

Module 4

 SQL- Advances Queries

1.1 More Complex SQL Retrieval Queries

Additional features allow users to specify more complex retrievals from database

1.1.1 Comparisons Involving NULL and Three-Valued Logic

SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but

that it usually has one of three different interpretations value

Example

1. Unknown value.

database.

2. Unavailable or withheld value. A person has a home phone but does not want it to be

listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute. An attribute CollegeDegree would be NULL for a person who has no

college degrees because it does not apply to that person.

Each individual NULL value is considered to be different from every other NULL value in the various

database records. When a NULL is involved in a comparison operation, the result is considered to

be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic with

values TRUE, FALSE, and UNKNOWN instead of the standard two-valued (Boolean) logic with

values TRUE or FALSE. It is therefore necessary to define the results (or truth values) of three-

valued logical expressions when the logical connectives AND, OR, and NOT are used

The rows and columns represent the values of the results of comparison conditions, which would

typically appear in the WHERE clause of an SQL query.

In select-project-join queries, the general rule is that only those combinations of tuples that evaluate

the logical expression in the WHERE clause of the query to TRUE are selected. Tuple combinations

that evaluate to FALSE or UNKNOWN are not selected.

SQL allows queries that check whether an attribute value is NULL using the comparison operators

IS or IS NOT.

Example: Retrieve the names of all employees who do not have supervisors.

SELECT Fname, Lname

FROM EMPLOYEE

WHERE Super_ssn IS NULL;

1.1.2 Nested Queries, Tuples, and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used in a comparison

condition. Such queries can be conveniently formulated by using nested queries, which are

complete select-from-where blocks within the WHERE clause of another query. That other query is

called the outer query

Example1

manager

SELECT DISTINCT Pnumber FROM PROJECT WHERE

Pnumber IN

(SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

Example2

either manager or as worker.

SELECT DISTINCT Pnumber FROM PROJECT WHERE

Pnumber IN

(SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

OR

Pnumber IN

(SELECT Pno FROM WORKS_ON, EMPLOYEE WHERE Essn=Ssn AND

);

We make use of comparison operator IN, which compares a value v with a set (or multiset) of

values V and evaluates to TRUE if v is one of the elements in V.

The first nested query selects the project numbers of projects that have an employee with last name

 The second nested query selects the project numbers of projects that

 . In the outer query, we use the OR

logical connective to retrieve a PROJECT tuple if the PNUMBER value of that tuple is in the result

of either nested query.

SQL allows the use of tuples of values in comparisons by placing them within parentheses. For

example, the following query will select the Essns of all employees who work the same (project,

hours)

on

In this example, the IN operator compares the subtuple of values in parentheses (Pno,Hours) within

each tuple in WORKS_ON with the set of type-compatible tuples produced by the nested query.

Nested Queries::Comparison Operators

Other comparison operators can be used to compare a single value v to a set or multiset V. The =

ANY (or = SOME) operator returns TRUE if the value v is equal to some value in the set V and is

hence equivalent to IN. The two keywords ANY and SOME have the same effect. The keyword ALL

can also be combined with each of these operators. For example, the comparison condition (v > ALL

V) returns TRUE if the value v is greater than all the values in the set (or multiset) V. For example is

the following query, which returns the names of employees whose salary is greater than the salary

of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL (SELECT Salary

FROM EMPLOYEE

WHERE Dno=5);

In general, we can have several levels of nested queries. We can once again be faced with possible

ambiguity among attribute names if attributes of the same name exist one in a relation in the FROM

clause of the outer query, and another in a relation in the FROM clause of the nested query. The rule

is that a reference to an unqualified attribute refers to the relation declared in the innermost nested

query.

To avoid potential errors and ambiguities, create tuple variables (aliases) for all tables referenced in

SQL query

Example: Retrieve the name of each employee who has a dependent with the same first name and

is the same sex as the employee

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECT Essn

FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent_name

AND E.Sex=D.Sex);

In the above nested query, we must qualify E.Sex because it refers to the Sex attribute of

EMPLOYEE from the outer query, and DEPENDENT also has an attribute called Sex.

1.1.3 Correlated Nested Queries

Whenever a condition in the WHERE clause of a nested query references some attribute of a

relation declared in the outer query, the two queries are said to be correlated.

Example:

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECT Essn

FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent_name

AND E.Sex=D.Sex);

The nested query is evaluated once for each tuple (or combination of tuples) in the outer query. we

can think of query in above example as follows: For each EMPLOYEE tuple, evaluate the nested

query, which retrieves the Essn values for all DEPENDENT tuples with the same sex and name as

that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple is in the result of the nested query,

then select that EMPLOYEE tuple.

1.1.4 The EXISTS and UNIQUE Functions in SQL

EXISTS Functions

The EXISTS function in SQL is used to check whether the result of a correlated nested query is

empty (contains no tuples) or not. The result of EXISTS is a Boolean value

 TRUE if the nested query result contains at least one tuple, or

 FALSE if the nested query result contains no tuples.

For example, the query to retrieve the name of each employee who has a dependent with the same

first name and is the same sex as the employee can be written using EXISTS functions as follows:

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE EXISTS (SELECT *

FROM DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

AND E.Fname=D.Dependent_name);

Example: List the names of managers who have at least one dependent

SELECT Fname, Lname

FROM EMPLOYEE

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE Ssn=Essn)

AND

EXISTS (SELECT *

FROM DEPARTMENT

WHERE Ssn=Mgr_ssn);

In general, EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested query Q,

and it returns FALSE otherwise.

NOT EXISTS Functions

NOT EXISTS(Q) returns TRUE if there are no tuples in the result of nested query Q, and it returns

FALSE otherwise.

Example: Retrieve the names of employees who have no dependents.

SELECT Fname, Lname

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *

FROM DEPENDENT

WHERE Ssn=Essn);

For each EMPLOYEE tuple, the correlated nested query selects all DEPENDENT tuples whose

Essn value matches the EMPLOYEE Ssn; if the result is empty, no dependents are related to the

employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lname.

