docstrings. As a

programmer, our code should be legible and comprehensible. This is the tale of a Pylint tool that

discovered a production-impacting problem the day before the code was deployed. This is also

the storey of a tool that, for good reason, no one uses. By the end of this section, one can easily

understand why this tool is valuable, why it isn't, and how to utilize it with your Python project.

Pylint is a library for third parties which is not in Python by default and is quite simple to set up.

Since Pylint is not part of the standard Python library, we have to separately install it. The pip

package can simply accomplish this. Pip is Python's standard Package Manager, enabling

packages not included in the Python Standard Library to be installed and managed. Simply run

the install command through pip packages, and Pylint and all of its dependencies will be

installed.

pip install pylint

When we have pylint installed, the command pylint with the file name is easy to use by running

the following code utilizing pylint package:

pylint exp_file.py

6.5.1 Detecting Multi-statement with Implicit Continuation

In Python, inside parathesis we utilize implicit line, brackets ([]) and braces ({{}). Implicit

indicates that the line continuation character (\) is not written so that a statement is extended over

many lines.

The wrapped element should be vertically aligned or hanging by use of the implied continuation

lines. Hanging indentation in Python indicates that the start of a parenthesized declaration is the

ultimate non-whitespace character of the line, and successive lines are indented until the closing

parentheses. Let‟s take an example where we will see handing indentation while defining the

function and its corresponding arguments:

test.py

#multi-line statement

def mult_func(a1, a2, a3,

 a4, a5):

 """The function performs the numerical operations on numbers"""

 return a1 * a2 - a3 * a4 + a5

155

mult_func(2,4,1,6,5)

On running the above code using the output comes out to be

> python3 mult_pylint.py

7

The code will run but as said with pylint one can discover a production-impacting problem such

that the readability of code for cross-platform deployments can be tested as:

> pylint test.py

************* Module test

test.py:1:0: C0114: Missing module docstring (missing-module-docstring)

test.py:2:0: C0103: Argument name "a1" doesn't conform to snake_case naming style (invalid-

name)

test.py:2:0: C0103: Argument name "a2" doesn't conform to snake_case naming style (invalid-

name)

test.py:2:0: C0103: Argument name "a3" doesn't conform to snake_case naming style (invalid-

name)

test.py:2:0: C0103: Argument name "a4" doesn't conform to snake_case naming style (invalid-

name)

test.py:2:0: C0103: Argument name "a5" doesn't conform to snake_case naming style (invalid-

name)

test.py:2:0: C0116: Missing function or method docstring (missing-function-docstring)

Your code has been rated at -13.33/10

6.5.2 Using Operators

A warning at the beginning of the code may be easily deactivated by inserting a statement

(#pylint; disable=C0114)

The warning C0114 shows the absence of a module docstring. A docstring is a string in module,

function, class, or method declaration which is the initial statement. Under PEP 257, all modules

should include a docstring stating what the module performs in the starting point. We will not

put a docstring to the top of each module in order to make things simpler. However, the practise

of writing doctrines is strongly advised.

156

Below code shows the use of operators where python recommends the use employing single

space on either side:

test1.py

pylint: disable=C0114

#Comparison operators

print(9<8)

Membership operator

if 5 in [1, 2, 3, 4, 5]:

 print('element is present in this list')

else:

 print('element is not present in this list')

> python3 test1.py

False

element is present in this list

> pylint test1.py

************* Module test1

test1.py:11:0: C0305: Trailing newlines (trailing-newlines)

Your code has been rated at 7.50/10

6.5.3 Whitespaces following the use of comma, semicolon, or colon

The following problematic practices can be observed in the code:

 After the comma separating each item in the list, a whitespace is lacking.

 Following the colon (:), which divides the key value pair in the dictionary, there is no

whitespace.

 There is a whitespace just before the comma separating each tuple element.

test2.py

pylint: disable=C0103

pylint: disable=C0114

list

num=[1,2,3,4,5] #trailing whitespace at the end

157

dictionary - players and grades

score_grade= {'Rohit':10, 'Virat':2.5, 'Pant':8.5} #trailing whitespace at the end

tuple - strike rate and average

perf = (128.5 , 51.576) #trailing whitespace at the end

print(score_grade, end=",") #trailing whitespace at the end

print(perf) #trailing whitespace at the end

>python3 test2.py

{'Rohit': 10, 'Virat': 2.5, 'Pant': 8.5},(128.5, 51.576)

> pylint test2.py

************* Module test2

test2.py:5:15: C0303: Trailing whitespace (trailing-whitespace)

test2.py:8:54: C0303: Trailing whitespace (trailing-whitespace)

test2.py:11:25: C0303: Trailing whitespace (trailing-whitespace)

test2.py:13:27: C0303: Trailing whitespace (trailing-whitespace)

test2.py:14:11: C0303: Trailing whitespace (trailing-whitespace)

