9. (a) Verify Stokes' theorem for

$$\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$$

taken around the rectangle bounded by the lines $x = \pm a$, y = 0 and y = b.

(b) Evaluate $\int_{S} \vec{F} \cdot dS$, where

$$\vec{F} = 4x\vec{i} - 2y^2\vec{j} + z^2\vec{k}$$

and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3.

* * *

B.Tech 2nd Semester Exam., 2016

MATHEMATICS-II

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1 Answer any seven of the following as directed: 2×7=14
 - (a) The series

$$\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$

converges, if

(i)
$$p > 0$$

$$\forall \vec{p} \mid p > 1$$

(iv)
$$p \le 1$$

(Choose the correct option)

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$

is

- (i) oscillatory
- (ii) conditionally convergent
- (iii) divergent
- (iv) absolutely convergent

(Choose the correct option)

(c) The period of |sint| is 8.

(Fill in the blank)

(d) In the Fourier series expansion of

$$f(x) = |\sin x|$$

in $(-\pi, \pi)$, the value of $b_n = 0$.

(Fill in the blank)

(e) The function

$$f(x) = \begin{cases} 1 - x, & \text{in } -\pi < x < 0 \\ 1 + x, & \text{in } 0 < x < \pi \end{cases}$$

is an odd function.

(Write True or False)

(f)
$$\int_0^2 \int_0^x (x+y) dx dy = 4$$
.

(Fill in the blank)

(g)
$$\int_0^{\pi/2} \int_0^{a \sin \theta} r \, dr \, d\theta = \frac{9^{\frac{2}{\hbar}}}{8}.$$

(Fill in the blank)

(h) On changing to polar coordinates

$$\int_0^{2a} \int_0^{\sqrt{(2ax-x^2)}} dx \, dy$$

becomes ____

(Fill in the blank)

- (i) If $\nabla \cdot \vec{F} = 0$, then \vec{F} is called Sequence (Fill in the blank)
- (i) If \vec{A} is such that $\nabla \times \vec{A} = 0$, then \vec{A} is called in the such that $\vec{A} = 0$.

(Fill in the blank)

Discuss the convergence of the series $x + \frac{2^2 \cdot x^2}{12} + \frac{3^3 \cdot x^3}{13} + \frac{4^4 \cdot x^4}{14} + \frac{5^5 \cdot x^5}{15} + \dots \infty$

L5 .

(x > 0) 7

Prove that the series $\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \dots$

converges absolutely.

7 :

4-1

, 5

- (a) Expand $f(x) = x \sin x$ as a Fourier series in the interval $0 < x < 2\pi$.
 - (b) Obtain Fourier expansion for the function

$$f(x) = \begin{cases} \pi + x, & \text{if } -\pi \le x \le 0 \\ \pi - x, & \text{if } 0 \le x \le \pi \end{cases}$$

and $f(x+2\pi) = f(x)$.

- 4. (a) Find half-range cosine series for the function $f(x) = x^2$, 0 < x < 2.
 - (b) Find the Laplace transform of $te^{-t} \sin 3t$.
- 5. (a) Find the value of

$$L\left\{\int_0^t \frac{e^{-t}\sin t}{t}dt\right\}$$

(b) Find the inverse Laplace transform of

$$\frac{s+2}{s^2(s+1)(s-2)}$$

6. (a) By changing the order of integration in

$$I = \int_0^1 \int_{x^2}^{2-x} xy dx dy$$

evaluate the integral.

(b) Evaluate

7

7

7

7

over the cardioid $r = a(1 - \cos \theta)$ above the initial line.

7. (a) Evaluate

$$\iint\limits_{R} (x+y)^2 \, dx \, dy$$

where R is the parallelogram in the xy-plane with vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + y and v = x - 2y.

- (b) Find by triple integration, the volume of the sphere $x^2 + y^2 + z^2 = a^2$.
- 8. (a) Show that

$$\nabla^2(r^n) = n(n+1)r^{n-2}$$

(b) Find the work done in moving a particle in the force field

$$\vec{F} = 3x^2\vec{i} + (2xz - y\vec{i} + z\vec{k})$$

along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2.

7

7

7