Example: Retrieve the name of each employee who works on all the projects controlled

by department number 5

SELECT Fname, Lname

FROM EMPLOYEE

WHERE NOT EXISTS ((SELECT Pnumber

FROM PROJECT

WHERE Dnum=5)

EXCEPT (SELECT Pno

FROM WORKS_ON

WHERE Ssn=Essn));

UNIQUE Functions

UNIQUE(Q) returns TRUE if there are no duplicate tuples in the result of query Q; otherwise, it

returns FALSE. This can be used to test whether the result of a nested query is a set or a multiset.

1.1.5 Explicit Sets and Renaming of Attributes in SQL

IN SQL it is possible to use an explicit set of values in the WHERE clause, rather than a nested

query. Such a set is enclosed in parentheses.

Example: Retrieve the Social Security numbers of all employees who work on project numbers 1, 2,

or 3.

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query by adding the

qualifier AS followed by the desired new name

Example: Retrieve the last name of each employee and his or her supervisor

SELECT E.Lname AS Employee_name,

S.Lname AS Supervisor_name

FROM EMPLOYEE AS E,

EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

1.1.6 Joined Tables in SQL and Outer Joins

An SQL join clause combines records from two or more tables in a database. It creates a set that

can be saved as a table or used as is. A JOIN is a means for combining fields from two tables by

using values common to each. SQL specifies four types of JOIN

1. INNER,

2. OUTER

3. EQUIJOIN and

4. NATURAL JOIN

INNER JOIN

An inner join is the most common join operation used in applications and can be regarded as the

default join-type. Inner join creates a new result table by combining column values of two tables (A

and B) based upon the join- predicate (the condition). The result of the join can be defined as the

outcome of first taking the Cartesian product (or Cross join) of all records in the tables (combining

every record in table A with every record in table B) then return all records which satisfy the join

predicate

Example: SELECT * FROM employee

INNER JOIN department ON

employee.dno = department.dnumber;

EQUIJOIN and NATURAL JOIN

An EQUIJOIN is a specific type of comparator-based join that uses only equality comparisons in the

join-predicate. Using other comparison operators (such as <) disqualifies a join as an equijoin.

NATURAL JOIN is a type of EQUIJOIN where the join predicate arises implicitly by comparing all

columns in both tables that have the same column-names in the joined tables. The resulting joined

table contains only one column for each pair of equally named columns.

If the names of the join attributes are not the same in the base relations, it is possible to rename the

attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS construct can

be used to rename a relation and all its attributes in the FROM clause.

CROSS JOIN returns the Cartesian product of rows from tables in the join. In other words, it will

produce rows which combine each row from the first table with each row from the second table.

OUTER JOIN

An outer join does not require each record in the two joined tables to have a matching record. The

joined table retains each record-even if no other matching record exists. Outer joins subdivide

further into

 Left outer joins

 Right outer joins

 Full outer joins

No implicit join-notation for outer joins exists in standard SQL.

r RIGHT OUTER jOIN

Evei y tuple in right table must appear in result

If no matching tuple

Padded with NULL values for the attributes of lek table

r FULL OUTER jOIN
a full outer join combines the effect of applying both left and i ight outer

joins.

Where recoi ds in the FULL OUTER jOlNed tables do not match, the

result set will have NULL values foi every column of the table that lacks

a matching row.

For those recoi ds that do match, a single i ow will be produced in the

result set (containing fields populated fi om both tables).

r Not all SC,jL implementations have implemented the new

syntax of joined tables.

r In some systems, a different syntax wzs used to specify outer

joins by using the comparison operators +=, =+, and +=+ for

lek, right, and full outer join, respectively

r For example, this synt»x is available in Oracle.To specify
the left outer join in 8B using this syntax, we could write the

query Q8C as follows:

Q8C: SELECT

FROM
WHERE

E.Lname, S.Lname

EMPLOYEE E, EMPLOYEE S

E.Super ssn += S.Ssn;

MULTIWAY JOIN

It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined table. This

allows the specification of the join of three or more tables as a single joined table, which is called a multiway

join.

Example:

number, and the department m

SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON Dnum=Dnumber)

JOIN EMPLOYEE ON Mgr_ssn=Ssn)

WHERE

1.1.7 Aggregate Functions in SQL

Aggregate functions are used to summarize information from multiple tuples into a single-tuple summary. A

number of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG. The COUNT function

returns the number of tuples or values as specified in a query. The functions SUM, MAX, MIN, and AVG can

be applied to a set or multiset of numeric values and return, respectively, the sum, maximum value, minimum

value, and average (mean) of those values. These functions can be used in the SELECTclause or in a HAVING

clause (which we introduce later). The functions MAX and MIN can also be used with attributes that have

nonnumeric domains if the domain values have a total ordering among one another.

Examples

1. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average

salary.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM EMPLOYEE;

2.

maximum salary, the minimum salary, and the average salary in this department.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHERE

3. Count the number of distinct salary values in the database.

SELECT COUNT (DISTINCT Salary)

FROM EMPLOYEE;

4. To retrieve the names of all employees who have two or more dependents

SELECT Lname, Fname

FROM EMPLOYEE

WHERE (SELECT COUNT (*)

FROM DEPENDENT

WHERE Ssn=Essn) >= 2;

1.1.8 Grouping: The GROUP BY and HAVING Clauses

Grouping is used to create subgroups of tuples before summarization. For example, we may want to find the

average salary of employees in each department or the number of employees who work on each project. In

these cases we need to partition the relation into non overlapping subsets (or groups) of tuples. Each group

(partition) will consist of the tuples that have the same value of some attribute(s), called the grouping

attribute(s).

SQL has a GROUP BY clause for this purpose. The GROUP BY clause specifies the grouping attributes,

which should also appear in the SELECT clause, so that the value resulting from applying each aggregate

function to a group of tuples appears along with the value of the grouping attribute(s).

Example: For each department, retrieve the department number, the number of employees in the department,

and their average salary.

SELECT Dno, COUNT (*), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

If NULLs exist in the grouping attribute, then a separate group is created for all tuples with a NULL value in

the grouping attribute. For example, if the EMPLOYEE table had some tuples that had NULL for the grouping

attribute Dno, there would be a separate group for those tuples in the result

of query

Example: For each project, retrieve the project number, the project name, and the number of employees who

work on that project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname;

Above query shows how we can use a join condition in conjunction with GROUP BY. In this case, the

grouping and functions are applied after the joining of the two relations.