--

Your code has been rated at 0.00/10

158

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT VII: PYTHON GENERATORS

STRUCTURE

7.0 Objectives

7.1 Generators in Python Programming

7.1.1 Using yield keyword in Python

7.1.2 Using generator in Python

7.1.3 Difference of normal function and generator function

7.2 Using yield from in Python Generator

7.3 Real-life use cases of Python

7.4 Making an iterable from a generator

7.5 Recursive Generator

7.6 Generator Expressions

7.7 Summary

159

7.0 OBJECTIVES

In this chapter, we study the importance of effective utilization of large sets of results files

without the allocation of the memory for all the outcomes simultaneously. Likewise, this can be

achieved in Python through providing our own iterator method by employing a generator. A

generator is a specific function type that does not return a single value but rather returns a stream

of values for an iterator object or in instances when the generator utilizes or consumes another

generator, and when it is done as early as feasible, it is more convenient. A yield statement is

used instead of a return statement in a generator function. A basic generating feature and

functions are further detailed in this chapter

7.1 Generators in Python Programming

Have you ever had to read big datasets or files in a circumstance that was too overwhelming to

put into memory? Or perhaps you intended to make an iterator but the manufacture was simple

enough to create the iterator, as opposed to creating the needed values?

Keeping in mind the growing outrage of data science in normal life scenarios, the effective use

of generator under some of these situations can be quite helpful and simple. The prospects of

positivity are generalized on both the sides whether the person is developer or the reader of

beautifully written code.

The generator functions introduced with PEP 255 are a specific type of function which returns

some form of lazy iterator. Objects can be looped over like a list, although lazy iterators do not

save its contents in the memory, unlike lists. The quantity of code required for code is one of the

advantages of employing generator functions for using iterators.

7.1.1 Using yield keyword in Python

The keyword yield functions as similar to that of yield in python where the only difference is that

it returns a generator object to the caller instead of returning a value.

The function execution stops at the line itself when a function is called and the running thread

discovers an output keyword in the function, and returns a generator object to the caller.

If the statement begins an iteration over a collection of items, the generator is running. When the

function code of the generator reaches a statement "render," the generator returns its execution to

the loop, returning a new value from the set. The generator function can produce as many

(maybe unlimited) values as it wishes, each of which in turn results.

Let's see some instances of generators and yield in action after this introduction:

160

test_yield.py

def yield_func():

 yield “This is the way of using yield similar to that of return function”

print(yield_func())

Above was the basic syntax covering yield keyword where on running the program, the

corresponding output obtained is as following:

Output:

<generator object yield_func at 0x7fb3f0ea6510>

The essential points considering the usage of yield are as follows:

 A yield produces a function exit but we start 'where we have left off' next time the

function is called, i.e., on the line after the output rather than at the starting of the

function.

 All local variables values that existed at the time of the yield action are kept intact at the

time of resuming.

 The same generator can have many yield lines.

 There are also return statements, however if a StopIteration exception is generated if the

next() function is called once again, the execution of a such statement will occur.

 Returns one argument to yield (or none). That can be a tuple parameter, however.

7.1.2 Using Generator in Python

As of now, we are very familiar with syntax employing yield keyword in python. Therefore, the

next task is to fetch the corresponding values from generator object. One has to remember that

these generator objects are able to be fetched one at a time instead of the whole list together. So

for carrying out operations where the whole list is required to be fetched, we can use loop, next()

or preferably the list() method.

Following are the examples of the generators corresponding to their fetched values in each

scenario

test_generator.py

def generator_func():

 yield “first statement”

 yield “second statement”

161

 yield “third statement”

 yield “fourth statement”

 yield “fifth statement”

gen = generator_func()

print(gen)

for i in gen:

 print(i)

On running the above program, one can clearly see the use of for loop to get the values stored at

particular address corresponding to that generator. Thus, the output of the above code is as:

Output:

<generator object generator_func at 0x7f2fdb56d510>

first statement

second statement

third statement

fourth statement

fifth statement

7.1.3 Difference of normal function and generator function

The use of generator function sounds similar to that of normal function employed in python

programming. Therefore, with an example below, we try to investigate the difference between

the two such that the sample code ought to return only the value back which is the form of string.

#Generator Function

def gen_func():

 yield “This is the way of using yield in generator function”

#Normal Function

def nor_func():

 return “This is the way of using return in normal function”

print(gen_func()) #calling generator function

print(nor_func()) #calling normal function

162

On running the program, the output will clearly define the difference of using yield and return

statement such that the yield keyword corresponds to the address instead normal function returns

the string.

Output:

<generator object gen_func at 0x7f2fdb56d510>

This is the way of using return in normal function

7.2 USING YIELD FROM IN PYTHON GENERATOR

Let's first get out of the way one item. The rationale that the yield of val equals for val in g is

because yield v is not even eq-ual to what yield is. Well let's face it, if the output of the entire

loop expands, then the adding of the output of the language does not merit the addition of all new

features in a Python 2.x.

What yield from keyword used in generator does is that it sets up a transparent two-way link

between the caller and the sub-generator such that:

 The link is "transparent" in that it also spreads everything appropriately, not just the

pieces that are created (e.g. exceptions are propagated).

 The link is "bidirectional" because data may be transmitted from and to a generator.

