Page |67

i ? R TR e Al s Pape | 68

| 2eftware Quality Assurance

Pres ey
e e e T L L LR L

|, What are the tasks, goals of SQA?

| cofrware Quality Assurs
| A, 28— rance: Software quality assurance is composed of a varicty

| -..:ks associated with two differe : .
of 133 }‘“‘ two different constituencies—the sofhvare engineers who do !

| nical work and an : :
| rech . SOA group that has responsibility for quality assurance
sning. oversight, record keeping, analysis, and reporting

¥
-

2 sks: et . .
s0A Tasks H:J_Soﬁ\\’arc Engineering Institute recommends a set of SQA actions
a1 €8s qu r ass 8 . " '

a1 address quality assurance planning, oversight, record keeping, analysis, and

~porting. e

- .

= ‘PR’PW' es an SOA P.'f'fm _)."or the projects: Quality assurance actions performed

' by the software engineering team and the SQA group are governed by the plan.
The plan identifies evaluations to be performed, audits and reviews to be
conducted. N

=» Participates in the development of the project’s software process description:
The soﬁ\\-‘ftre team selects a process for the work to be performed. The SQA
group reviews the process description for compliance with organizational

. policy, internal software standards, external standards, and other parts of the
software project plan.)

= Reviews software engineering activities to verify: compliance with the defined !
software process: The SQA group identifies, documents, and tracks deviations 3[
from the process and verifies that corrections have been made. :"

» Audits designated software work products to verifys compliance with those "

defined as part of the software process: The SQA group reviews selected
) work proc?t_.rcté';' identifies, documents, and tracks deviations; verifies that
““Corrections have been made; and periodically reports the results of its work to .
the project manager.

= Ensures that deviations in software work and work products are documented
and handled according to a documented procedure: Deviations may be

| encountered in the project plan, process description, applicable standagds, or
software engineering work products.

=» Records any noncompliance and reports 1o senior management:
Noncompliance items are tracked until they are resolved.

SOA Goals: The SQA actions described in the preceding section are performed to
achieve a set of pragmatic goals:

P T

| #u ¥
a
.

Page |6

and consistenoy of the

» Requirements itp: The correctness, completeness, : ;
Qurements quality: The correetn I quality of all work

requitements model will have o strong influence on the has properly
products that follow. SQA must ensure that the soflware: team ' s properly
reviewed the requivements model to achieve a high level ol qm‘lhl:‘"” ced by the

® Design qualite: Uvery clement of the design muodel should be u:ma.\.\:() ‘ e
sollware team to ensure that it exhibits high quality and that ie-GesigIt Hiel
conforms to requirements, :

» Code quality: Sonrce code and related w P B
cmlim‘.’::t:u‘lﬂunl:: ::::l;ht:.\ft::;\i: u:hnructcristics that will (heilitate mmn‘?l.‘.mlhlmy'
SQA “should isolate those attributes that allow a rensonable analysis of lh}: .

+ quality of code. L a—
® Quality control ¢ffectiveness: A soflware team should :.Imﬂ.\’ ll"_““'d ‘Cf‘m"“-h\
in.away that has the highest likelihood of achieving & lug.h-qu:llll)’ result, SQA
-‘:m:ily':,c.s the alloeation of resources for reviews and testing 0 NSSCSS whether
they are being allocated in the most eflective manner.

ork products must conform to loeal

.

S e T T TR LA L LR LA L A kb
2. What arve the quality metrics? 4

A. Software Quality Metrics: A measure of some property of a picce ol sollware or
its specifications. Basically, as applied to the soflware product, a soflware metric

measures a characteristic of the soflware, Some common soflware metrics are:-

« Source lines of code,

« Cyclomatic complexity, is used to measure code complexity. _ .

- Function point analysis (FPA), is used to measure the size (functions) of software,

« DBugs per lines ol code. : '

« Code coverage, measures the code lines that are executed for a given sct of
software tests. e R

- Cohesion, measures how well.the source code ina given module work tdégétherto |
provide a single function,

« Coupling, mecasures how well two software components are data related, i.c. how
independent they are.

B T TR,

The SATC (Software Assurance Technology Center) Software Quality Model which includes
Goals and Metrics as well as the soflware attributes:

GOALS ATTRIBUTES METRICS
- Number of Weak Phrases. Number of Optional
Ambiguity A
Phrases.

Number of To Be Determined (TBDs) and To
be Added (TBAS).

Completeness

-y
e e e i | il S P .

Page | 70|

= s

‘ - | S i & _}I
\\‘:\:“‘P:“ S ?ﬁ.\\‘i\?ﬁmmh?m 1\\\&1::1\0:\! Starctaee. Readability Index. |
\\f'.‘,i 7 ‘*‘ : _ ey e

\ Ok “ mt ot Changes / Count of Requirements. L |fci
i ARV L"“““ sipe when the change iswmade. 1,
; - "a Gt 6! \\\t\\ﬁm r\‘qmwmult\ not tnccd W |
oAbty e quarentents. Nutber o software (|
im o aOuienients not tread to code and tests. |
Nt Ay \\\i\\\‘mm L_\‘b'_ l{{uplu\u}' GOTO usage. Size, |

; \tam’mmhnhl}*],_l \\m‘! wmn ol complexity/size, - i

' T———— 1

‘. SELRNN = . : N opd

{ vodit NS ’\am\ﬂm Conelation ot complexity/size.

- QualRy L _

frternal Commaent Percentage.
ll\\‘tmwnmtm\ L &
Itemal B o
IAvumantation Mdahulﬂg h\dc.\
h‘“\‘ \“‘\\““\t\‘\\h B R “"_“"“‘—""- L1y o . ———
> - - WM ’L\ Al _" .‘ > 2 At G i ‘i
BRI exwrane Ukage @t hours spent on life cycle activities

J

i3

r)- r-‘*7(-",

w p!c&_a;. !\I:‘:Eos iJ‘ask completions, Planned task completions.

e PP e k.

