

Seat	
No.	

F.E. (Semester – I) (2008 Course) Examination, 2012 APPLIED SCIENCE – I (Chemistry)

Γim	e : 2 Hours	Max. Marks : 5	50	
	3) Black figures to the 4) Use of logarithmic	ust be drawn wherever necessary. he right indicate full marks. c tables, slide rule, Mollier charts, electronic and steam tables is allowed .		
1.	a) What are the type of symmetries fo	r crystals? Explain them for a cubic crystal.	7	
	b) i) Draw following planes in a cubic system; a) 1 0 0 b) 1 1 1			
	ii) Define:			
	a) Atomic packing factor			
	b) Co-ordination number			
	c) Radius ratio		_	
	d) Unit cell		6	
	c) Derive Bragg's law of diffraction.		4	
	OR			
2.	 a) What is a liquid crystal phase? St of liquid crystal. 	ate types of liquid crystals and applications	7	
	b) i) Show that radius ratio for ionic of	crystal with co-ordination number 4 is 0.225.		
			4	
	ii) Explain electrical conductivity ir	n polythiophene.	2	
	c) Compare: SC, BCC and FCC un	nit cell regarding :		
	i) Co-ordination number	ii) AP		
	iii) Atomic radius i	v) Atoms per unit cell.	4	
		P.T.O)_	

[4161] - 102-C

3.	 a) How are the pH of titration mixture calculated at various stages during strong acid strong base titration? b) i) 20 ml of standard solution of 0.04 M KCl takes 35.5 ml of AgNO₃ from burette, during standardization of the AgNO₃. 100 ml of water sample requires 12.5 ml of the AgNO₃ solution. Calculate chloride content per litre in the given water sample. ii) 50 ml of a solution containing Ca⁺⁺ is titrated against 0.035 M disodium EDTA from burette to get the end point 20.4 ml, in the complexometric titration. Calculate the amount of Ca⁺⁺ ions per litre of the solution. c) Explain the different indicators used in direct titration method. 	6 4 2 4
4.	 a) What is precipitation titration? Explain Mohr's method for determination of CI- ions. b) i) Find the pH of the solution when 10 ml of 0.2 N HCI is added to 25 ml of 0.1N NH₄OH in a titration. ii) 50 ml sample water containing Mg salts, when titrated with 0.05 M EDTA requires 41.5 ml for the end point. Calculate Mg ions present per litre of the water sample. c) Define: i) Titrant ii) Titrand iii) Indicator iv) Equivalence point. 	6 4 2 4
5.	 a) What is addition polymerization? Explain cationic mechanism with example. b) Give synthesis, properties and applications of any two: i) Poly Vinyl Choride (PVC) ii) Acrylonitrile butadiene styrene (ABS) plastics iii) Styrene – butadiene rubber (SBR)/ GR-S. iv) Poly propylene (PP). c) Write a note on liquid crystal polymers. OR 	7 6
6.	 a) What is Glass transition temperature? What are the factors affecting it? State its importance. b) Distinguish: i) Addition and condensation ii) LDPE and HDPE c) Give preparation, properties and uses of Epoxy resin. 	7 6 4

B/I/12/