Let‟s illustrate an example where does the actual role of yield from keywords originate and how

will it help in solving the rationale problem equivalent to that of for loop. In the below code, we

designate the use of manual iteration over read_value() function as:

def read_value():

 for i in range(4):

 yield '<< %s' % i

def read_wrap(g):

 # Manually iterate over data produced by reader

 for v in g:

 yield v

wrap = read_wrap(read_value())

for i in wrap:

 print(i)

Likewise, what recommened here is to use yield from keyword in read_value() function instead

of iterating manually over the function. Therefore, below changes in the code clearly depicts the

role of yield from keyword and moreover, the readability of code increases through elimination

of one line of code as:

163

def read_value():

 yield from g

def read_wrap(g):

 # Manually iterate over data produced by reader

 for v in g:

 yield v

wrap = read_wrapper(read_value())

for i in wrap:

 print(i)

7.3 REAL-LIFE USE CASES OF PYTHON

Generators often work with large files or data streams, such as CSV files considering real-life

applications. For implementing such scenario of handling larger files, the code assumes how

many rows on a text file we have to count for which the python program may look like:

csv_read.py

def read_file (name):

 f = open(name)

 res = f.read().split("\n")

 return res

#csv_reader for reading large text file

gen_csv = read_file("largefile.txt")

#intializing count of the rows

count = 0

for i in gen_csv:

 count += 1

print(f"The number of rows in document are {count}")

The above code will probably work on any modern machine if the file contains a few thousand

lines, but if the file is large enough, then we will have a few problems. The issues can start to

slow down from the machine, until the programme kills the machine, so that the programme

must be terminated, to the end.

164

We supplied large number of files with thousand number of rows and we had to stop the code

manually. So due to long-time processing the code eventually on manual trigger resulted in:

Output:

Traceback (most recent call last):

Memory Error

So we made use of generator in such scenarios and modified the above written code csv_read.py

as:

csv_read_gen.py

def read_file (name):

 for i in open(file_name, “r”):

 yield i

#csv_reader for reading large text file

gen_csv = read_file("largefile.txt")

#intializing count of the rows

count = 0

for i in gen_csv:

 count += 1

print(f"The number of rows in the given file are {count}")

So, after using the yield in the given function read_file(name) in csv_read_gen.py file, the output

of the code yielded as:

Output:

The number of rows in the given file are 55182343

But that's not the end of a tale, there's even easier and more fascinating ways of implementing a

generator expression (also known as a generator comprehension) which has a syntax that makes

it look like list comprehension.

165

gen_csv = (i for i in open(“largefile.txt”))

7.4 MAKING AN ITERABLE FROM A GENERATOR

Even although the object-oriented technique to create an iterator is really fascinating, it is not a

computationally efficient approach. A generator function is the most common and easiest way to

build a iterator in Python. So in order to discuss such a method will implement iterator through

generator i.e. an effort will be made to make an iterable from generator

As we had had already studied for the use of for loop while getting the value of generator object,

the next() function can also be employed to get the value in this regard. When a generator

function is invoked, a generator object is returned without even starting the function. When the

next method is initially invoked, the function begins to execute until the return statement is

reached. The value received is returned by the next call.

#Generator Function

def gen_func():

 yield “This is the way of using yield in generator function”

print(next(gen_func))

On running the above program, the next() makes the generator function to return the value

instead of the address with output as shown below:

Output:

This is the way of using yield in generator function

First of all, we would be looking for the process where we will implement an iterator as a Class.

An iterable is an object in Python that defines an iterator or an index (index) using __init__ or

the __next__ method. In brief, every object that can provide us an iterator may be iterable.

What's an iterator then? Such a way can be used to cycle over an iterable object forever through

the implementation as:

class Sports(str):

 def __init__(self, itrb):

 self.itrb = itrb

166

 self.obj_iter = iter(iter)

 def __iter__(self):

 return self

 def __next__(self):

 while True:

 try:

 obj_next = next(self.obj_iter)

 return obj_next

 except StopIteration:

 self.obj_iter = iter(self.itrb)

obj=Sports(“Cricket”)

print(obj)

for i in range(20):

 print(next(obj), end = “, ”)

7.5 RECURSIVE GENERATOR

We know in Python that one function can call another function can call yet at the same time, the

function can even be called by itself. These building types are called recursive functions.

Now you need to ask if recursion in Python generators may be used?

The below is the code demonstrating the use of recursive generator function. The code aims to

print the even numbers in the series till 20 (num<20) through recursive calling of generator

function even_num(arg)as detailed below:

recur_gen.py

#using recursive generator function

def even_num(begin):

 yield begin

 yield from even_num(begin+2)

#using loop for printing even numbers till 20 from 1

for num in even_num(2):

 if num<20:

 print (num)

167

 else:

 break

Output:

2

4

6

8

10

12

14

16

18

7.6 GENERATOR EXPRESSIONS

Using generator expressions, simple generators can be created on fly easily. It facilitates the

construction of generators. Similar to lambda functions, generator expressions create anonymous

generator functions.

The syntax is similar to the Python list comprehension for the generator expression. But round

brackets replace the square brackets. The biggest difference between a list understanding and a

generator statement is that a list understanding produces the entire list and the generator

statement produces one item at a time. Below is example of it:

iterator = ('Iterator' for i in range(5))

The above-mentioned generator expression produces the sequence of values that we developed in

my generator lesson when it was iterated. Again, here, your memory is refreshed:

def repeating_val(val, count):

 for i in range(count):

 yield val

iterator = repeating_val(„Iterator‟, 5)

Generator Expressions vs List Comprehensions

168

As you might say, generator terms are pretty comparable to list comprehensions:

list_comp = ['Iterator' for i in range(5)]

gen_expr = ('Iterator' for i in range(5))

print(list_comp)

print(gen_expr)

However, generator expressions do not build list objects, as opposed to list understandings.