— PEmoes and -.numht\ Time of tinding of errors.
it o 1 ime af error fixes, Code Location of fault.
-.noootonilvi‘0nimét!'af*‘!O'iQQOQQ*O!'.t"ﬁt!‘i!tt!i‘i###t‘t‘tti*#*t

LA Eaphaim Sotltware reliability?

A The reliabiliy ofa compater progran is an important element of its overall quality.
CSofware rehiabiliy can be measured directly and estimated using historical and
" s;\-\-?:m\:n\n..ﬂ Jat. Sofbaare rﬂa’a.’u‘h‘r_\' 15 defined in statistical teriis as “the

Teating BEiectivity ;

0 . . - LY - e
| N Qf Awluredred operation f @ computer prm,:(m: in a specified|
| e\ .“\‘:*:.-:: ‘:‘; ‘\\ \~ “‘\'::“:‘ 'I“\“‘: TR TR s . "M my Yt mRRY AR PR

Whonever sotiware reliabubity 1s discussad, a question arises: What is failure? Failure

Conansonivimanee o software requirements. One failure can be corrected within
sovondss whitle another requires weeks or even months to correet. The correction of

L

ot may i fact result i the introduction of other errors that ultimately result
nother talaves,

.

Meavures of Reliability and_Availability:s All software failures can be traced to

e ot implementation problems; i we consider a computer-based system, a simple
measure of rehability is mean-time-benween-failure (MTBFE):

Page |71

MTBF = MTTF + MTTR)
Where the acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-
repair respectively. In addition to rcliability measure, we should also develop a
measure of availability. Software availability is the probabilil_y that a program is
operating according to requirements at a given point in time and is defined as:

MTTF

Availability = X 100%
MTTF + MTIR

The MTRBF reliability measure is equally sensitive to MTTF and M'ITR': _'

Software Safety: Software safety is a software quality assurance activity that focuses
on the identification and assessment of hazards (risks) that may affect ‘software
negatively and cause an entirc system to fail. Once hazards are identified and
analyzed, safety-related requirements can be specified for the software, That is, the
specification can contain a list of undesirable events and the desired system.responses
to these cvents.

********#*#***********************###**#*t#**#**##*##*#*#*tt***#**#t*

B e

e —

| i‘_ll ‘“‘l; --IH-H

R BN T Nuln T
\ “aiin v
LTRATITTTITRYS tm_'ll\\n {4 h ‘\uhlmm\umh '.

ab i (e Wit u\: ::‘:“""'“ WAy 4 PV D0 vt ioston with the ntent
vV Woics LR LI TR, W provoss af vinlidating il

R AR sy MR gy P Moot (e Watness wil
feohintval AR TR that TR R st \h*\'ﬂluum\‘-nl

PRI O Gy ALRTERTTITAN. Wl teating objeatives;
LR V1| YT i . _ ‘ - 2
m:. \1:::\“ HNR B ooy WESNE N e wity the intent of Ginding

LB W (TR CTRT O i has Nl pobiabilig of ling on ws - yot -
W) (TR | |

YA MRS g LTTRTITRINY

Lot Prinetintent e Wltowing e i o i pvineplos it auide sofiwago
I :

A

RO I the sotiwage,

b showd DO aveabile 1o IR Yeguliements,
AU ISR TN Wl bt Wonting hoping,

Lol l\y\i\\ln ‘\\h\\\l’lll\\ (g wioall T “,"“-,_‘“.,..'l“d "hulhw, l“ﬁ”“l’t‘ l\l'l[i“i”i 0
M (e g,

Eo Tt shoil DR (0 the s

AT B T R TN T TR TURETI{I RS

AT AU (YO YROT viwtive,
ey,

AL oo ol tostlng In the targe,

Wi aonld b oansueted by fndopondent third

Peatabileey St LSt by how onsily i Yo tostod, The l\,'\i'\i\\\'li{ﬁ e
A et ettt testablo sofhwie,

© ORI e bottor Twar ks & g efietontly it e o festod™,

< Oorvabiiey Wit NOW R whing v test™,

© LU e bettor we onn Conint e soflwine, the more the losting
VA e aptingieed™,

© o evaimpen iy Uy santotling the SO0 Al testing, Wo onn moro (ulokly
P b e por o santen wtesting,

©NP R I s e G Gt e imore QUEOR Y W oy st g™,

SO PR Fwor e oluiges, e tawor e dlsraptions (o tosting™,

Page |73

. lJn(lcrslnmlzlhilily ~ “The more information we have, the smarter we wij|

lest™,

I'he 1'u|luwin;; are the atributes of good test:

* A pood test has a high probability of finding an crror.
* A good test is not redundant,

* A pood test should be “best of breed”

L]

A pood test should be neither too simple nor too complex.
4*4'-&*4-#*:*1'*4'#4'-luHrt-‘t#ll--l~'H'ﬁ#*##tt**#t##tt*tl—'&#*####*#####t#g***

S. Explain White — Box testing? .

A. White hox lesting, is also called as glass box testing is a test case design method
that uses the control structurc of the procedural design to derive test cases. White —
box testing derives the test cases that —

(1) Guarantee that.all individual paths within the module have been cxercised at least
once,

(2) Excreise all logical decisions on their true or false sides.

(3) Executes all loops at their boundaries and within their operational bounds,
(4) Exercise internal data structures to ensure their validity,

The reasons for choosing white box testing are:

~ Logical crrors and incorrect assumptions are inversely proportional to the

probability that a propram path will be executed,
Typological crrors are random.
= We often believe thattogic:

~

exeeuted on a repular basis,

oo e o oo ol oK ok o ko f,.uMMHH*MHHM*1.****H*Ht#**********#*#********t

6. Explain Basis i):tth testing?
A. Basis path testing is a white-box testing technique first proposed by Tom McCabe.

The basis path method enables the test-case designer to derive a logical complexity

measure ol a procedural design and use this measure as a guide for defining a basis set
of exceution paths.

