Code: 031101

B.Tech. 1st Semester Exam., 2014

BASIC ELECTRICAL ENGINEERING

Time: 3 hours Full Marks: 70

resistance 43R then each

Instructions:

- (i) All question carry equal marks.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option (any seven) :
 - (a) The voltage V in the figure given below is

- (i) 10 V —
- (ii) 15 V
- (iii) 5 V
- (iv) None of the above

- (b) The 'nodal analysis' method is based on
 - (i) KVL and Ohm's law
 - (ii) KCL and Ohm's law -
 - (iii) KCL and KVL
 - (iv) KCL, KVL and Ohm's law
- (c) If each branch of a delta circuit has resistance $\sqrt{3}R$, then each branch of the equivalent star circuit has resistance

(i)
$$\frac{R}{\sqrt{3}}$$

- (ii) 3R
- (iii) 3√3R
- (iv) $\frac{R}{3}$
- (d) In the network shown in the figure given below, the effective resistance faced by the voltage source is

- (i) 4 \Q
- (ii) 3 Ω -
- (iii) 2 Ω
- (iv) 1 Ω

- (e) The power in a series R-L-C circuit will be half of that at resonance when the magnitude of the current is equal to
 - (i) $\frac{V}{2R}$ —
 - (ii) $\frac{V}{\sqrt{3}R}$
 - (iii) $\frac{V}{\sqrt{2}R}$
 - (iv) $\frac{\sqrt{2}V}{R}$
- (f) The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in the figure below is

- (i) $L_1 + L_2 + M$
- (ii) $L_1 + L_2 M$
- (iii) $L_1 + L_2 + 2M$
- (iv) $L_1 + L_2 2M$

(g) The value of current I_o for the circuit given below is

- (i) 4∠0° A
- (ii) 2·4∠-90° A
- (iii) 0 · 6∠0° A
- $(i\dot{v})$ -1 A
- (h) Three identical resistances connected in star, carry a line current of 12 A. If the same resistances are connected in delta across the same supply, the line current will be
 - (i) 12 A
 - (ii) 4 A
 - (iii) 8 A
 - (iv) 36 A
- In two-wattmeter method of measurement, if one of the wattmeters reads zero, the power factor will be
 - (i) zero
 - (ii) unity
 - (iii) 0·5
 - (iv) 0.866

- (j) The moving coil instrument has resistance of 3 Ω and reads 150 mA. The resistance needed to enable it to be used as voltmeter and reading up to 15 V is
 - (i) 100 Ω
 - (ii) 95 Ω
 - (iii) 99 Ω
 - (iv) 97 Ω ~
- 2. (a) What do you mean by linear and non-linear elements? Explain Kirchhoff's law.
 - (b) (i) Find the voltage at Node 2:

(ii) Transform into equivalent delta network:

- 3. (a) (i) State and explain superposition theorem. Can it be applied to power calculation?
 - (ii) Find the current in 1 Ω resistor:

- (b) (i) State and explain Thevenin's theorem. How does it simplify a circuit?
 - (ii) Find the current through 3 Ω resistor:

- 4. (a) Define the following:
 - (i) RMS value
 - (ii) Average value
 - (iii) Peak factor
 - (iv) Form factor of sinusoidal wave
 - (b) Find average value and RMS value of the waveform shown below:

- 5. (a) (i) A voltage $V(t) = 177 \sin (314t + 10^{\circ})$ is applied to a circuit. It causes a steady current to flow, which is described by $i(t) = 14 \cdot 14 \sin (314t 20^{\circ})$. Determine the power factor and average power delivered to the circuit.
 - (ii) Determine current through $3 + j4 \Omega$ impedance:

AK15-2930/107

(Turn Over)

(b) Determine the Z_L (load) required to be connected in the network for maximum power transfer. Determine the maximum power drawn:

6. (a) When is a three-phase system said to be balanced?

Define the following:

- (i) Phase voltage
- (ii) Phase sequence
- (iii) Phase current
- (iv) Line voltage and line current
- (b) Three coils, each having resistance and inductance of 8 Ω and 0.02 H respectively, are connected in star across a 3-phase, 230 V, 50 Hz supply. Find line current, power factor, power reactive volt-ampere and total volt-ampere.
- 7. (a) Write any four applications of magnetic circuit.
 - (b) Derive an expression for the energy stored in the magnetic field in terms of energy stored per unit volume.

AK15-2930/107

(Continued)

- 8. (a) Describe the basic operation of PMMC (permanent magnet moving coil) instrument.

 Develop the torque equation for PMMC instrument and show that its scale is linear.
 - (b) A PMMC instrument with FSD (full-scale division) of 100 μA and a coil resistance of 1 kΩ is to be converted into a voltmeter. Determine the required multiplier resistance if the voltmeter is to measure 50 V at full scale:

 R_s —Multiplier resistance R_m —Coil resistance

- 9. Write short notes on any two of the following:
 - (a) Norton's theorem
 - (b) Phasor diagram
 - (c) Active and passive elements
 - (d) Eddy current and hysteresis losses

Code: 031101