Rather, they create "on time" data, such as a class-based iterator or generator function. All you

obtain is an iterable "generator object" by assigning a generator expression to a variable with

output of above program as:

Output:

['Iterator', 'Iterator', 'Iterator', 'Iterator', 'Iterator']

<generator object <genexpr> at 0x7f2af112b580>

You must call next() in the same way as you want in any other iterator to get the values

generated by the generator expression:

gen_expr = ('Iterator' for i in range(5))

print(next(gen_expr))

print(next(gen_expr))

print(next(gen_expr))

print(next(gen_expr))

print(next(gen_expr))

Output:

Iterator

Iterator

Iterator

Iterator

Iterator

169

Alternately, in a generator expression, you can also invoke the list() method to build a list object

that contains all the values generated:

gen_expr = ('Iterator' for i in range(5))

print(list(gen_expr))

Output:

['Iterator', 'Iterator', 'Iterator', 'Iterator', 'Iterator']

In-line Generator Expressions

As generator expressions are, well... expressions, you may utilize them in-line with additional

statements. You may for example define and use an iterator with a for-loop immediately:

for x in („Iterator‟ for i in range(5)):

 print(x)

Output:

Iterator

Iterator

Iterator

Iterator

Iterator

7.7 SUMMARY

Generators allow you, in a pythonic way, to create iterators. Iterators only generate the next

element of a requested iterable object, and allow lazy evaluation. For really big data sets, this is

beneficial. Only over one time, Iterators and generators can be iterated over the inputs. It's better

than iterators to employ generator functions. The expression of generators is better than iterators

(for simple cases only). Generator expressions are comparable to list comprehensions. They

don't build list objects, though. Generator expressions instead create 'time-only' values such as a

class-based iterator or generator function. It cannot be restarted or reused after a generating

expression is spent. For implementing basic adhoc iterators, generator expressions are optimal. It

is best to create a generator or a class-based iterator for complicated iterators.

170

B.Sc.(DATA SCIENCE)

SEMESTER-I

PROBLEM SOLVING USING COMPUTERS

UNIT VIII: FILE HANDLING

STRUCTURE

8.0 Objectives

8.1 Introduction to File Handling

8.2 Types of Files and Formats

8.2.1 Text Files

8.2.2 Binary Files

8.3 Opening Files in Python

8.4 Modes of opening file in Python

8.5 File Positioning

8.6 Closing File in Python

8.7 Creating and appending text file in python

8.8 File Methods in Python

8.9 Working with response data files

 8.9.1 Working with CSV file

 8.9.2 Working with XML file

 8.9.3 Working with JSON file

171

8.0 OBJECTIVES

Python offers us a key functionality to read file data and write data to a file. So, in this chapter,

the objective is to study the important aspects of using various kinds of files and their methods.

However, all values or data in programming languages are saved in certain volatile variables.

Because data is only saved in such variables during runtime and is lost once the running of the

program is over. It is therefore best to save these data with files permanently.

8.1 Introduction to File Handling

So far, we've written Python programmes that receive input, alter it, and show the results.

However, that output is only available while the application is running, and input must be

supplied using the keyboard. This is due to the fact that the variables used in a programme have a

lifespan that lasts until the programme is executed. What if we wanted to save the data that was

entered as well as the generated output indefinitely so that we could utilise it again later?

Typically, businesses would wish to save information on personnel, inventory, sales, and other

items indefinitely to prevent having to enter the same information over and over again. As a

result, data is permanently preserved on secondary storage devices for reusability. With a .py

extension, we save Python programmes produced in script mode. Each programme is saved as a

file on the secondary device. Similarly, the data input and the result can be saved to a file

indefinitely.

Files are identified locations on disc where associated data is stored. They're used to keep data in

a non-volatile memory for a long time (e.g., hard disk). We utilize files for future usage of the

data by permanently saving it since Random Access Memory (RAM) is volatile (it loses its

contents when the machine is switched off). We must first open a file before we can read from or

write to it. When we're finished, it has to be closed so that the file's resources may be released.

As a result, a file operation in Python is performed in the following order:

 Opening a file

 Reading or writing

 Closing the file

8.2 TYPES OF FILES AND FORMATS

Every file on a computer is stored as just a series of 0s and 1s, or in binary form, as we all know.

As a result, each file is really nothing more than a sequence of bytes saved one after the other.

Text files and binary files are the two most common forms of data files. Any text editor can open

a text file, which is made up of human readable characters. Binary files, on the other hand, are

made up of non-human readable letters and symbols that must be accessed using special tools.

8.2.1 Text Files

A text file is a sequence of characters that encompasses alphabets, numerals, and other special

symbols. Text files include files with extensions such as.txt,.py,.csv, and others. We see many

lines of text when we open a text file in a text editor (e.g., Notepad). Internally, however, the file

172

contents are not saved in this manner. Rather, they are saved as a series of 0s and 1s in a byte

sequence. The value of each character in a text file is recorded as bytes in ASCII, UNICODE, or

any other encoding system. As a result, when we open a text file, the text editor converts each

ASCII value and displays the human-readable comparable character.