Flow graph notation: The flow graph
following notation:

depicts logical control flow using the

il path. is nog,likglj{_gxcguted;.jn..fact, it may be|

iz

The structured constructs in Bow graph form:

Sequence It While Unfil
(@) @
-——-—-—-
&

Where each circle represents one or more
nonbranching PDL or source code skafements

i .t

ding flow graph. In the flow graph,
rocedural statements. A
into a single node. The
w of control and are
de, even if the node

The following maps the flowchart into a correspon
each circle, called a flow graph node, represents one or more p
sequence of process boxes and a decision”diamond can map
arrows on the flow graph, called edges or links, represent flo
analogous to flowchart arrows. An edge must terminate at a no
does not represent any procedural statements. © -

() Flowcharl and @) flow graph

Regton

Qll - .

{ol i -
Cvclomatic complexity: Cyclomatic complexity is software metric (measurement),
used to indicate the complexity of a program. It is a quantitative measure of the
number of linearly independent paths through a program's source code.

Independent Program paths: 1t is any path through the program that introduces at
least one new set of processing statements or a new condition. In the context of flow

e e e

= — e e B SR N] S T U SR BT
W e N R L 1 R R T S R R PR

NP —— RSN

AR S

e e n a8 -

| I ___Page|7s

along at least one edge that has not been

{ move -
set of independent paths for the

graph, an independent path mus
4. For example, a

traversed before the path is define
above flow graph are:

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3: 1-2-3-6-8-9-10-1-11
6-7

Note that each new p;llh introduces a new edge. The path
i 2.3-6-8-9-10-1-11

. 1-2-3-4-3-10-1- 1-11
is not considered to be an independent path because it is simply a combination of
(raverse any new edges.

already specified paths and docs not > any)
. foundation in graph theory and provides you with

Cyclomatic complexity has a : :
is computed 1n on¢ of three ways:

extremely useful software metric. Complexity
& The number_ of regions of the flow graph corresponds to the cyclomatic

complexity. .

= Cyclomatic complexity V(G) for a flow graph G is defined as: :

V(G)=E-N+2
Where E is the number of edges, N is the number of flow graphs.
= Cyclomatic complexity V(G) for a flow otaph G is defined as: -
. V(G)=P+1
ate nodes contained in the flow graph G. "

Where P.is the number of predic
The cyclomatic complexity for the above graph is,
1] V(G) =11 cdgcs-—9nodcs+?_=4

2] V(G) = 3 predicate nodes + 1 = 4

Therefore, the cyclomatic complexity of the above flow graph is 4.

Deriving lest cases:
design or to source code. The following steps can be applied to derive the basis set:

= Using the.design or code as a foundation, draw a corresponding flow graph.
» Delterniine the cyclomatic complexity of the resultant flow graph. .

® Determine a'basis set of linearly independent paths.
®» Prepare test cases that will force execution of each path in the basis set.

Aok ki kA EE *****************#*******************t*****************t#*t

7. Explain control structure testing?
A. Control structure testing is a white-box testing technique which improves the

quality of it.

The basis path testing method can be applied to procedural.

LT

s e o PAEE PR
CT:::':(;;};ES;‘“ e CO":'dirz‘o_n testing is a test-case design method that exercises the
logics NS contained in a program module. A simple condition is a Boolean

variable or a relational expression . :
: ; » possibly preceded with -
relational expression takes the form & one NOT () operator. A

E1 <rclational-o g

whcrc' El and E2 are arithmetic expressionsp::?;gzzﬁizona],opemtop is one of the
following: <, <=, =, I=, > >=_ A compound condition is composed of two or more
Is.implc conditions, Boolean operators, and parentheses. We assume that Boolean
operators allowed in a compound condition include OR (), AND (&), and NOT (-).
| A condition without relational expressions is referred to as a Boolean expression.

Types of errors in a condition include:
1] Boolean operator error

2] Boolean variable error

3] Boolean parenthesis error

4] Relational operator error

5] Arithmetic expression error

Data Flow Testing: The data flow testing method selects test paths of a program
according to the locations of definitions and uses of variables in the program. To
illustrate the data flow testing approach, assume that each statement in a program is
assigned a unique statement number and that each function does not modify its
parameters or global variables. For a statement with S as its statement number,

DEF(S) = {X| statement S contains a definition of X}

USE(S) = {X| statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set-is based
on the condition of statement S. The definition of variable X at statement S is said to

contains no other definition of X.
A definition-usc (DU) chain of variable X is of the form [X, S, S’], where S
and S’ are statement numbers, X is in DEF(S) and USE(S’), and the definition of X in

statement S is live al statement S°.

Loop Testing: Loops are the cornerstone for the vast majority of all algorithms

implemented in software.

be Jive at-statement-S~if-théere-exists a-path- from statement-S--to- stafémient §” that

e o

e

E——— =

it o it

cony ':p“;lw Unstruciured
Loops

es exclusively on the Vahdl -

testing technique that focus
n be defined: simple loops

fferent classes of loops ca

{ructured loops.) &, 15
f tests can be applied to simple loops, where

able passes through the loop.

Loop testing is a white-boX
of loop constructs. Four di
concatenated loops, nested loops; and uns
> Simple Loop: The following set 0
n is the maximum number of allow
o Skip the loop entirely. _
Only one passes through the loop.
Two passes through the loop.
m passes through the loop where m<n.
n-1, n, n+1 passes through the loop.

d the test approach for simple loops to-nested
s would grow geometrically as the level of

loops, the number of possible test
nesting increases. This would result in an impractical number of tests. The

following approach will help to reduce the number of tests: :
o Start at the inner loop. Set all other loops to minimum values. i
o Conduct simple loop tests for the innermost loop while holding the
outer loops at their minimum iterationr parameter values.
' o Conduct tests for the next loop, but keepingall other outer loops at|*
e fos e g inimumrvalues and-otlier nested loops-to-typical values.
o Continue until all loops have been tested.

