Registration No.: 1000661001

23241ASE15121 Paper Code: A

Course Code: ASE 204 Se Title: AFRODYNAMICS-II

Course III	IE. MEROD I NAIVII CO-II	
Time Allowed: 01:30hrs.	Max Marks:	30
Read the following instructions carefully be	efore attempting the question paper	
1 Match the Paper Code shaded on the O	MR Sheet with the Paper code mentioned on the qu	jestion
paper and ensure that both are the same.	and the transfer apply godd monday	
2. This amortion paper contains 20 question	ns of 1 mark each. 0.25 marks will be deducted for	each
2. This question paper contains 30 question	ils of Timark each. 0.25 marks will be deadeds is	
wrong answer.		
All questions are compulsory.		
Do not write or mark anything on the que	estion paper and/or on rough sheet(s) which could t	e
helpful to any student in copying, except yo	our registration number on the designated space.	
5. Submit the question paper and the rough	h sheet(s) along with the OMR sheet to the invigilat	or
before leaving the examination-hall.		
O(1) Which of the following statements ab	oout an incompressible flow field is/are TRUE? Whe	n a flow
field is said to be incompressible		
Volumetric strain rate of any fluid element	ent in the flow is zero.	
(b) the fluid of the flow must be incompress	sible	
(b) the fluid of the flow fluid density is	SIDIC.	
(c) the time derivative of the fluid density is	S 2010.	
(d) the fluid of the flow must be rotational.		CO1,L1
	· · · · · · · · · · · · · · · · · · ·	001,11
Q(2) The basis for Bernoulli's principle is:	77	
(a) Conservation of Momentum		
Conservation of Energy		
(c) Hydrostatic force balance and first Law	y of Thermodynamics	
(d) Conservation of Mass	•	
(a) Conservation of Mass		CO1,L1
	appearance during an aircraft'sflying regime	
Q(3) Shock waves often make their initial	(1) 2	
(a) Transonic (b) Subsonic	(d) caperess	CO1,L1
	the transferble	
Q(4) In a flow, Bernoulli's equ	Jation is applicable	
(a) Rotational (b) Viscous	Incompressible (d) Supersonic	CO1,L1
		COILI
Q(5) Total pressure at a point is defined a	as the pressure when the flow is brought to rest	
(a) sentropically (b) Adiabatic	ally (c) Isothermally (d) Isobarically	00414
1		CO1,L1
Q(6) A diverging passagea	subsonic flow towards zero velocity and	_a
supersonic flow towards maximum isentro	onic speed	
supersonic now towards maximum isome	(b) Accelerates, Decelerates	
Decelerates, Accelerates	(d) None of the above	
(c) Decelerates, Decelerates	(u) Hone of the same	CO1,L1
		а
Q(7) A convergent passage	a subsonic flow towards zero velocity and	
supersonic flow towards maximum isentre	opic speed	
(a) Decelerates, Accelerates	ACCEPTATED, DECORPORATED	
(c) Decelerates, Decelerates	(d) None of the above	
(c) Decelerates, Decelerates		CO1,L1
/	8 km where the ambient temperature is 250K. Find	the Mach
Q(8) An aircraft is flying at an aititude of	6 Kill Wilete the ambient temperature	
number at 30 m/s	(c) 0.946 0.0946	
(a) 1.25 (b) 1.0	(c) 0.946	CO1,L1
(a) 1.20	" In Saw Sold inform TE	I IE2 When
and which of the following approximation	on about a simple compressible flow field is/are TF	OL: WHOI
Q(9) Which of the lonowing approach		
a flow field is said to be incompressible	Perfect gas assumption	
(a) Unsteady flow approximation	(d) Surface force is considered	
(a) Body force considered		CO1,L1
(-,,	e Mach angle is found to be 30o C. Determine the	speed of
O(10) For a projectile travelling in air, the	e Mach angle is found to be 500 0. Determine the	•
1 : the temperatile () the dillip is	(4) 330 0 km/c	
sound if the temperature (b) 326.92 k	m/s (c) 320.9 m/s (d) 320.9 km/s	CO1,L1
(a) 326.92 m/s (b) 326.92 k		001,01
	Lastronia have?	

CO1,L3 Page 1 of 3

(d) h2 > h1

Q(11) What relationship does total enthalpy in a stationary shock wave have?