Comma Separated Files

A CSV file has some data as a text file. A CSV file is usually used for transferring data across

applications. A CSV file holds data, including numbers and text in a simple form, for

clarification. The plain text compresses and enables text formatting, as you would recall.

Typically, when there are a bunch of data that is to be transmitted to another programme, an

extension of CSV is employed. The file extension, however, assists an operating system to

determine which software the file is connected with, in particular. The usage of a spreadsheet

application can also better suit the user's needs, as it features cells in which data is arranged in

rows and columns.

XLSX Files

A Microsoft Excel Open XML Format Spreadsheet file is an XLSX file extension. It's a ZIP

Compressed, Microsoft Excel 2007 and later XML-based spreadsheet file.

XLSX files manage data in cells stored in worksheets and saved in workbooks (files that contain

multiple worksheets). The cells in a table are positioned according to rows and columns and are

capable of including designs, formatting, math and more.

173

Files produced in previous Excel versions are kept in XLS format. XLSM files are Excel

supporting macros.

Zip Files

A zip file is a means to gather many files or archive them in order to function as one file. Let's

imagine for instance you would like to send someone with a folder containing Word documents.

A zip file is a means to gather many files or archive them in order to function as one file. It

would take a long time to attach each file, especially if a large number of papers exist. It might

be best to put all the files in a zip file then attach your e-mail to the zip file. Software downloads

are the most frequent usage of ZIP files. Zipping software saves the server space, reduces the

time required for your computer download and preserves hundreds or thousands of files in a

simple ZIP file well structured.

Let's imagine for instance you would like to send someone with a folder containing Word

documents. It would take a long time to attach each file, especially if a large number of papers

exist. It might be best to put all the files in a zip file then attach your e-mail to the zip file. ZIP

file is one of the most frequently used archive formats in which you run, as a ZIP file

extension. A file ZIP is merely a collection of one or more files and/or directories, but a single

file is compressed for simple transmission and compression like other file formats.

174

JSON Files

A JSON file is a file that holds basic data structures and its corresponding objects in mostly

utilized JavaScript Object Notation (JSON), a standard format for data exchange. It is mostly

used for data transmission between a web application and a server. JSON files are small, text-

based, and readable by people and can also be changed with a text editor.

While many apps employ JSON for data exchange, files with the .json cannot effectively be

saved on local disk, as there is data exchange between linked machines. But users can save .json

files in some programmes. One example is Google+, where JSON files are used to store profile

data. You may pick "Data liberation" after login and pick "Download Profile Data."

An XML file for storage and transmission is an extensible marking language file. Tags and text

are available in an XML file. The tags supply the data structure. The text in the file you want to

keep is enclosed by the tags that comply with certain syntactic requirements. At the heart of an

XML file is a conventional text file with specific tags to specify the document's structure, storage

and transmission

175

XML Files

XML is a markup language, which implies that it is a computer language employing tags to

specify file components. Instead of writing a syntax this markup language incorporates real

words. Likewise, HTML and XML are the most common markup languages.

8.2.2 Binary Files

Binary files, like text files, are contained in bytes (0s and 1s), however these bytes do not reflect

the ASCII values of characters. Instead, they represent actual content like images, audio, video,

compressed copies of other files, executable files, and so on. These files are not readable by

176

humans. As a result, using a text editor to access a binary file will result in some junk values. To

read or write the contents of a binary file, we'll need specialized software.

Furthermore, binary formats have advantages in terms of access speed. While the underlying unit

of information in a plain text file is simple (one byte = one character), locating the actual data

values is frequently more difficult. To discover the third data value on the tenth row of a CSV

file, for example, the reader programme must continue reading bytes until nine end-of-line

characters are detected, followed by two delimiter characters. This implies that in order to

discover a certain value in a text file, you must generally read the entire file.

To locate the position (and meaning) of any value in a binary format, some type of format

description, or map, is necessary. However, having such a map has the advantage of allowing

any value inside the file to be retrieved without bothering to read the entire file.

8.3 OPENING FILES IN PYTHON

To open a file in Python, the built-in open() function is being used. This method returns a file

object (commonly known as a handle) that may be used to read or change a file. The syntax of

how to open file in python using file object (file_obj) is shown below:

file_obj = open(“file”,”mode”)

Here file corresponds to the name of the corresponding file that needs to opened or on which any

operations need to be performed. Likewise, mode represents the attribute telling the mode in

which the actual file needs to be open. When we open a file, we may define the mode. We

specify whether we want to read (r), write (w), or append (a) to the file with the mode parameter.

We may additionally indicate whether the file should be opened in text or binary form.

For example, one would like to read the contents of the already existing file in your system, then

first of all we need to create the existing exmpl.txt as shown below.

exmpl.txt

Hello, this is an example of just reading the file using the default mode which is r mode.

To accomplish this, consistent grammar, pronunciation, and more common terms would be

required.

When many languages merge, the new language's grammar is more basic and regular than the

separate languages.