00O

> Nested Loop: If we were to exten

> Conecatenated Loop: Concatenated loops can be tested using the apprbach
defined for simple loops, if each of the loops is independent of the ather.
However, if two loops are concatenated and the loop counter for loop 1 is used
as the initial value for loop 2, then the loops are not independent. When the
loops are not independent, the approach applied to nested loops 1s

recommended.

> Unstructured Loop: Whenever possible, this class of loops should be

ving

pPapoe |78

g, Expluin black box testing? iE
|

A, Black-box testing, also entled behavioral testing, focuses on the functional il

requirements ol the sollware, i g
| 16t
i

Black-box testing attempts to find errors in the following cutegories: il
(1) lncorreet or missing functions, |
(2) Interface errors, *

(3) Lrrors in datastructures or external database access, i
() Behavior or performance errors, and '
(5) Initinlization and termination errors. i
Unlike white-box testing, which is performed carly in the testing process, black-box i
testing, tends to be applied during, later stages of testing, i

Graph — Based Testing Methods: The first step in blnck-box testing is to understand i

the objeets that are modeled in software and the relationships that connect these
objeets. Oncee this has been accomplished, the next step is to define n series of tests "'

a

that verify “all objects have the expeeted relationship t6 one another™.

Nrochad link
fiok nighy

Undroctnd find Nods walght

k)

ParolN liaka

W

“Now b
2 ey,
ol

Abau selxe gonwabs

: Doawmoat
yindow

fgeooroten tiaw < 1.01x)

Alows odifag of

Attdbutey:
Sontdimeaskon: defokt gefng
ot prafronc ol
Baclgrovnd cokor: white
Tox! cobor: daloult eoloe
o prafonncoy

Is roprosented o3
Contalny

B

Reference (A) — Nodes are represented as circles connceted by links that take a i
number of different forms. A directed link (represented by an arrow) indicates that a
relationship moves in only one direction. A bidirectional link, also called a symmetric

e ETINEIANE S L

s . tions. Parallel links are used
link, implies that the relationship ap{)hcs in bogi;j];zjctggwceﬂn graph nodes.
when a number of different relationships are esta

Reference (B) —
Object #1 = newFile (menu selection)

Object #2 = documentWindow
Object #3 = documentText

i .rates a document window. The
Referring to the figure, a menu select on newFile genera

node weight of documentWindow provides a list of the window attributes that are to

be expected wheri the window is generated. The]i:}k weigl?t indn;:a;;:-s }tll;at the wmdo-w
must be generated in less than 1.0 second. An undirected link establishes a symmetric

relationship between the newFile menu selection and docn:lmentTe::fI,‘ a::d parallel
links indicate relationships between documentWindow and document 1 ext.
efinition of all nodes and node weights. Once

d link weights should be established. The
and reflexive relationships are

Graph-based testing begins with the d
nodes have been identified links an
transitivity of relationships, symmetry ©

tested here.

f relationships,

Equivalence Partitioning: Equivalence partitioning is a black-box testing method
into classes of data from which test cases

that divides the input domain of a program 1
can be derived. Equivalence classes may be defined according to the following

guidelines:
i. If an input condition specifies a range, one v
classes are defined. .
ii. If an input condition requ
equivalence classes are. defined. .
iii. If an input conditian, _specifres.g_;pembp;_g_f a _5}_3!;.2_“_“_3 v,g.h:(-i'_.gx_n_d._gpq i_I,!Y_aIid

equivalence class are defiied. ;o
iv. Ifan input condition is Boolean, one valid and one invalid class are defined.

alid and two invalid equivalence

ires a specific value, one valid and two invalid

Boundary Value Analysis: A greater number of errors occur at the boundaries of the
input domain rather than in the “center.” It is for this reason that boundary value
analysis (BVA) has been developed as a testing technique. Guidelines for BVA are
similar in many respects to those provided for equivalence partitioning:

i. If an input cqndilion‘speciﬁes a range bounded by values a and b, test cases
should be designed with values a and b and just above and just below a and .

RIS B et o

- — = .
SN OSNIITRS 2D oot 30 OErTrR TRt T

- h-

O valoas It omes sl

SECImE aenters,. ViEdnes

. e m -
i T BSOSO

- g

CEN. 30 ik, a8 2

= o9 Py —_—
3 ma vy Ty —y =
A b o —
. - = - - TS W T
Sy o Sy,
—— ey, =
. e e w8 U e

. - = -
e Vi) '“'-"-—‘-‘: O i . oSS
= -
LS,

e et e e
R

S s =
20538 Wilam = sQIitweEre

213 mom camyvansanal
— e WA ea ek Sl SR

OO SN R D X O

—sa - = 2 »
Sy of amor When sadundet

% ; M,‘ - e
LN, I3 OIVSODOG S
e :

e a s i B e T - - - T . - - = | o ~
DT AT T —_——— - P -t R — Prmyng SN,
o3 = SFSSLGCIOSR. DO VITHOR! N ISSnd odemen ey with the s values e
A e e e R e T e
m—d e VeARlS SN SN I DEELKT et Aw Laabn™~
B R | (Rt e i e ik lams Sommy e

SOOI OOORSIETOY. Lo OO GO W

e
AT IR

Orthogonal Arrev Testine: Omhooons] sy tastime con e arclind 10 poohiams i
Orthogons! amey 2 b I

QTIRNRYELY OTTIN SR
5 e a s L)
SN CONSRRET A sHstem ha

N i
2 has ihrss sl xR

.@

COne input item at o time

N

LY erthogonal array

“c e R s S, T
TooEmEs (. 2 SXNIT

ettt e ¢ &

|
!
|
[
]

o ey TR SRR R B R Immmmr

Page |81

function for a fax application.