HAVING provides a condition on the summary information regarding the group of tuples associated with each

value of the grouping attributes. Only the groups that satisfy the condition are retrieved in the result of the

query.

Example: For each project on which more than two employees work, retrieve the project number, the project

name, and the number of employees who work on the project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname

HAVING COUNT (*) > 2;

Example: For each project, retrieve the project number, the project name, and the number of

employees from department 5 who work on the project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Ssn=Essn AND Dno=5

GROUP BY Pnumber, Pname;

Example: For each department that has more than five employees, retrieve the department number

and the number of its employees who are making more than $40,000.

SELECT Dnumber, COUNT (*)

FROM DEPARTMENT, EMPLOYEE

WHERE Dnumber=Dno AND Salary>40000 AND

(SELECT Dno

FROM EMPLOYEE

GROUP BY Dno

HAVING COUNT (*) > 5);

1.1.9 Discussion and Summary of SQL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two SELECT and FROM

are mandatory.The query can span several lines, and is ended by a semicolon. Query terms are

separated by spaces, and parentheses can be used to group relevant parts of a query in the standard

way.The clauses are specified in the following order, with the clauses between square brackets [...

] being optional:

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause specifies all

relations (tables) needed in the query, including joined relations, but not those in nested queries.

The WHERE clause specifies the conditions for selecting the tuples from these relations, including

join conditions if needed. GROUP BY specifies grouping attributes, whereas HAVING specifies a

condition on the groups being selected rather than on the individual tuples. Finally, ORDER BY

specifies an order for displaying the result of a query.

A query is evaluated conceptually by first applying the FROM clause to identify all tables involved in

the query or to materialize any joined tables followed by the WHERE clause to select and join tuples,

and then by GROUP BY and HAVING. ORDER BY is applied at the end to sort the query result

Each DBMS has special query optimization routines to decide on an execution plan that is efficient

to execute

In general, there are numerous ways to specify the same query in SQL.This flexibility in specifying

queries has advantages and disadvantages.

 The main advantage is that users can choose the technique with which they are most

comfortable when specifying a query. For example, many queries may be specified with join

conditions in the WHERE clause, or by using joined relations in the FROM clause, or with

some form of nested queries and the IN comparison.

with as little nesting and implied ordering as possible.

 The disadvantage of having numerous ways of specifying the same query is that this may

confuse the user, who may not know which technique to use to specify particular types of

queries. Another problem is that it may be more efficient to execute a query specified in one

way than the same query specified in an alternative way

1.2 Specifying Constraints as Assertions and Actions as Triggers

1.2.1 Specifying General Constraints as Assertions in SQL

Assertions are used to specify additional types of constraints outside scope of built-in relational

model constraints. In SQL, users can specify general constraints via declarative assertions, using

the CREATE ASSERTION statement of the DDL.Each assertion is given a constraint name and is

specified via a condition similar to the WHERE clause of an SQL query.

General form :

CREATE ASSERTION <Name_of_assertion> CHECK (<cond>)

For the assertion to be satisfied, the condition specified after CHECK clause must return true.

For example, to specify the constraint that the salary of an employee must not be greater than the

salary of the manager of the department that the employee works for in SQL, we can write the

following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, EMPLOYEE M,

DEPARTMENT D WHERE E.Salary>M.Salary AND

E.Dno=D.Dnumber AND D.Mgr_ssn=M.Ssn));

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, which is followed

by a condition in parentheses that must hold true on every database state for the assertion to be

satisfied. The constraint name can be used later to refer to the constraint or to modify or drop it. Any

WHERE clause condition can be used, but many constraints can be specified using the EXISTS and

NOT EXISTS style of SQL conditions.

By including this query inside a NOT EXISTS clause, the assertion will specify that the result of this

query must be empty so that the condition will always be TRUE. Thus, the assertion is violated if the

result of the query is not empty

Example: consider the bank database with the following tables

1. Write an assertion to specify the constraint that the Sum of loans taken by a customer does not

exceed 100,000

CREATE ASSERTION sumofloans

CHECK (100000> = ALL

SELECT customer_name,sum(amount)

FROM borrower b, loan l

WHERE b.loan_number=l.loan_number

GROUP BY customer_name);

2. Write an assertion to specify the constraint that the Number of accounts for each customer in a

given branch is at most two

CREATE ASSERTION NumAccounts

CHECK (2 >= ALL

SELECT customer_name,branch_name, count(*)

FROM account A , depositor D

WHERE A.account_number = D.account_number

GROUP BY customer_name, branch_name);

1.2.2 Introduction to Triggers in SQL

A trigger is a procedure that runs automatically when a certain event occurs in the DBMS. In many

cases it is convenient to specify the type of action to be taken when certain events occur and when

certain conditions are satisfied. The CREATE TRIGGER statement is used to implement such

actions in SQL.

General form:

CREATE TRIGGER <name>

BEFORE | AFTER | <events>

FOR EACH ROW |FOR EACH STATEMENT

WHEN (<condition>)

<action>

A trigger has three components

1. Event: When this event happens, the trigger is activated

 Three event types : Insert, Update, Delete

 Two triggering times: Before the event

After the event

2. Condition (optional): If the condition is true, the trigger executes, otherwise

skipped

3. Action: The actions performed by the trigger

When the Event occurs and Condition is true, execute the Action

This trigger is activated when an insert statement

is issued, but before the new record is inserted

This trigger is activated when an update
statement is issued and after the update is
executed

Create Trigger XYZ

After Update On Students

Create Trigger ABC

Before Insert On

Students

Does the trigger execute for each updated or deleted record, or once for the entire

statement ?. We define such granularity as follows:

This is the event

This is the granularity

This trigger is activated once (per UPDATE
statement) after all records are updated

This trigger is activated before deleting each
record

Create Trigger XYZ

After Update ON <tablename>

For each statement

Create Trigger <name>

Before| After Insert| Update| Delete

For Each Row | For Each Statement

In the action, you may want to reference:

 The new values of inserted or updated records (:new)

 The old values of deleted or updated records (:old)

Trigger body

Inside the trigger body, they

Examples:

1) If the employee salary increased by more than 10%, then increment the rank field by 1.