The new common language will be more straightforward and consistent than current European

languages.

177

Now, the task is to read the file such that we assume that the location of the file is similar to that

where the python code is being saved, otherwise instead of file name, we need to provide the

absolute or relative path in order to open the file. Likewise, for reading the contents inside the

file, we opt to use in-built python‟s read() function as shown in file_open.py below:

file_open.py

file_obj = open(“exmpl.txt”, “r”)

„‟‟

or we may also write file_obj=open(“exmpl.text”)

as by default it open() function opens file in read mode

„‟‟

print(file_obj.read()) #in-built read() function

On running the above program, the contents present in the file are displayed as:

Output:

Hello, this is an example of just reading the file using the default mode which is r mode.

To accomplish this, consistent grammar, pronunciation, and more common terms would be

required.

When many languages merge, the new language's grammar is more basic and regular than the

separate languages.

The new common language will be more straightforward and consistent than current European

languages.

The read() function employed above provides the entire text stored in the file by default, but user

can also specify the number of characters he/she wishes to return:

file_obj= open(“exmpl.txt”, “r”)

print(file_obj.read(5))

178

The output of the above code will be as:

Output:

Hello

Likewise, there are other alternative ways of reading the file including using readline() function

which returns single line in the file and secondly using for loop through file line by line. Both the

functionalities are being represented on the same plain text file () as we had used earlier:

file_readline.py

file_obj = open(“exmpl.txt”,”r”)

print(file_obj.readline()) #print first line of file

print(file_obj.readline()) #print second line of file

Output:

Hello, this is an example of just reading the file using the default mode which is r mode.

To accomplish this, consistent grammar, pronunciation, and more common terms would be

required.

file_loop.py

file_obj = open(“exmpl.txt”,”r”)

for line in file_obj:

 print(line)

Output:

Hello, this is an example of just reading the file using the default mode which is r mode.

To accomplish this, consistent grammar, pronunciation, and more common terms would be

required.

179

When many languages merge, the new language's grammar is more basic and regular than the

separate languages.

The new common language will be more straightforward and consistent than current European

languages.

readline() vs readlines() in Python

Let‟s assume the inbuilt text file, listdata.txt, with the contents as shown below:

listdata.txt

Rohit

Virat

Rishabh

Hardik

readline() reads a file line till the end of that line is reached. In the string is maintained a trailing

newline character (\n). Likewise, readlines() in contrast produces a list with all the lines of the

file (strings). The syntax is this:

file_readlines.py

f ile_obj = open("listdata.txt")

print(file_obj.readlines()) #readlines() return list of files

The output of running the file is shown as below:

Output:

[„Rohit\n‟,‟Virat\n‟,‟Rishabh\n‟,‟Hardik\n‟]

8.4 MODES OF OPENING FILE IN PYTHON

It's a number that indicates the file's opening mode, such as read, write, append, and so on. It's a

non-mandatory parameter. It is set to read-only by default (r). After reading from the file, we

obtain data in text form in this mode. Below you'll find a table providing a list of the many

180

access options for the case of opening text file and their corresponding modes. Likewise, the

binary mode, on the other hand, returns bytes. It's better for accessing non-text files like images

and executable files. Here, you'll find a table. It provides a list of the many access options for the

case of opening binary files and their corresponding modes.

Modes Description

r Opens a file in a reading mode

rb Opens a binary file in a reading mode

w Opens a writable file. Create a new file if it doesn't exist or if it already

exists, truncate the file.

wb Opens a writable binary file and also like mode w, it will create a new file

if it doesn‟t exist or truncates on the existence

a Opens a file without truncating at the end of a file. Create a new file if not

available.

ab Opens a binary file without truncating at the end of a file. Create a new

binary file if not available.

+ Opens a file for both modes of reading and writing

In case of object-oriented case, open() function when employed in python have several linked

attributes which run down as shown in below table.

Attributes Description

files.closed A Boolean attribute telling if the file is closed or not.

file.mode Returns the file-opened access mode.

file.name Returns file name

file.softspace Returns false if space with print is expressly necessary, else true.

8.5 FILE POSITIONING

We notice that a newline returns as a '\n' in the read() function. When we reach the end of the

file, the next time we read, we obtain a blank string. Using the seek() function, we may modify

our current cursor file (position) with syntax as:

file_obj.seek(offset, pos)

where you are dealing with file_obj is really the file pointer; offset indicates how many places

you move; your point of reference is defined by pos:

 0: implies the start of the file is your reference point

 1: signifies that the current file location is your reference point.