To illustrate the L9 orthogonal array, consider the send
ach takes on three

Three parameters, P1, P2, and P3, arc passed 1o (he send function. E
discrete values. For example, P1 takes on values:

P1=1, send it now

P1 =2, send it one hour later

P1 =3, send it after midnight . woii | d
P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other sen

functions. 1f a “one inpul item at a time” {esting strategy were chosen, the following
sequence of tests (P1, P2, P3) would be specified: (1,1, 1), (2,15 1), (3,1, 1),(1,2,1),
(1,3, 1), (1, 1,2),(1,T,3) and so on.

ok ok stk ok o ok ok ok ok ok ok kR bk o ok ok ok Rk

*#******************#***#**************

9, Explain Integration testing?
A. Integration testing’ is a sysiema ‘ :
architecture while at the same time conducting tests to uncover errors associated with

interfacing. The objective, is 10 take unit-tested components and build a program
structure that has been dictated by design. The following are the integration testing

tic technique for constructing the software

strategies:

Top — Down integration: Top-down integration testing is an incremental approach to
construction of the softwarc architecture. Modules are integrated by moving
downward through -the control hierarchy, beginning with the main control module
(main program). Modules subordinate to the main control module are incorporated

into the structure in cither a depth-first or breadth-first manner. The depth first
al modules where as breadth first integration integrates

integration integrales’ vertic
horizontal modules.

1] The integration process is performed

M1 :)
in a scries of five steps:

Mz | a) ’Ma_ | for all- components directly
: subordinate to the main control
: module.
y 3] Depending on the integration
M5 | MGE M7 approach selected (i.e., depth or

i e T breadth first), subordinate stubs are
replaced one at a time with actual
components.

M8

- =
~ e 5 . i
/r S 2] The main control module is used as
! ™ a test driver and stubs are substituted |

e i

4] Tests are

5] On completion of

T cach set of (esgs ll:ls Seelion) may be conducted o
A o e . >) C A Y L} 2 .
c stub is replaced With the rey] ehsure that new errors have not been
componen{. { mtroduced
Bottom — Uy intcurntion-

im’egr_qr.r'ou testing, as its nan
begins - construction and ¢
atomic — modules. A
integration
implemented w

Page |82
conducteq

n a8 eae
nt is mtegrateq, !

compone)| Roprece: ; .
pong 0] I\Lgl ¢ssion lesting (discussed later in

Bottom-yp
1€ implies,
sting with
bottom-p
Stralegy may be
ith the following steps:

1] Low-level components gre
combined into clusters
(sometimes called builds) that
perform a specific software sub
function,

2] A driver (a control program for ol
lesting) is written to coordinate
test case input and output,

3] The cluster is tested.

4] Drivers are removed and
clusters are combined moving
upward in the program structure.

Chater 3

Chahe 2

Regression Testing: Each time a new module is added as part of integration testing,
the software changes. New data flow paths are established, new 1/0 may oceur, nm.l
new.control logic is invoked: These changes ‘may-cause problems avith: functioiis: tiat
previously worked flawlessly. In the context of an integration test strategy, regression
Zesting 1s the re-exccution of some subset of tests that have already been conducted.

The regression test suite (the subset of tests o be executed) contains three different

classes of test cases: ‘ . o

1] A representative sample of tests that will exercise all software functions. ‘

2] Additional tests that focus on software functions that are likely to be affected
by the change. y

3] Tests that focus on the softwvare components that have been changed.

Smoke Testing: Smoke Testing is an integration testing approach used whcn. ‘Shrink
— Wrapped" software products are being developed. These products are designed to

D = B N s —‘w

Page e

pacing mechanism for time — critical projects. The smoke test encompasses the
following activities: . ey 68 -
] S;ﬂwarc components that are translated into code are integrated into a,bmid",
A build includes data files, librarics, reusable modules and engineereq
components. . . .
2. A serics of tests is designed to exposc errors that will keep the build from
. . ing i tion.
properly performing its func) L .
3. The build is integrated with other builds and entire product is smoke tested
daily.
:t*nsnttytu1't*utwnu1:snun**u*H**********************‘**'**""*!
10. Explain Validation testing? ‘ il >
A. Validation testing begins after integration testing, when individual components are
tested, the software is completely assembled as a package, and interfacing errors haye
been uncovered and corrected. Validation succeeds when software functions can pe

reasonably expected by the customer.

Reasonable specifications are defined in the Soffware Requirements Specification —
document. It contains the section validation criteria. The information in validation
criteria is basis for validation testing.

Validation Test Criteria:

Software validation is achieved through a series of tests. A test procedure defines specific
test cases that are designed to ensure that all functional requirements are satisfied, all
behavioral characteristics are achieved, all content is accurate and properly presented,

all performance requirements are attained, documentation is correct, and usability and
other requirements are met,

Afler each validation test, one of two possible canditions.exists: .

1. The function or performance characteristic conforms to specification and is
accepled. (OR)

2. A deviation from specification is uncovered and a deficiency list is created.

Alpha and Beta Testing: Most software product builders use a process called alpha
and beta testing to uncover errors that only the end user seems able to find.

* The Alpha test is conducted at the developer’s site by a customer. This test is
conducted in a controlled environment.

The Beta test is conducted at one or more customer si

tes by the end user of the
software.

3

o R R R OR R OK oK K Kk
***********nnnuunnﬂnunnuununuut"

11. Explain System testing?

A. System testing is actually a series of different

e tests whose primary purpose is to
fully exercise the computer-based system,

Recovery Testing:

. I.\flany computer-based systems must recover from faults and
resume processing within

; a pre specified time. In some cases system must be fault
tolerant; that is processing faults must not cause overall system function to ccase.