We changed the new value of rank field

2) Keep the bonus attribute in Employee table always 3% of the salary attribute

Indicate two events at the same time

Create Trigger EmpSal

After Insert or Update On Employee

For Each Row

When (new.salary >150,000)

Begin

if (:new.

End;

Create Trigger EmpBonus
Before Insert Or Update On Employee
For Each Row
Begin

:new.bonus := :new.salary * 0.03;
End;

The bonus value is always computed

Create Trigger EmpSal
Before Update Of salary On Employee
For Each Row
Begin

IF (:new.salary > (:old.salary * 1.1)) Then
:new.rank := :old.rank + 1;

End IF;
End;

/

1.

her direct supervisor in the COMPANY database

 Several events can trigger this rule:

 inserting a new employee record

Suppose that the action to take would be to call an external stored procedure

SALARY_VIOLATION which will notify the supervisor

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN

ON EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE

WHERE SSN = NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR(NEW.Supervisor_ssn,NEW.Ssn);

 The trigger is given the name SALARY_VIOLATION, which can be used to remove or

deactivate the trigger later

salary, or chang

 The action is to execute the stored procedure INFORM_SUPERVISOR

Triggers can be used in various applications, such as maintaining database consistency, monitoring

database updates.

Assertions vs. Triggers

 Assertions do not modify the data, they only check certain conditions. Triggers are more

powerful because the can check conditions and also modify the data

 Assertions are not linked to specific tables in the database and not linked to specific events.

Triggers are linked to specific tables and specific events

 All assertions can be implemented as triggers (one or more). Not all triggers can be

implemented as assertions

Example: Trigger vs. Assertion

We need triggers, assertions cannot be used Trigger Event: Before Insert

1.3 Views (Virtual Tables) in SQL

1.3.1 Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables. other tables can be

base tables or previously defined views. A view does not necessarily exist in physical form; it is

considered to be a virtual table, in contrast to base tables, whose tuples are always physically stored

in the database. This limits the possible update operations that can be applied to views, but it does

not provide any limitations on querying a view. We can think of a view as a way of specifying a table

that we need to reference frequently, even though it may not exist physically.

For example, referring to the COMPANY database, we may frequently issue queries that retrieve

the employee name and the project names that the employee works on. Rather than having to

specify the join of the three tables EMPLOYEE,WORKS_ON, and PROJECT every time we issue

this query, we can define a view that is specified as the result of these joins. Then we can issue

queries on the view, which are specified as single table retrievals rather than as retrievals involving

two joins on three tables. We call the EMPLOYEE,WORKS_ON, and PROJECT tables the defining

tables of the view.

1.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (virtual) table name

(or view name), a list of attribute names, and a query to specify the contents of the view. If none of

the view attributes results from applying functions or arithmetic operations, we do not have to specify

new attribute names for the view, since they would be the same as the names of the attributes of

the defining tables in the default case.

Example 1:

CREATE VIEW WORKS_ON1

AS SELECT Fname, Lname, Pname, Hours

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn AND Pno=Pnumber;

Example 2:

CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)

AS SELECT Dname, COUNT (*), SUM (Salary)

FROM DEPARTMENT, EMPLOYEE

WHERE Dnumber=Dno

GROUP BY Dname;

In example 1, we did not specify any new attribute names for the view WORKS_ON1. In this

case,WORKS_ON1 inherits the names of the view attributes from the defining tables EMPLOYEE,

PROJECT, and WORKS_ON.

Example 2 explicitly specifies new attribute names for the view DEPT_INFO, using a one-to-one

correspondence between the attributes specified in the CREATE VIEW clause and those specified

in the SELECT clause of the query that defines the view.

We can now specify SQL queries on a view or virtual table in the same way we specify queries

involving base tables.

project, we can utilize the WORKS_ON1 view and specify the query as :

SELECT Fname, Lname

FROM WORKS_ON1

WHERE

The same query would require the specification of two joins if specified on the base relations directly.

one of the main advantages of a view is to simplify the specification of certain queries. Views are

also used as a security and authorization mechanism.

A view is supposed to be always up-to-date; if we modify the tuples in the base tables on which the

view is defined, the view must automatically reflect these changes. Hence, the view is not realized

or materialized at the time of view definition but rather at the time when we specify a query on the

view. It is the responsibility of the DBMS and not the user to make sure that the view is kept up-to-

date.

If we do not need a view any more, we can use the DROP VIEW command to dispose of it. For

example : DROP VIEW WORKS_ON1;

1.3.3 View Implementation, View Update and Inline Views

The problem of efficiently implementing a view for querying is complex. Two main approaches have

been suggested.

 One strategy, called query modification, involves modifying or transforming the view query

(submitted by the user) into a query on the underlying base tables. For example, the query

SELECT Fname, Lname

FROM WORKS_ON1

WHERE

would be automatically modified to the following query by the DBMS:

SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn AND Pno=Pnumber

AND

The disadvantage of this approach is that it is inefficient for views defined via complex queries that

are time-consuming to execute, especially if multiple queries are going to be applied to the same

view within a short period of time.

The second strategy, called view materialization, involves physically creating a temporary view

table when the view is first queried and keeping that table on the assumption that other queries

on the view will follow. In this case, an efficient strategy for automatically updating the view table

when the base tables are updated must be developed in order to keep the view up-to-date.

Techniques using the concept of incremental update have been developed for this purpose,

where the DBMS can determine what new tuples must be inserted, deleted, or modified in a

materialized view table when a database update is applied to one of the defining base tables.

The view is generally kept as a materialized (physically stored) table as long as it is being queried. If

the view is not queried for a certain period of time, the system may then automatically remove the

physical table and recompute it from scratch when future queries reference the view.

Updating of views is complicated and can be ambiguous. In general, an update on a view defined

on a single table without any aggregate functions can be mapped to an update on the underlying

base table under certain conditions. For a view involving joins, an update operation may be mapped

to update operations on the underlying base relations in multiple ways. Hence, it is often not possible

for the DBMS to determine which of the updates is intended.