 2: implies that the end of your file is your reference point

181

If pos argument is missed, the default is 0. Suppose we have a file with contents as shown below

filepos.txt

First Line of the file

Now, we want to read the character at the suitable position. The example of such implementation

is shown below:

file_obj=open(“filepos.txt”,”r”)

file_obj.seek(3)

print(file_obj.readline())

So we have jumped three bytes over the character such that the output of the above program on

running is as:

Output:

st Line of the file

Likewise, the tell() function also returns our current position (in number of bytes). The example

code of the tell() function is as below considering the same file filepos.txt:

f_obj = open("filepos.txt", "rw+")

print("File Name: ", f_obj.name)

line = f_obj.read(4)

print(line)

Get the current position of the file.

pos = f_obj.tell()

print(pos)

Close opened file

fo.close()

8.6 CLOSING FILE IN PYTHON

The file object's closing method i.e. in-built function close() flushes any unwritten information

and closes the file object, so it is no longer possible to write. However, when a reference object

of a file is reassigned to a different file, Python automatically closes a file. Therefore, it is

182

believed that the close() function to end a file is always a good practice specially while solving

real-life market related problems.

close_exmpl.py

file_obj=open(“filename.txt”,”wb”)

print(“The file name is: “, file_obj.name)

#closing file that was opened

file_obj.close()

8.7 CREATING AND APPENDING TEXT FILE IN PYTHON

We have to open it in writing w, add an or exclusive x modes to write a file in Python. We must

be careful with w mode, since if it already exists, it is overwritten onto to the file. This causes the

deletion of all prior data. The write() function is used to write a byte string or sequence (for

binary files). This returns the number of characters in the file. Also in this example, we will

study the another way opening file employing with keyword as:

with open(“newfile.txt ”,”w”) as file_obj:

 for lines in range(5):

 print(“This is way of writing file with print method”, file=file_obj)

 file_obj.write(“Rohit\n”)

file_obj.close()

with open(“newfile.txt”,”r”) as file_read:

 print(file_read.readlines())

file_read.close()

In the above code, we have explored the two ways i.e. using print() and write() function of

writing a new file. Therefore, the output of the above program is as:

Output:

['This is way of writing file with print method\n', 'Rohit\n', 'This is way of writing file with

print method\n', 'Rohit\n', 'This is way of writing file with print method\n', 'Rohit\n', 'This is

way of writing file with print method\n', 'Rohit\n', 'This is way of writing file with print

method\n', 'Rohit\n']

183

The file handle position is also defined in these modes. The handle of the file is like a cursor

defining from which the information is to be read or written into the file. Open the file as a new

line in append mode, with 'a' or 'a+' as an access mode, to add a new line to the existing file as:

#creating file in python

f_obj1 = open("newtextfile.txt", "w")

list1 = ["Rohit\n", "Virat \n", "Sharma"]

file1.writelines(L) #adding list in file using writelines() function

file1.close()

Append-adds at last

f_obj2 = open("newtextfile.txt", "a") # append mode

file1.write("Pant \n") #adding contents at the bottom of file

file1.close()

f_obj3 = open("newtextfile.txt", "r") #reading file for printing

print("Output after appending into the file ", f_obj3.name)

print()

print(f_obj3.read())

print()

f_obj3.close()

f_obj1 = open("newtextfile.txt", "w") # write mode

f_obj1.write("Hardik \n")

f_obj1.close()

f_obj1 = open("newtextfile.txt", "r")

print("Output after writing the already existing file in python ")

print(f_obj1.read())

print()

f_obj1.close()

8.8 FILE METHODS IN PYTHON

The file object contains numerous methods. Most of them are not much utilized in the context of

python programming but eventually plays critical role. Therefore, below is the full set of

methods with their respective brief description corresponding to the file in python:

184

Methods Description

detach() Separates from the TextIOBase the underlying binary buffer and

returns

fileno() Returns the file descriptor (integer number)

isatty() Returns True if interactive file stream.

flush() Flushes the file stream writing buffer.

readable() Returns true on reading from the stream of the file.

seekable() Returns True when random access is supported by the file stream.

truncate(size=None) Resize the stream file to bytes in size. If not given, the size will be

resized to the current location

writable() Returns True if you can write the file stream to.

8.9 WORKING WITH RESPONSE DATA FILES

Whether you develop a thin client or a thick client (client server application), you definitely ask

for a Web server and require a proper data format to answer your questions at some point. There

are three primary types of data that are currently utilized to deliver data to a client from a web

server: CSV, XML, and JSON. It is a good idea to grasp the difference between each format in

order to design an application with a robust architecture and know when to utilize it. This post is

intended to outline every data format, to explain the advantages and disadvantages for every

single format and to find out which conditions work best.

8.9.1 Working with CSV File

You must use the reader feature to construct a reader object to read data from CSV files. The

reader function is built to produce a list of all columns for each row of the file. The column for

which the variable data is required is then chosen. It sounds much more complex than it is. Let us

look at this CSV code in Python, and we will find out that it is not too difficult for us to deal with

csv file.

Writing to CSV File

import csv #import modules for csv file

with open(„dataset.csv', 'w') as f_obj:

 data_write = csv.writer(f_obj, delimiter=';', quotechar='"', quoting =

csv.QUOTE_MINIMAL)

 #way to write to csv file

 data_writerow([„Shirt No‟;‟Player Name‟; „Team‟; „Scores‟]

 data_writerow([‟45‟;‟Rohit‟;‟Mumbai‟;‟99‟])

 data_writerow([‟18‟;‟Virat‟;‟Bangalore‟;‟23‟])

185

 data_writerow([„7‟;‟Dhoni‟;‟Chennai‟;‟4‟])

Reading from CSV File

import csv #import modules for csv files

with open('datatest.csv','rt')as f_obj:

 data_test = csv.reader(f_obj)

 for line in data_test:

 print(line)

On running the above code, the output is:

Output:

[„Shirt No;Player Name; Team; Scores‟]

[‟45;Rohit;Mumbai;99‟]

[‟18;Virat;Bangalore;23‟]

[„7;Dhoni;Chennai;4‟]

8.9.2 Working with XML File

We will use the next XML file in the examples below that we save as "players.xml":

players.xml

<data>

 <players>

 <player name="rohit">rohit2india</player>

 <player name="virat">virat2india</player>

 </players>

</data>

Writing XML file

ElementTree is suitable for write XML file data. The following code illustrates how to generate

an XML file with the same structure as the file in earlier instances. The following steps:

 Create an element that acts as our root. The tag for this element is "data" in our example.