A e
Recovery testing is a system test that forces the software to fail in a varicty of ways

and verifies lh{tl recovery is properly performed. If recovery is automatic (performed
by the system itself), re initialization, check pointing mechanisms, data recovery, and

lll.wzoln-umc-lo-rcpan' (MTTR) is cvaluated to determine whether it is within acceptable
mits.

Sccurity Testing: Any computer-based system that manages sensitive information

which causes illegal penetration (gain access by force). Penetration spans a broad
range of activities:

e Hackers who attempt to penetrate systems for sport,
* Dissatisfied employees who attempt to penetrate for revenge,
L]

Dishonest individuals who attempt to penetrate for illicit personal gain.

Security testing attempts to verify that protection mechanisms built into a system
which protects it from improper penctration, :

Stress Testing: Earlier software testing steps resulted in thorough evaluation of
normal program functions and performance. A -variation of stress testing is a
technique called sensitivity testing. In some situations (the Nidst -common - veeue i
mathematical algorithms), a very small range of data may cause extreme and even

incorrect processing. Sensitivity testing attempts (o uncover these errors.

| Performance Testing: Performance testing is designed "to test the run-time
performance of software within the context of an integrated system. Performance
testing occurs throughout all steps in the testing process. Even at the unit level, the
performance of an individual module may be assessed as tests are conducted.

Performance tests are ofien coupled with stress testing and usually require both
hardware and software instrumentation.
e o 3 ok ok o ok sk ok ok K K K K K K K ok Rk 3k R R O R R o ko oK ok ok Sk ok ok ok ok o oK oK oK 3 3K o o o ok ok o ok ok ok oK

Page |84

restart are evaluated for correctness. 1f recovery requires human intervention, the |

. et tha, a,

e T

Page |gs]

............

L2 Eaplain Reverse engineering? | ‘
A. Revwrse engineerine 18 the neproduction ol another manutacturer's product

tollowing detalad exanumation of Hs Consuueion or composthon.

E;L'\\'l‘_\‘{' cnl\:“hﬁclin!: can oeatraat L]\'Silf'l'l l'l'll..l"llﬂéllit“l lrom source L‘nd{.“ l]“l lhc
aAstruction Jevel the conlerencess of the documentation, and the directionaliny of the
Process,

The ahsorracnion level of a reverse engineering process and the tools can be extracte

from sonrce code. The abstraction level should be as high as possible. Ag the

atn
structure mlormation, object maodels, data or control flow models, and centity

abstraction level morcases, voir are proy iwed w h mlormation (program amd g

relationship madels) that will allow casier undenstanding ot the program,

The completencss of a reverse engineering process refers to the level of detail that is
provided at an abstaction level

].I‘ th: “.':_..s-:h“.._;!-..-‘. ~‘1' lh‘.‘. eV Crse (‘]‘l?_ulcc{i“:: i\r\\\"csh i‘t ﬂlh,‘-\\';l_'\'. ;1”. i.“t‘l"lnl-"l.liﬂn
extracted trom the source code 1s provided to the sottware engineer who can thep Use
it duning any mamtenance activity. I directionality is two-way, the information is fed

W0 a reengineenng tool that attempts o restructure ot regenerate the old progr,

ey s
L

-

Page |88

edoce

Reverse enginecring to understand

different levels of abstraction and is the

ata: Reverse engineering of data occurs at
first reengineering task, At the program level,

must oflen be reverse engineered. At the svsrer level,
glodal data strueures are oflen reengineenad.

intemal program data struetares

Reverse engineering techniques for intemnal
_ definition of classes of objects. The data
arzanmization within the, code identifi

¢ Internal Data Structures:
program data focus on the
; e abstract data ypes. For example, record
e - Sluetnres fikes: Hstsy and oty data structures oflen provide an initial indicator
of classes,

+ Data Structure: Regandless of its logical ontanization and physical structure, a

database allows the definition of data objects and supports some method for
establishing relationships among the objects. O

Reverse engineering to understand processing: Reverse engineenng to understand
processing begins with an attemapt 1o understand and then extruet procedural
abstractions represented by the source code. To understand procedural abstractions,

the code s analyzed at varving levels of abstraction: system, program, component,
pattem, and statement.

p L S ———

T bt L i

i

o T S

T ———————

e e

- TS s

T ema

Al liat At el N AN O I A L

3 - equired for com
Reverse engineering user_interfaces: GUIs have lmcmlnc rc:ilcvc]o o 0rﬂuter
based products and systems of cvery lype. Ihcrcforc,ft 1e T incerin{; o o UBSEI_
interfaces has become one of the most common t)'pc..s of reeng . But
erse engineering should oceur.

before a user interface can be rebuilt, rev

o e ok ok ok o ok e ok ok o ol ok ok
t**t*#n:******t*v*Hc***********t************** ok ok %

: e
13. Explain Software Reengincering:
A. An application was served fhe business nceds of a company for 10 or 15 years,

durine that time it has to be coirected, adapted and cnlmnc?d many times. Sojhfrare
mm‘n{:z'nance is so difficult because 60% Of. ll_lt.', software is enhanced every time,
Software maintenance is described by four activities:

e Corrective Maintenarice '

e Adaptive Maintenance

e Perfective (or) Enhancement Maintenance

e Preventive Maintenance (or) Reengineering

A software reengincering process model: ‘ . _
Reengineering of information sysiems 15 an activity that will absorb

information technology resources for many ycars. L
Forward Invaniary
engincering’ anahlals

Document
reshiucturing

cla
reshucturing

codd

i Revorie
reshuciuring

enginoering

Software reengineering activities: The reengineering paradigm shown in above
figure is a cyclical model. This means that cach of the activities presented as a part of
the paradigm may be revisited.

* Inventory analysis: Every software organization should have an inventory of
all applications. The inventory can be nothing more than a spreadsheet model
containing information that provides a detailed description (e.g., size, age,

business criticality) of every active application. The inventory should be
revisited on a regular cycle.

ey

;UIs have become required for computer
e. Therefore, the redevelopment of user
nmon types of reengineering activity. By,
> engineering should occur.