To illustrate potential problems with updating a view defined on multiple tables, consider the

WORKS_ON1 view, and suppose that we issue the command to update the PNAME attribute of

UV1: UPDATEWORKS_ON1

SET

WHERE AND

AND

This query can be mapped into several updates on the base relations to give the desired update

effect on the view. In addition, some of these updates will create additional side effects that affect

the result of other queries.

For example, here are two possible updates, (a) and (b), on the base relations corresponding to the

view update operation in UV1:

(a) : UPDATEWORKS_ON

SET Pno= (SELECT Pnumber

FROM PROJECT

WHERE

WHERE Essn IN (SELECT Ssn

FROM EMPLOYEE

WHERE AND

AND

Pno= (SELECT Pnumber

FROM PROJECT

WHERE

(b) : UPDATEPROJECT SET

WHERE

PROJECT tuple and is the most likely desired update. However, (b) would also give the desired

update effect on the view, but it accomplishes this by

It is quite unlikely that the user who specified the view update UV1 wants the update to be

interpreted as in (b), since it also has the side effect of changing all the view tuples with Pname =

Some view updates may not make much sense; for example, modifying the Total_sal attribute of the

DEPT_INFO view does not make sense because Total_sal is defined to be the sum of the individual

employee salaries. This request is shown as UV2:

UV2: UPDATEDEPT_INFO

SET Total_sal=100000

WHERE

A large number of updates on the underlying base relations can satisfy this view update.

Generally, a view update is feasible when only one possible update on the base relations can

accomplish the desired update effect on the view. Whenever an update on the view can be mapped

to more than one update on the underlying base relations, we must have a certain procedure for

choosing one of the possible updates as the most likely one.

In summary, we can make the following observations:

 A view with a single defining table is updatable if the view attributes contain the primary key of the

base relation, as well as all attributes with the NOT NULL constraint that do not have default

values specified.

 Views defined on multiple tables using joins are generally not updatable.

 Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION must be added at the end of the view definition if a view

is to be updated. This allows the system to check for view updatability and to plan an execution

strategy for view updates. It is also possible to define a view table in the FROM clause of an SQL

query. This is known as an in-line view. In this case, the view is defined within the query itself.

1.4 Schema Change Statements in SQL

Schema evolution commands available in SQL can be used to alter a schema by adding or

dropping tables, attributes, constraints, and other schema elements. This can be done while the

database is operational and does not require recompilation of the database schema.

1.4.1 The DROP Command

The DROP command can be used to drop named schema elements, such as tables, domains, or

constraints. One can also drop a schema. For example, if a whole schema is no longer needed, the

DROP SCHEMA command can be used.

There are two drop behavior options: CASCADE and RESTRICT. For example, to remove the

COMPANY database schema and all its tables, domains, and other elements, the CASCADE option

is used as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no

elements in it; otherwise, the DROP command will not be executed. To use the RESTRICT option,

the user must first individually drop each element in the schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition can be deleted

by using the DROP TABLE command. For example, if we no longer wish to keep track of dependents

of employees in the COMPANY database, , we can get rid of the DEPENDENT relation by issuing

the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not referenced

in any constraints (for example, by foreign key definitions in another relation) or views or by any

other elements. With the CASCADE option, all such constraints, views, and other elements that

reference the table being dropped are also dropped automatically from the schema, along with the

table itself.

The DROP TABLE command not only deletes all the records in the table if successful, but also

removes the table definition from the catalog. If it is desired to delete only the records but to leave

the table definition for future use, then the DELETE command should be used instead of DROP

TABLE.

The DROP command can also be used to drop other types of named schema elements, such as

constraints or domains.

1.4.2 The ALTER Command

The definition of a base table or of other named schema elements can be changed by using the

ALTER command. For base tables, the possible alter table actions include adding or dropping a

column (attribute), changing a column definition, and adding or dropping table constraints.

For example, to add an attribute for keeping track of jobs of employees to the EMPLOYEE base

relation in the COMPANY schema , we can use the command:

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

We must still enter a value for the new attribute Job for each individual EMPLOYEE tuple. This can

be done either by specifying a default clause or by using the UPDATE command individually on each

tuple. If no default clause is specified, the new attribute will have NULLs in all the tuples of the relation

immediately after the command is executed; hence, the NOT NULL constraint is not allowed in this

case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behavior. If CASCADE

is chosen, all constraints and views that reference the column are dropped automatically from the

schema, along with the column. If RESTRICT is chosen, the command is successful only if no views

or constraints (or other schema elements) reference the column.

For example, the following command removes the attribute Address from the EMPLOYEE base

table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause or by defining a

new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET DEFAULT

Alter Table - Alter/Modify Column

To change the data type of a column in a table, use the following syntax:

ALTER TABLE table_name

MODIFY column_name datatype;

For example we can change the data type of the column named "DateOfBirth" from date to year in

the "Persons" table using the following SQL statement:

ALTER TABLE Persons

ALTER COLUMN DateOfBirth year;

Notice that the "DateOfBirth" column is now of type year and is going to hold a year in a two- or

four-digit format.

Module 4

 Transaction Processing

5.0 Introduction

5.1 Objectives

5.2 Introduction to Transaction Processing

5.2.1 Single-User versus Multiuser Systems

5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS Buffers

5.2.3 Why Concurrency Control Is Needed

5.2.4 Why Recovery Is Needed

5.3 Transaction and System Concepts

5.3.1 Transaction States and Additional Operations

5.3.2 The System Log

5.3.3 Commit Point of a Transaction:

5.3.4 DBMS specific buffer Replacement policies

5.4 Desirable Properties of Transactions

5.5 Characterizing Schedules Based on Recoverability

5.6 Characterizing Schedules Based on Serializability

5.6.1 Testing conflict serializability of a Schedule S

5.7 Transaction Support in SQL

5.0 Introduction

The concept of transaction provides a mechanism for describing logical units of database

processing. Transaction processing systems are systems with large databases and hundreds of

concurrent users executing database transactions. Examples:

airline reservations

banking

credit card processing,

 online retail purchasing,

 Stock markets, supermarket checkouts, and many other applications

These systems require high availability and fast response time for hundreds of concurrent users.