(b) h2 < h1

(c) h02 < h01

(d) h2

Reg	istration No.:_			
Q(12) Which of the follow field is said to be compres	ring approximation abor			a flow
(c) Frictional flow	ow streattl	(b) Inclind to the flo		
		(d) Heat addition to		00112
Q(13) Which attribute or p (a) Direction	properties determine the (b) Temperature	e flow characteristics o (c) Time	f the moving wave?	CO1,L3
O(14) The	is the fundamental			00410
Q(14) The	as the militamental go	verning equation for th	e normal shock in a p	erfect
(a) Hugoniot equation		Prandtl meyer	equation	
(c) Fanno flow equation		(d) Rayleigh flow e	quation	
Q(15) As per the prandtl's	relation for statis			CO1,L3
$M_1^2 = 1/M_2^2$	Totalion tot stationary	normai snock		
(b) $M_1^2 = M_2^2$				
(c) $M_1^2 < M_2^2$				
(d) $M_1^2 > M_2^2$				
$(\alpha) m_1 > m_2$				
O(16) The annual of subject				CO1,L3
Q(16) The speed at which (a) equivalent to the sound	a typical shock move			
larger than the speed of	of sound	(b) smaller than th (d) All the above	e speed of sound	
in a ger than the opeca c	n dound	(d) All the above		CO1,L3
Q(17) Stagnation tempera	ature across the Norma	al shock		00.,20
Constant	(b) Increases	(c) Decreases	(d) None of the abo	
V18) The defiration and	of the composes on al-	-64h		CO1,L3
Q(18) The defirction angle a) Flow deflection angle	(b) Deviation angle	of the Wall is called	(d) None of the ah	ove
a, the democracing angle	(b) bevious angle	Doll a and b	(d) None of the ab	CO1,L3
Pressure and angle p) Pressure and tempera	ture	(b) Temperatire at (d) None of the at		CO1,L3
Q(20) Flow travels from w	rithin a molecule's mea	an free route to		,
supersonic to subsonic		(b) subsonic state	1	
(c) supersonic state		(d) subsonic to su	personic state	00413
O(O4). Eluid normadian ala	na aach Mach lina is	Hence the M	ach line straight line	CO1,L3
Q(21) Fluid properties alo (a) Increases	(b) Decreases	(c) Constant	(d) None of the at	bove
inoreases .	(b) Decirculate	(0) 0011010111	(4)	CO3,L2
Q(22) A ideal gas moves a through the passage, it is p	at supersonic speed in preferred that its station	pressure rise. The pa	ssage area should:	lows
(a) be converging-divergin	g (b) increase	(c) remain consta	int (a) decrease	CO3,L2
		. through a blockad or	overging-diverging r	
Q(23) For the purpose of	compressible fluid flov	v through a blocked co	mverging-diverging i	outo troins
storage tank (a) the flow in the diverging	section must be sup-	ersonic		
(b) the mass flow rate thro	ugh the channel cann	ot be increased by cha	anging the storage ta	ink conditio
(c) the pressure at the exit	will be equal to the so	onic pressure		
(d) none of the above				CO3,L
				CO3,L
Q(24) A Mach line	nubero persondicular	to the etreem lines in	a subsonic flow	
(a) is a curve which is everb) has the same slope as	ywnere perpendicular an arhitrany oblique el	to the stream lines in	a substitution	
b) has the same slope asc) is a wave which is perpose	an arbitrary oblique si endicular to the stress	n lines in a sunersoni	c flow	
 d) is a wave which is perpendicular to the s 	stream lines when the	flow is sonic		
is perpendicular to the s	Ja Salli mico mion dio	non lo dolllo		CO3,1
(25) When a compressib	le flow is given heat			
a) the Mach number will a	lways increase (b) th	ne flow stagnation tem	perature will always	sincrease
the entropy may decrea	se (d) th	e flow temperature w	ill always increase	0001

R	egistration No.:_	1111		
Q(26). Air having an in surface. Assuming that (a) 0.733	itial Mach number M1=2.0 t a weak shock wave occu (b) 0.533	is deflected through ar rs calculate the downstr (c) 0.833	n angle 15° by a ream Mach num (d) 1.1	frictionless ber CO3,L2
surface. Assuming tha	itial Mach number M1=2.0 t a weak shock wave occu	rs calculate the Wave a	nnle	frictionless
(a) 38.38 degree	45.50 degree	(c) 40.000 degree	(d) 37.280 deg	ree CO3,L2
through 15°. Calculate	ach number of unity expan the final Mach number (b) 1.3	ds around an expression		
(a) 1.5	(b) 1.3	1.6	(d) 1.2	CO3,L2
Q(29) Air having a Mathrough 20°. Calculate	ach number of unity expan the final Mach number		n corner that turn	ns the flow
(a) 1.58	(b) 1.68	1.78	(d) 1.00	
				CO3,L2
(a) have the same sta	nces behind a Normal should be a strong and the formal should be a strong and should be a s			
both (a) and (b) are	on of the Fanno and Rayle e true	eign lines for the flow		
(d) both (a) and (b) ar	e taise			CO3,L2
	F d f .	O		300,22