BCA 2nd Semester Exam., 2014

MATHEMATICS (NUMERICAL TECHNIQUES)

Time: 3 hours

Full Marks: 60

Instructions:

- (i) All questions carry equal marks.
- (ii) There are SEVEN questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question Nos. 1 and 2 are compulsory.
- 1. Choose the correct options (any six):
 - (a) If three approximate values of the number $\frac{1}{3}$ are given as 0.30, 0.33 and 0.34, then which of these three is the best approximation?
 - (i) 0·30
 - (ii) 0·33
 - (iii) 0·34
 - (b) If a function f is continuous between a and b and f(a) and f(b) are of opposite signs, then the number of roots of f(x) = 0 lying between a and b is
 - (i) exactly one
 - (ii) at least one
 - (iii) exactly two
 - (iv) at least two

(c) If $y_0, y_1, y_2, \dots, y_n$ denote a set of values of y, then which of the following represents the second forward difference $\Delta^2 y_0$?

- (i) $y_2 + 2y_1 y_0$
- (ii) $y_2 2y_1 + y_0$
- (iii) $y_2 2y_1 y_0$
- (iv) None of the above

(d) Which of the following is correct, where the operators have their usual meanings?

(i)
$$\delta = E^{\frac{1}{2}} + E^{-\frac{1}{2}}$$

(ii)
$$\mu = E^{\frac{1}{2}} + E^{-\frac{1}{2}}$$

(iii)
$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

(iv)
$$\mu = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

(e) The (n+1)th divided difference of a polynomial of degree n is

- (i) 0
- (ii) 1
- (iii) n
- (iv) None of the above

- Which of the following formulae should be used, if interpolation is required near the beginning of a set of tabular values?
 - (i) Newton's forward interpolation formula
 - (ii) Newton's backward interpolation formula
 - (iii) Stirling's formula
 - (iv) Bessel's formula
- (g) While using Simpson's $\frac{1}{3}$ rule, the number of equal subintervals, into which the given interval must be divided, should be a multiple of
 - (i) 2
 - (ii) 3
 - (iii) 4
 - (iv) 6
- (h) Gauss elimination method for solving a system of linear equations reduces the system to an equivalent system which is
 - (i) diagonal
 - (ii) upper triangular
 - (iii) lower triangular
 - (iv) None of the above

(i) The system

$$2x + y = 2$$
$$2x + 1 \cdot 01y = 2 \cdot 01$$

is

- (i) not consistent
- (ii) ill-conditioned
- (iii) well-conditioned
- (iv) neither ill-conditioned nor wellconditioned
- (j) If the interval of differencing is 1, then the value of $\Delta\left(\frac{1}{x}\right)$ is
 - (i) $\frac{1}{x}$
 - (ii) $\frac{1}{x+1}$
 - (iii) $\frac{1}{x(x+1)}$
 - $(iv) \frac{1}{x(x+1)}$
- 2. Answer any three of the following:
 - (a) Define absolute, relative and percentage errors. Evaluate the sum $\sqrt{3} + \sqrt{5} + \sqrt{7}$ to four significant digits.

- (b) Define the operators Δ and ∇ . Prove that $\Delta(y_k^2) = (y_k + y_{k+1}) \Delta y_k$
- (c) Derive the Newton-Raphson formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(d) Prove that the third divided difference of the function $f(x) = \frac{1}{x}$ with arguments p, q, r, s is

$$-\frac{1}{pqrs}$$

- (e) Given that $\frac{dy}{dx} 1 = xy$ and y(0) = 1. Obtain the Taylor series for y(x).
- Find a root between 0 and 1 of the equation $x^3 + x 1 = 0$ by the method of bisection correct to three decimal places.
- **4.** Applying Lagrange's interpolation formula, find a cubic polynomial which approximates the following data:

x	-2	- 1	2	3
y(x)	- 12	- 8	3	5

- **5.** Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by—
 - (a) Simpson's $\frac{1}{3}$ rule;
 - (b) Simpson's $\frac{3}{8}$ rule; using six subintervals.
- 6. Solve the system of equations

$$5x-2y+z=4$$
$$7x+y-5z=8$$
$$3x+7y+4z=10$$

by Gauss elimination method.

7 Use Runge-Kutta method to find $y(0\cdot 1)$, given that

$$\frac{dy}{dx} = \frac{1}{x+y}, \ y(0) = 1$$
