Name :	Utech
Roll No. :	
Invigilator's Signature :	

CS/B.TECH (NEW)(CSE/IT)/SEM-4/M-401/2012

2012 **MATHEMATICS - III**

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct answers for any ten of the following :

> $10 \times 1 = 10$ If $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ and $P(A \cup B) = \frac{1}{2}$, then P(B|A)a) $\frac{3}{4}$ b) $\frac{4}{3}$ d) $\frac{1}{3}$. $\frac{1}{4}$ The variance of a random variable *x* is a) $\{E(x)\}^2$ b) $E(x^2)$ $E(x^2) - \{E(x)\}^2$ d) $E(x^2) - E(x)$. A statistic t is said to be an unbiased estimator of a population parameter θ when

a)
$$E(t) = \theta$$

b) $E(t^2) = \theta$
c) $E(t^2) = \{ E(\theta) \}^2$
d) $\{ E(t) \}^2 = E(\theta^2).$

[Turn over

4156

i)

ii)

iii)

is

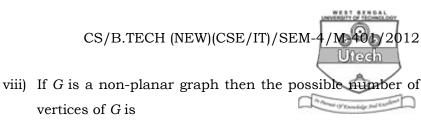
c)

c)

CS/B.TECH (NEW)(CSE/IT)/SEM-4/M-401/2012

- iv) The maximum likelihood estimate is a solution of the equation
 - a) $\frac{\partial \angle (\theta)}{\partial \theta} = 0$ b) $\frac{\partial \angle (\theta)}{\partial \theta} = \text{constant}$
 - c) $\frac{\partial \angle(\theta)}{\partial \theta} = \theta$ d) none of these.
- v) If H_1 ($\mu > 60$) is an alternative hypothesis, then the null hypothesis is
 - a) $H_0 \ (\mu < 60)$ b) $H_0 \ (\mu \ge 60)$
 - c) $H_0 \ (\mu \le 60)$ d) none of these.
- vi) A random variable x has the following p.d.f :

$$f(x) = \begin{cases} k, & -2 < x < 2\\ o, & \text{otherwise} \end{cases}$$


then the value of k is

a)
$$\frac{1}{12}$$
 b) $\frac{1}{2}$
c) $\frac{1}{4}$ d) $\frac{1}{8}$.

vii) A complete graph is called Kuratowski's first graph if it has

- a) 5 vertices b) 4 vertices
- c) 6 vertices d) 7 vertices.

4156

- a) 2 b) 3
- c) 4 d) 6.

ix) The chromatic number of a graph containing an odd circuit is

- a) 3
- b) 2
- c) greater than or equal to 3
- d) greater than or equal to 2.

x) The generators of the cyclic group (Z, +) are

a) 1, – 1	b)	0,1	
-----------	----	-----	--

c)
$$0, -1$$
 d) $2, -2$.

xi) The inverse of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ is

a) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ d) none of these.

xii) If *R* is a ring without zero divisors, then x. y = 0 implies

a) x = 0 or y = 0b) x = 0 and y = 0c) $x = 0, y \neq 0$ d) $x \neq 0, y = 0.$

4156

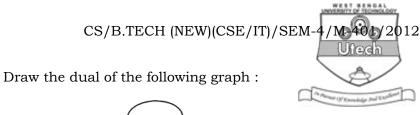
[Turn over

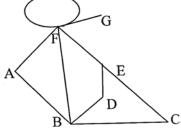
xiii) Which of the following sets in clo multiplication ?

- a) $\{1, -1, 0, 2\}$ b) $\{1, i\}$
- c) $\{1, w, w^2\}$ d) $\{w, 1\}$.
- xiv) A group *G* is commutative iff
 - a) ab = ba b) $(ab)^{-1} = b^{-1} a^{-1}$
 - c) $(ab)^{-1} = a^{-1}b^{-1}$ d) $(ab)^2 = ab$.

GROUP – B

(Short Answer Type Questions)


Answer any *three* of the following. $3 \times 5 = 15$


2. If $P(A \cap B) = P(A) P(B)$, then prove that

 $P(A^{c} \cap B^{c}) = P(A^{c}) P(B^{c})$

- 3. Find the mean and variance of Poisson distribution with parameter λ .
- If G the a group such that (ab)² = a² b² for all a, b ∈ G; show that the group G is Abelian.
- 5. A normal population has a mean 0.1 and standard deviation 2.1. Find the probability that the mean of a sample of size 900 will be negative. Given that P(|z| = 1.43) = 0.847.

4156

(Long Answer Type Questions)

Answer any *three* of the following questions.

 $3 \times 15 = 45$

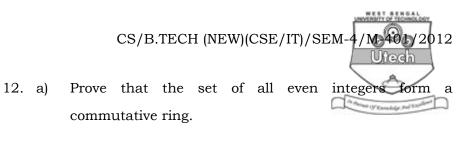
- 7. a) A regular graph G determines 8 regions, degree of each vertex being 3. Find the number of vertices of G.
 - b) Prove that the chromatic polynomial of a tree with n vertices is $x (x-1)^{n-1}$, whose x is the no. of colours.
 - c) Prove that every finite integral domain is a field.
- 8. a) Prove that a subgroup H of a group G is said to be normal if aH = Ha for all $a \in G$.
 - b) A box contains 5 red balls and 10 white balls. Two balls are drawn at random from the box without replacement. What is the probability that
 - i) the second ball is white,
 - ii) the first ball drawn is red, given the second ball drawn is white ?
 - c) Define a cyclic group. Prove that every cyclic group is abelian.

5

4156

6.

[Turn over


CS/B.TECH (NEW)(CSE/IT)/SEM-4/M-401/2012

- 9. a) Show that every planar graph is 6 colourable.
 - b) If G be a connected graph with n vertices, e edges and r faces, prove that n-e + r = 2.
 - c) If T is an unbiased estimator of θ , show that \sqrt{T} is biased estimate of $\sqrt{\theta}$.
- 10. a) State and prove Baye's theorem.
 - b) A random sample with observations 65, 71, 64, 71, 70, 69, 64, 63, 67, 68 is drawn from a normal population with variance 7.056. Test the hypothese's that the population mean is 69 at 1% level of significance. [Given that P(0 < z < 2.58) = 0.495].
 - c) If a population has normal distribution with parameter μ and σ , then prove that the statistic $\frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2$ is

maximum likelihood estimate of $\sigma^{\,2}$ where μ is known.

- 11. a) Show that the group $(z_9, +)$ is a homomorphic image of the group (z, +).
 - b) In a bolt factory, machines A, B, C manufacture respectively 25%, 35%, 40%. Of the total of their output 5%, 4%, 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probability that it was manufactured by machines A, B and C?
 - c) The lifetime of a certain brand of an electric bulb may be considered as a random variable with mean 1200h and s.d. 250h. Find the probability, using Central Limit theorem, that the average lifetime of 60 bulbs exceeds 1250h.

- b) Prove that the intersection of two subrings is a subring.
- c) Prove that the sample mean \overline{x} is an unbiased estimator of the population mean.

[Turn over