R R EREREERRRRAAAAAAAA A A e

eeds of a company for 10 or 15 Yyears,
d and enhanced many times. Software
the software is enhanced every time,
ities:

is an activity that will absorb

Inventory
analysis

Documont
rostructuring

Reverse
enginoering

2 paradigm shown in above
tivities presented as a part of

hould have an inventory of
e than a spreadsheet model
escription (e.g., size, age,
The inventory should be

A H oo e sk ok sk ok ok ok ok sk ok ok sk ok ok ok o ok o

Document l{('hll'llt'(lll'illf':

« Cre

ating documc ntation is far (0o time consuming
must be updated, but
limited resources,

Documentation your organization has
* The system is business critical and must be fully redocumented,
Crm reverse engineering has its origins in the
ssembles a competitive hardware product in
or’s design and manufacturing “secrets.”
re is quite
gN recovery. Reverse er
» and procedural des;

Reverse Engineer

hardware world.

Ihe ¢

2
A company ¢
an effort to understand its

Reverse en
proc

5 competif
'nm'xin;', for softwa
of design
architectural]

similar, Reverse engineering is a
gineering tools extract data,
n information from an existing program.

* Code I\’m'/rm'Im'ing: The most common type of reengineering is
code restructuring, The source code is analyzed usin'g
restructuring tool, and the internal code documentation code is
updated

.

Data Restructurin Data restructuring is full scale

begins with a reverse engineering,
Current data architecture is dissected and necessary data models
are defined.

reengineering activity. It

Forward Reengineering: Applications would be rebuilt using an
automated “reengineering engine.” ram would be
, and then regenerated
aspects of software quality.

Ak o ok Ok ok o ok ok ok ok sk ok ok ok ok ok ko ok ok ok o

* The old pro
fed into the engine, analyzed, restructured
in a form that exhibited the best
3 o o o o ok o o sk s ok o ok o ok

CASE Tools

14, Explain CASE tools? L.

A. CASE stands for Computer Aided Software Engineenng. It means developmeny
and maintenance of software projects with help of various :}utomamd software tools,
CASE tools are set of software application programs, which are used to automae

engineers to develop software system.
Th
De :
tools, Database Management tools, Documentation 1ools etc.

Components of CASE tools: CASE tools can be broadly divided into the follov.ing
parts basad on their use at a particular SDLC stage:

. Central Repository - CASE tools require 2 central TCPUSiEUTY. Whi_t:h can serve
as a source of common, integrated and consistent information. Centra]
repository 1s a central place of storage where product SP?Ciﬁcalions,
requirement documents, related reports and diagrams, other useful information
regarding management is stored. Central repository also serves as data

Types of CASE tools: The following are some of the CASE tools:

SDLC activities CASE tools are used by software project managers, analysts and

dictionary.
« Upper Case Tools - Upper CASE

= \ tools are used in planning, analysis
3 and design stages of SDLC.
; 3 « Lower Case Tools - Lower CASE
> z tools are-used in implementation,
M = testing and mdintenarice.

. = >-;;j e ==woo- Integidiled -~Cdse Tools -

e Integrated CASE tools are helpful|

5 ? in all the stages of SDLC, from
z = Requirement gathering to Testing
o and documentation.

ere are number of CASE tools available to simplify various stages of Software '--13.‘_“- 3
velopment Life Cyele such as Analysis tools, Design tools, Project management| 3

.

Page |20

1. Diacram toolc These
&

control flow amon

ools are :
o ; used 1o represent system components, data and
£ Vanous softwar

praphical form ¢ components and system structure in a

-

& Fadal:
2. frocess Medeling Tools Process modaling
rovess model, which is usad 1o d g

- 15 method to create software |
| |
o

Svelop the software. Process modeling tools |
s 3 process model or modify it as per the
oitware product For example, EPF Composer '.

-l =
¢ip the manasers 10 choose
requirement of s

-

3. Proierct Mernovemer:

Tools: These tools are used for project planning, cost and

effort estimation, project scheduling and resource planning.

Project management tools kelp in storing and sharing project

- - '. = - L] - 1
| miormmation in rzal-time throughout the organization. For example, Creative
. Pro Office, Trac Project, Basecamp.

4. dralvsic Tools. Thess tools help to gather requirements, automatically cheek
for any inconsistency, inaccuracy in the diagrams, data redundancies or
erronsous omissions. For example, Accept 360, Accompa, Case Complete for
requirement analysis, Visible Analvst for total analyvsis

S. Design Tools: These tools help software designers to design the bloek structure
of the software, which may further be broken down in smaller modules using
refinement techniques. These tools provides derailing of cach medule and
interconnections ameng modules. For example, Animated Software Design

L=

6. Programmire Tools. These tools consist of programming environments like
IDE (Integrated Development Environment), in-built modules hbmry and
simulation tools. These tools provide comprehensive aid in building software

: product and include features for simulation and testing. For example, Cscope
to search code in C, Eclipse

e

7. Mairtenance Tools, Software maintenance includes modifications in the
software product afier it is delivered Automatic logging and error reporting
techniques, automatic error tickel gencration and root cause Analysis are few
CASE tools, which help software orpanization in maintenance phase of SDLC.
For example, Bugzilla for defect tracking, HP Quality Center.