A transaction is typically implemented by a computer program, which includes database

commands such as retrievals, insertions, deletions, and updates.

5.1 Objectives

 To study transaction properties

 To study creation of schedule and maintaining schedule equivalence.

 To check whether the given schedule is serailizable or not.

 To study protocols used for locking objects

 Differentiating between 2PL and Strict 2PL

5.2 Introduction to Transaction Processing

5.2.1 Single-User versus Multiuser Systems

 One criterion for classifying a database system is according to the number of users who

can use the system concurrently

Single-User versus Multiuser Systems

 A DBMS is

 single-user

- at most one user at a time can use the system

- Eg: Personal Computer System

multiuser

- many users can use the system and hence access the database concurrently

- Eg: Airline reservation database

Concurrent access is possible because of Multiprogramming. Multiprogramming can

be achieved by:

interleaved execution

Parallel Processing

Multiprogramming operating systems execute some commands from one process,

then suspend that process and execute some commands from the next process, and so

on

A process is resumed at the point where it was suspended whenever it gets its turn to

use the CPU again

Hence, concurrent execution of processes is actually interleaved, as illustrated in Figure

21.1

Figure 21.1, shows two processes, A and B, executing concurrently in an interleaved

fashion

Interleaving keeps the CPU busy when a process requires an input or output (I/O)

operation, such as reading a block from disk

The CPU is switched to execute another process rather than remaining idle during I/O

time

Interleaving also prevents a long process from delaying other processes.

If the computer system has multiple hardware processors (CPUs), parallel processing

of multiple processes is possible, as illustrated by processes C and D in Figure 21.1

Most of the theory concerning concurrency control in databases is developed in terms of

interleaved concurrency

In a multiuser DBMS, the stored data items are the primary resources that may be

accessed concurrently by interactive users or application programs, which are constantly

retrieving information from and modifying the database.

5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS

Buffers

A Transaction an executing program that forms a logical unit of database processing

It includes one or more DB access operations such as insertion, deletion, modification or

retrieval operation.

It can be either embedded within an application program using begin transaction and

end transaction statements Or specified interactively via a high level query language

such as SQL

 Transaction which do not update database are known as read only transactions.

 Transaction which do update database are known as read write transactions.

 A database is basically represented as a collection of named data items The size of a

data item is called its granularity.

 A data item can be a database record, but it can also be a larger unit such as a whole

disk block, or even a smaller unit such as an individual field (attribute) value of some

record in the database

 Each data item has a unique name

 Basic DB access operations that a transaction can include are:

 read_item(X): Reads a DB item named X into a program variable.

 write_item(X): Writes the value of a program variable into the DB item named X

 Executing read_item(X) include the following steps:

1. Find the address of the disk block that contains item X

2. Copy the block into a buffer in main memory

3. Copy the item X from the buffer to program variable named X.

Executing write_item(X) include the following steps:

1. Find the address of the disk block that contains item X

2. Copy the disk block into a buffer in main memory

3. Copy item X from program variable named X into its correct location in buffer.

4. Store the updated disk block from buffer back to disk (either immediately or later).

Decision of when to store a modified disk block is handled by recovery manager of the

DBMS in cooperation with operating system.

A DB cache includes a number of data buffers.

When the buffers are all occupied a buffer replacement policy is used to choose one of

the buffers to be replaced. EG: LRU

A transaction includes read_item and write_item operations to access and update DB.

 The read-set of a transaction is the set of all items that the transaction reads

 The write-set is the set of all items that the transaction writes

 For example, the read-set of T1 in Figure 21.2 is {X, Y} and its write-set is also {X, Y}.

5.2.3 Why Concurrency Control Is Needed

 Several problems can occur when concurrent transactions execute in an uncontrolled

manner

 Example:

 We consider an Airline reservation DB

 Each records is stored for an airline flight which includes Number of reserved seats

among other information.

 Types of problems we may encounter:

1. The Lost Update Problem

2. The Temporary Update (or Dirty Read) Problem

3. The Incorrect Summary Problem

4. The Unrepeatable Read Problem

Transaction T1

transfers N reservations from one flight whose number of reserved seats is stored in

the database item named X to another flight whose number of reserved seats is stored

in the database item named Y.

 Transaction T2

 reserves M seats on the first flight (X)

1. The Lost Update Problem

 occurs when two transactions that access the same DB items have their operations

interleaved in a way that makes the value of some DB item incorrect

 Suppose that transactions T1 and T2 are submitted at approximately the same time, and

suppose that their operations are interleaved as shown in Figure below

Final value of item X is incorrect because T2 reads the value of X before T1 changes it in

the database, and hence the updated value resulting from T1 is lost.

For example:

X = 80 at the start (there were 80 reservations on the flight)

N = 5 (T1 transfers 5 seat reservations from the flight corresponding

to X to the flight corresponding to Y)

M = 4 (T2 reserves 4 seats on X)

The final result should be X = 79.

The interleaving of operations shown in Figure is X = 84 because the update in T1 that

removed the five seats from X was lost.

2. The Temporary Update (or Dirty Read) Problem

occurs when one transaction updates a database item and then the transaction fails for

some reason

Meanwhile the updated item is accessed by another transaction before it is changed back

to its original value

3. The Incorrect Summary Problem

 If one transaction is calculating an aggregate summary function on a number of db items

while other transactions are updating some of these items, the aggregate function may

calculate some values before they are updated and others after they are updated.

4. The Unrepeatable Read Problem

 Transaction T reads the same item twice and gets different values on each read, since the

item was modified by another transaction T` between the two reads.

 for example, if during an airline reservation transaction, a customer inquires about seat

availability on several flights

 When the customer decides on a particular flight, the transaction then reads the number

of seats on that flight a second time before completing the reservation, and it may end up

reading a different value for the item.