 Use the SubElement function to construct sub-elements after we have our root element.

The syntax of this function is:

186

write_xml.py

import xml.etree.ElementTree as etree

creating the structure of the XML File

data = etree.Element('data')

players = etree.SubElement(data, „players‟)

player1 = etree.SubElement(players, „player‟)

player2 = etree.SubElement(players, „player‟)

player1.set('name',‟rohit‟)

player2.set('name','virat‟)

player1.text = 'rohit2india'

player2.text = 'virat2india'

create a new XML file with the results

my_data = etree.tostring(data)

my_file = open("players.xml", "w")

myfile.write(mydata)

Reading XML File

The minidom is a reduced implementation of the document object model (DOM). DOM is a

programming interface for application, which handles XML as a tree structure, where each tree

node represents an object. Therefore, we must be aware of the capabilities of this module.

from xml.dom import minidom #importing module for xml

parsing an xml file by name

mydoc = minidom.parse('players.xml')

players = mydoc.getElementsByTagName('player')

printing for one specific player attribute

print('Player #2 attribute:')

print(players[1].attributes['name'].value)

all player attributes

print('\nAll attributes:')

for elem in players:

 print(elem.attributes['name'].value)

printing one specific player's data

print('\Player #2 data:')

187

print(players[1].firstChild.data)

print(players[1].childNodes[0].data)

all players data

print('\nAll players data:')

for elem in players:

 print(elem.firstChild.data)

A more "Pythonic" interface to XMl is provided in ElementTree module and is an excellent

solution for people not aware of the DOM. It is also probably best for more rookie programmers

because of its basic interface, as you will see in this post.

import xml.etree.ElementTree as etree

tree = etree.parse('players.xml')

root = tree.getroot()

printing one specific player attribute

print('Player #2 attribute:')

print(root[0][1].attrib)

all player attributes

print('\nAll attributes:')

for elem in root:

 for sube in elem:

 print(sube.attrib)

one specific player‟s data

print('\nPlayer #2 data:')

print(root[0][1].text)

all player data

print('\nAll player data:')

for elem in root:

 for sube in elem:

 print(sube.text)

The output of the both the above programs is as:

Output:

Player #2 attribute:

player2

All attributes:

188

player1

player2

Player #2 data:

virat2india

All player data:

rohit2india

virat2india

8.9.3 Working with JSON File

The JSON format has been one of the common ways, if not the most, to serialize data for the

previous 5-10 years. You will probably be encountered with JSON especially in the web

development industry through one of the various REST APIs, application settings or simply

basic data storage.

Writing JSON file

You may easily send your data to a Python file in JSON format by storing your data in a dict

object that may include additional nesting dicts, lists, booleans or other primitive kinds, such as

integers or string. A comprehensive list of supported data types may be found here.

import json #imporitng json module

data = {}

data[„player‟] = []

data['player'].append({

 'name': 'Rohit',

 'Team': 'Mumbai',

 'from': 'India'

})

data['player'].append({

 'name': 'Maxwell',

 'Team': 'Bangalore',

 'from': 'Australia'

})

data['player‟].append({

 'name': 'Gayle',

 'Team': 'Punjab',

 'from': 'WestIndies'

})

with open('playerdata.txt', 'w') as out_file:

 json.dump(data, out_file)

189

We create some simple data to publish to our file once we load the json library. The key section

ends when we use the statement to open our target file and use json.dump to write the data object

to the outfile file. Every file object, even if it is not a real file, can be passed on to the second

parameter. The socket that can be opened, closed, and written like a file would be an excellent

example. This is another scenario that you can meet with, as JSON is widespread all over the

web.

Reading JSON file

On the other hand, it is just as straightforward to read JSON data from a file. We can extract and

parse the JSON string from a file object using the same json package again. We do precisely this

and then publish the data we have received in this example:

import json

with open('playerdata.txt') as json_file:

 data = json.load(json_file)

 for p in data['player']:

 print('Name: ' + p['name'])

 print('Team: ' + p['Team'])

 print('From: ' + p['from'])

 print('')

The quality and effective to note here is json.load. It will read the file string, scanning the JSON

contents, adding the contents to a Python Dict and returning it.

Pretty-print in JSON file

It is as easy as supplying the integer value on the indent option, for JSON human readable

(although "pretty printing"):

import json

data = {'player':[{'name': 'Rohit', 'Team': 'Mumbai', 'from': 'India'}]}

json.dumps(data, indent=4)

190

Output:

{

 "player": [

 "Team": "Mumbai",

 "from": "India",

 "name": "Rohit"

 }

]

}