L e R R e R R e e S R R R R

T e R T T B T T s o B e

TS

@it ®l

e S

- Page |91

- . .) 9
15. Explain Project Management lpuls. it taske i moderh
A. Project management is one ol the high-respons

a project successfully, the project manager or the

a4 set of tools. These tools can be
Is that can be adopted for project

organizations. In order to excecule

project management team should be supported by
specifically designed tools or regular productivity (00

management work.

at should be managed by a project manager
should have a project plan. The project plan details many aspects of the project

to be executed.First of allit describes lhc. :‘lp!)rtl:‘lt!l‘ or strategy used .f'or
addressing the project scope and project objectives. I'he resource allocation
and delivery schedule are other two main components of lf-lc project plan.
e DMilestone bilcclclisl: This is one of the best tools the prcuct':t manager can use
to determine whether he is on track in terms of the]’J.YO_!CCI progress. The
project manager can use a simple Excel template to do this job. The '11|’e§10r16
checklist should be a live document that.should be updated once or twice a
week. .
e« Gantt chart: Gantt charts are universally used for any type of project from
are development. Although deriving a Gantt chart looks
most complex tasks when the project is involved in

e Project Plan: All the projects th

construction to softy
quite casy, it is one of the
hundreds of activities.

« Project management soffwares: MS Project can be used as a standalone tool
for tracking project progress or it can be used for tracking complex projects
distributed in many geographical areas and managed by a number of project

managers.

« Project reviews: In project reviews, the project progress and the adherence to
the process standards are mainly considered. Usually, project reviews are
accompanied by project audits by a 3rd party (internal or external).)

¢ Deliverv reviews: Usually, a 3td.party team or supervisors (intgrnal) congduct | |
the delivery review and the main stakeholders of the project delivery do
participate for this event.

e Score Cards: When it comes to performance of the project team, a scorecard
is the way of tracking it. Eyery project manager is responsible of accessing the
performance of the team members and reporting it to the upper management
and HR.

A. Software analysis and design includes all activities, which help the transformation
of requirement specification into implementation. Requirement specifications specify

kkkkkkkkkkdk bk k kR E R F bk kR bk ok ok bk ok ek h ok ke kkkkkk ko kb kb ok ok sk ok ok

16. Explain analysis and design tools?

—

44]
4
"
(1]
o
(]

all hnetional and hon-functiong) o

o3 Xpectations fic 2 S0 e
SPOCHICIONS come iy he shape ‘wrll‘ clahions from the software. These requiremen

NP O human readable
A Nothing to do. T

h-': r\‘!!o\ 1 o are 1oy ey - I Py - 3=
nsad by sofware designers: VIRg are few analysis and desizn w00k

which a compater |y

1) Data Flow Dige . .
e _‘_....-—__.___\g_____mm. Data Now diagram is graphical ren csantation of Now of du
Wan intormation system, 1 js ¢ e 3

“apable of depicting incomi g mng
2 Incoming WL, duizong coo
Now and stored data. l e
nes OF DED: Data Rlawe 1o
INpes o DED: Data Flow Diagrams are either Losjcal or Physical. ~
« Logieal DED - This ty
of data in the system,
moved between differe
« Physical DED -
mplemented i (h

pe of DFD s

| S -

0t entites.,

———

This type of DFD shows how the data flow Iz =acnually
¢ system. 1t is more specific and close 1o the implementztion.

DED Components: DFD can represent Source, destination, storage =nd flow of datz
using the following set of components - -

" Data Figw

_—
s T

Data Store

Euntities - Entities are source and destination of information data. Enttas arce
represented by rectangles with their respective names.

Process - Activities and action taken on the data are represented by Circle or
Round-edped rectangles. -

Data Storage - There are two variants of data storage - it can either be
‘ represented as a rectangle avith absence of both smaller sides or s an open-
1 sided vectingle with only one side missing,

Data Flow - Movement of data is shown by pointed arrows. Data movement is

and understandable documants, 10 ¢

3 concentrates on the system process and flow
tem. For example in a Banking software system, how datz = |

. —

I ——

shown from the base of arrow as its source towards head of the smow a3

LS,

destination, S

2) Structure Charts: Structure chart is a chart derived from Data Flow Diagram. 1t |

represents the system in more detail than DED. It breaks down the entire svstem into
lowest functional modules, describes functions and sub-functions of each module of
the system to a greater detail than DFD. Here are the symbols used in construction of
structure charts -

!
e

o L Fackt o St O LM AT § S e

e — s

Page |93

-

Condilion

Labols

= Wlod

um represents the

3) HIPO Diagram: HIPO (Hierarchical Input Process Output) diagr:
hierarchy of modules in the software system. Analyst uses HIPO dmgmm in order to

obtain high-level view of system functions. It decomposes functions into sub-
functions in a hierarchical manner. Both parts of HIPO diagram, Hierarchical

presentation and IPO Chart are used for structure design of sofiware program as well

as documentation of the same. -~ . |

4) PSEUDO Code: Pseudo code is written more close to programming language. It

may be considered as augmented programming language, full of comments and
dBSCTJplIOHS ‘Pseudo code avoids variable declaration but they are written using some
actual programming language’s constructs, like C, FORTRAN, and Pascal etc.

5) Decision Tables: A Decision table represents conditions and the respective actions
to be taken to address them, in a structured tabular format. It is a powerful tool to
debug and prevent errors. It helps group similar information into a single table and
then by combining tables it delivers easy and convenient decision-making.

6) Entity Relationship Model: Entity-Relationship model is a type of database
model based on the notion of real world entities and relationship among them. We can
map real world scenario onto ER database model. ER Model creates a set of entities
with their attributes, a set of constraints and relation among them. ER Model is best
used for the conceptual design of database. ER Model can be represented as follows:

S e a2 L L 1 2

paﬂt’ lnnii

FTERRRRRRERRL SRR
RERRRRARRRRRERC R DR EREROR AR SRS RN NR DR

Vo

o

. Sl

.+ AT, LA
AR S s et | g8 15
.

.
'
.
L]
f-
.
'
1
4
- -- L]
.
.
b
Ve
* .
'
.
H
'
. - --
]
H
'
.
¥
.
.
.
s
!
1
i
]
.
1
! :
i
.
.
H
)
-I
H
"
5
'
__ i
H
PR
] .
H .
'
tn
.
' s
’
s
]
v
Y
’
H
y
.
'
'
.
.
'
.
y . i
L]
.
- -
.
h
.
v ‘