5.2.4 Why Recovery Is Needed

 Whenever a transaction is submitted to a DBMS for execution, the system is responsible

for making sure that either

1. All the operations in the transaction are completed successfully and their effect is

recorded permanently in the database or

2. The transaction does not have any effect on the database or any other transactions

 In the first case, the transaction is said to be committed, whereas in the second case, the

transaction is aborted

 If a transaction fails after executing some of its operations but before executing all of them,

the operations already executed must be undone and have no lasting effect.

Types of failures

1. A computer failure (system crash):

 A hardware, software, or network error occurs in the computer system during

transaction execution

 Hardware crashes are usually media failures for example, main memory failure.

2. A transaction or system error:

Some operation in the transaction may cause it to fail, such as integer overflow or

division by zero

Also occur because of erroneous parameter values

3. Local errors or exception conditions detected by the transaction:

During transaction execution, certain conditions may occur that necessitate cancellation

of the transaction

 For example, data for the transaction may not be found

4. Concurrency control enforcement:

 The concurrency control may decide to abort a transaction because itviolates

serializability or several transactions are in a state of deadlock

5. Disk failure:

 Some disk blocks may lose their data because of a read or write malfunction or

because of a disk read/write head crash.

6. Physical problems and catastrophes:

 refers to an endless list of problems that includes power or air-conditioning failure, fire,

theft, overwriting disks or tapes by mistake

 Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6.

 Whenever a failure of type 1 through 4 occurs, the system must keep sufficient information to

quickly recover from the failure.

 Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they do

occur, recovery is a major task.

5.3 Transaction and System Concepts

5.3.1 Transaction States and Additional Operations

 A transaction is an atomic unit of work that should either be completed in its entirety or not

done at all. For recovery purposes, the system keeps track of start of a transaction,

termination, commit or aborts.

 BEGIN_TRANSACTION: marks the beginning of transaction execution

READ or WRITE: specify read or write operations on the database items that are

executed as part of a transaction

END_TRANSACTION: specifies that READ and WRITE transaction operations have

ended and marks the end of transaction execution

COMMIT_TRANSACTION: signals a successful end of the transaction so that any

changes (updates) executed by the transaction can be safely committed to the

database and will not be undone

ROLLBACK: signals that the transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have applied to the database must be

undone

Figure: State transition diagram illustrating the states for transaction execution

A transaction goes into active state immediately after it starts execution and can

execute read and write operations.

 When the transaction ends it moves to partially committed state.

 At this end additional checks are done to see if the transaction can be committed or not.

If these checks are successful the transaction is said to have reached commit point and

enters committed state. All the changes are recorded permanently in the db.

 A transaction can go to the failed state if one of the checks fails or if the transaction is

aborted during its active state. The transaction may then have to be rolled back to undo

the effect of its write operation.

 Terminated state corresponds to the transaction leaving the system. All the information

about the transaction is removed from system tables.

5.3.2 The System Log

 Log or Journal keeps track of all transaction operations that affect the values of

database items

This information may be needed to permit recovery from transaction failures.

The log is kept on disk, so it is not affected by any type of failure except for disk or

catastrophic failure

one (or more) main memory buffers hold the last part of the log file, so that log entries

are first added to the main memory buffer

When the log buffer is filled, or when certain other conditions occur, the log buffer is

appended to the end of the log file on disk.

In addition, the log is periodically backed up to archival storage (tape) to guard against

such catastrophic failures

 The following are the types of entries called log records that are written to the log file

and the corresponding action for each log record.

 In these entries, T refers to a unique transaction-id that is generated automatically by

the system for each transaction and that is used to identify each transaction:

1. [start_transaction, T]. Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has changed

the value of database item X from old_value to new_value.

3. [read_item, T, X]. Indicates that transaction T has read the value of database item X.

4. [commit, T]. Indicates that transaction T has completed successfully, and affirms that

its effect can be committed (recorded permanently) to the database.

5. [abort, T]. Indicates that transaction T has been aborted.

5.3.3 Commit Point of a Transaction:

 Definition a Commit Point:

 A transaction T reaches its commit point when all its operations that access the

database have been executed successfully and the effect of all the transaction

operations on the database has been recorded in the log.

 Beyond the commit point, the transaction is said to be committed, and its effect is

assumed to be permanently recorded in the database.

 The transaction then writes an entry [commit,T] into the log.

 Roll Back of transactions:

Needed for transactions that have a [start_transaction,T] entry into the log but no

commit entry [commit,T] into the log.

5.3.4 DBMS specific buffer Replacement policies

Domain Separation(DS) method

DBMS cache is divided into separate domains, each handles one type of disk pages

and replacements within each domain are handled via basic LRU page replacement.

LRU is a static algorithm and does not adopts to dynamically changing loads because

the number of available buffers for each domain is predetermined.

Group LRU adds dynamically load balancing feature since it gives each domain a

priority and selects pages from lower priority level domain first for replacement.

Hot Set Method:

This is useful in queries that have to scan a set of pages repeatedly.

 The hot set method determines for each db processing algorithm the set of disk pages

that will be accessed repeatedly and it does not replace them until their processing is

completed.

The DBMIN method:

 uses a model known as QLSM (Query Locality set model), which predetermines the

pattern of page references for each algorithm for a particular db operation

 Depending on the type of access method, the file characteristics, and the algorithm used

the QLSM will estimate the number of main memory buffers needed for each file involved

in the operation.

5.4 Desirable Properties of Transactions

 Transactions should possess several properties, often called the ACID properties

A Atomicity: a transaction is an atomic unit of processing and it is either performed

entirely or not at all.

C Consistency Preservation: a transaction should be consistency preserving that is it

must take the database from one consistent state to another.

I Isolation/Independence: A transaction should appear as though it is being executed

in isolation from other transactions, even though many transactions are executed

concurrently.

D Durability (or Permanency): if a transaction changes the database and is committed,

the changes must never be lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is the

responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity.

The preservation of consistency is generally considered to be the responsibility of the

programmers who write the database programs or of the DBMS module that enforces

integrity constraints.

The isolation property is enforced by the concurrency control subsystem of the DBMS. If

every transaction does not make its updates (write operations) visible to other transactions

until it is committed, one form of isolation is enforced that solves the temporary update

problem and eliminates cascading rollbacks

Durability is the responsibility of recovery subsystem.

