Name :	
Roll No. :	An Annual Statement of the Andrew

Invigilator's Signature :

CS/MCA / SEM-2 / MCA-203 / 2011 2011 DATA STRUCTURE WITH C

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - Consider A, B and C will be pushed into stack in the same order as given. Which of the following options is not possible outcome after pop operations ?
 - a) *A*, *B*, *C* b) *B*, *A*, *C*
 - c) *C*, *B*, *A* d) *C*, *A*, *B*.

[Turn over

CS/MCA / SEM-2/ MCA-203 / 2011

ii) What is the maximum possible number of nodes with level n of a binary tree ? Consider root at level 1.

- a) $2^{n+1} 1$ b) $2^n 1$
- c) $2^n + 1$ d) 2^n .

iii) The complexity of binary search algorithm is

- a) O(n) b) $O(n \log_2 n)$
- c) $O(n^2)$ d) $O(\log_2 n)$.

iv) Return type of function main () returns value to the

- a) Operating system b) Compiler
- c) Linker d) Loader.
- v) What kind of data structure do you prefer for implementation of polynomial ?
 - a) Array b) Linear Linked List
 - c) Tree d) Graph.
- vi) Compaction reduces fragmentation.
 - a) external b) internal
 - c) both (a) and (b) d) neither (a) nor (b).

2104

vii)	Ade	CS/MCA / SEM-2/ MCA-203 / 2011 Utech lelson Velski and Landies tree is a tree.				
	a)	Unbalanced binary		A Annue (V Kansinfe Red Uniford		
	b)	balanced binary				
	c)	binary search				
	d)	balanced binary searcl	n.			
viii)	Recl	Recharging your mobile balance is a policy.				
	a)	LIFO	b)	priority based		
	c)	FIFO	d)	none of these.		
ix)	What is the time complexity of the binary search ?					
	a)	O (n)	b)	$O(n^2)$		
	c)	log (n)	d)	$n\log(n)$.		
x)	The order of nodes in a linear linked list is maintained					
	by					
	a)	value within the node	b)	addresses of nodes		
	c)	compiler	d)	pointer of the node.		
0.4		0				

[Turn over

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Define circular queue. Indicate the advantages of circular queue over linear queue. Define priority queue. 1 + 3 + 1
- 3. What is hashing ? What is chaining ? What are the characteristics of hash function ? What is re-hashing ?

1 + 1 + 2 + 1

- What is collision ? Discuss linear probing method to resolve collision.
 1 + 4
- 5. What is tail recursion ? How is it different from ordinary recursion ? What are the differences between iteration and recursion ? 1 + 2 + 2
- 6. Given preorder and postorder traversal, justify if it is possible to find out the corresponding in order traversal.

2104

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Determine the admissible value of x in the following figure so that there is a unique shortest path from node 1 to node 6 :

Is there any other choice of x, which would result in another shortest path between node pair 1 and 6 ? If so, find all such combination of x values indicating the corresponding shortest path.

b) Indicate how a binary tree may be converted into a linear data structure.
 10 + 5

2104

8. a) What is *B*-tree ? Insert the following keys into a *B*-tree of order 5 :

20, 80, 55, 15, 116, 39, 76, 124, 103, 48, 200, 98, 175, 235, 28, 114, 132, 164.

b) Insert the following numbers into Max heap and Min heap :

39, 89, 12, 67, 56, 43, 54, 98, 6, 60, 95, 26. 10 + 5

- 9. Draw a digraph corresponding to each of the following relations on the integers ranging over 1 to 12 :
 - i) x is related to y if x y is eventually divisible by 3.
 - ii) x is related to y if x + 10 y < xy
 - iii) x is related to y if the remainder on division of x by y is 2. 15
- 10. Write an algorithm or function to insert an intermediate node in a doubly linked list. Explain the advantage of threaded binary tree. Distinguish between depth and height of a binary tree with the help of an example.
 9 + 3 + 3
- 2104

JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC.

Specify the difference between general tree and binary tree considering the following tree :

Construct an AVL tree with the following nodes. The order of the nodes is same as it appears.

BIN, FEM, IND, NEE, LAL, PRI, JIM, AMI, HEM, DIN. 6 + 2 + 7

================

2104

[Turn over