5.5 Characterizing Schedules Based on Recoverability

 schedule (or history): the order of execution of operations from all the various

transactions

 Schedules (Histories) of Transactions: A schedule S of n transactions T1, T2 n

is a sequential ordering of the operations of the n transactions.

 The transactions are interleaved

 Two operations in a schedule are said to conflict if they satisfy all three of the following

conditions:

(1) they belong to different transactions;

(2) they access the same item X; and

(3) at least one of the operations is a write_item(X)

 Conflicting operations:

 r1(X) conflicts with w2(X) Read write conflict

 r2(X) conflicts with w1(X)

 w1(X) conflicts with w2(X) Write conflict

 r1(X) do not conflicts with r2(X)

Schedules classified on recoverability:

Recoverable schedule:

 One where no transaction needs to be rolled back.

 A schedule S is recoverable if no transaction T in S commits until all transactions

 Example:

 Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;

Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;

Cascadeless schedule:

One where every transaction reads only the items that are written by committed

transactions.

Schedules requiring cascaded rollback:

A schedule in which uncommitted transactions that read an item from a failed

transaction must be rolled back.

Strict Schedules:

A schedule in which a transaction can neither read or write an item X until the

last transaction that wrote X has committed.

5.6 Characterizing Schedules Based on Serializability

schedules that are always considered to be correct when concurrent transactions are

executing are known as serializable schedules

Suppose that two users for example, two airline reservations agents submit to the DBMS

transactions T1 and T2 at approximately the same time. If no interleaving of operations is

permitted, there are only two possible outcomes:

1. Execute all the operations of transaction T1 (in sequence) followed by all the

operations of transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the

operations of transaction T1 (in sequence).

Serial schedule:

A schedule S is serial if, for every transaction T participating in the schedule, all

the operations of T are executed consecutively in the schedule.

Otherwise, the schedule is called nonserial schedule.

Serializable schedule:

A schedule S is serializable if it is equivalent to some serial schedule of the same

n transactions.

Result equivalent:

 Two schedules are called result equivalent if they produce the same final state of

the database.

Conflict equivalent:

 Two schedules are said to be conflict equivalent if the order of any two conflicting

operations is the same in both schedules.

Conflict serializable:

 A schedule S is said to be conflict serializable if it is conflict equivalent to some

 Being serializable is not the same as being serial

 Being serializable implies that the schedule is a correct schedule.

 It will leave the database in a consistent state.

 The interleaving is appropriate and will result in a state as if the transactions

were serially executed, yet will achieve efficiency due to concurrent execution.

5.6.1 Testing conflict serializability of a Schedule S

For each transaction Ti participating in schedule S,create a node labeled Ti in the

precedence graph.

For each case in S where Tj executes a read_item(X) after Ti executes a write_item(X),

create an edge (Ti Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a read_item (X)

,create an edge (Ti Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a write_item(X),

create an edge (Ti Tj) in the precedence graph.

The schedule S is serializable if and only if the precedence graph has no cycles.

Fig: Constructing the precedence graphs for schedules A and D from fig 21.5 to test for conflict

serializability.

(a) Precedence graph for serial schedule A.

(b) Precedence graph for serial schedule B.

(c) Precedence graph for schedule C (not serializable).

(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

Another example of serializability testing. (a) The READ and WRITE operations of three

transactions T1, T2, and T3.

(b)

Time

Schedule E

(c)

Time

Schedule F

transaction f/ transaction transaction Ty

read_item (Y),

read item (Z);

 write item (7);

write_item (7);

read item (2);

read_item (Yj;

 (; read item (Y),

write_item (Y),

read_item ();

write item (Xj;

transaction T1 transaction ‹2 transaction T3

read item (7);

read_item (/;

read_item (X),

 write item (7),

read item (J);

read_item (Y);

 Precedence graph for schedule E

 Precedence graph for schedule F

5.7 Transaction Support in SQL

 The basic definition of an SQL transaction is, it is a logical unit of work and is guaranteed

to be atomic

 A single SQL statement is always considered to be atomic either it completes

execution without an error or it fails and leaves the database unchanged

 With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is

done implicitly when particular SQL statements are encountered

 Every transaction must have an explicit end statement, which is either a COMMIT or a

ROLLBACK

 Every transaction has certain characteristics attributed to it and are specified by a SET

TRANSACTION statement in SQL

The characteristics are :

The access mode

- can be specified as READ ONLY or READ WRITE

- The default is READ WRITE

- A mode of READ WRITE allows select, update, insert, delete, and create

commands to be executed

- A mode of READ ONLY, as the name implies, is simply for data retrieval.

 The diagnostic area size

- DIAGNOSTIC SIZE n, specifies an integer value n, which indicates the

number of conditions that can be held simultaneously in the

diagnostic area

- These conditions supply feedback information (errors or exceptions) to the

user or program on the n most recently executed SQL statement

The isolation level

- specified using the statement ISOLATION LEVEL <isolation>, where the value for

<isolation> can be READ UNCOMMITTED, READ COMMITTED, REPEATABLE

READ, or SERIALIZABLE

- The default isolation level is SERIALIZABLE

- The use of the term SERIALIZABLE here is based on not allowing violations that

cause dirty read, unrepeatable read, and phantoms

- If a transaction executes at a lower isolation level than SERIALIZABLE, then one

or more of the following three violations may occur:

1. Dirty read. A transaction T1 may read the update of a transaction T2, which

has not yet committed. If T2 fails and is aborted, then T1 would have read a

value that does not exist and is incorrect.

2. Nonrepeatable read. A transaction T1 may read a given value from a table. If

another transaction T2 later updates that value and T1 reads that value again,

T1 will see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps

based on some condition specified in the SQL WHERE-clause. Now suppose

that a transaction T2 inserts a new row that also satisfies the WHERE-clause

condition used in T1, into the table used by T1. If T1 is repeated, then T1 will

see a phantom, a row that previously did not exist.

The transaction consists of first inserting a new row in the EMPLOYEE table and then

updating the salary of all employees who work in department 2

If an error occurs on any of the SQL statements, the entire transaction is rolled back

This implies that any updated salary (by this transaction) would be restored to its

previous value and that the newly inserted row would be removed.

