

CS3391 - Object Oriented Programming

Unit – 1: INTRODUCTION TO OOP AND JAVA

Chapter
No.

Topic

Page No.

1.1 Overview of OOP 1

1.2 Features/Characteristics of OOP 4

1.3 Java Buzzwords 8

1.4

Overview of Java 11

1.4.1: Basic Java Terminologies 12

1.4.2: Java Source File Structure 14

1.5 Java Data Types 19

1.6 Java Variables 21

1.7 Arrays 24

1.8 Operators 32

1.9 Control Flow Statements 42

1.10 Defining Classes and Objects 57

1.11 Methods 61

1.12

Constructors 63

Types of Constructor 63

‘this’ Keyword 68

Constructor Overloading 70

Constructor Chaining 71

1.13 Access Specifiers 73

1.14 Static Members 75

1.15 JavaDoc Comments 79

1.16

Additional Topics 86

1.16.1: Java Comments 86

1.16.2: Java Constants 87

1.16.3: Java Identifiers 87

1.16.4: Java Keywords 87

1.16.5: Type Conversions and Casting 88

1.16.6: Garbage Collection 90

1.16.7: Using Command Line Arguments 92

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 1

UNIT 1 INTORDUCTION TO OOP AND JAVA

Overview of OOP – Object Oriented Programming Paradigms – Features of Object

Oriented Programming – Java Buzzwords – Overview of Java – Data Types, Variables

and Arrays – Operators – Control Statements – Programming Structures in Java –

Defining Classes in Java – Constructors – Methods – Access Specifiers – Static Members

– JavaDoc Comments.

 : Overview of OOP

 OBJECT ORIENTED PROGRAMMING (OOP):

Object-Oriented Programming System (OOPs) is a programming paradigm based

on the concept of ―objects that contain data and methods, instead of just functions

and procedures.

 The primary purpose of object-oriented programming is to increase the

flexibility and maintainability of programs.

 Object oriented programming brings together data and its behavior

(methods) into a single entity (object) which makes it easier to understand

how a program works.

 Features / advantages of Object Oriented Programming :-

1. It emphasis in own data rather than procedure.

2. It is based on the principles of inheritance, polymorphism, encapsulation and

data abstraction.

3. Programs are divided into objects.

4. Data and the functions are wrapped into a single unit called class so that

data is hidden and is safe from accidental alternation.

5. Objects communicate with each other through functions.

6. New data and functions can be easily added whenever necessary.

7. Employs bottom-up approach in program design.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 2

 PROCEDURE-ORIENTED PROGRAMMING [POP]:

Procedure-Oriented Programming is a conventional programming which consists

of writing a list of instructions for the computer to follow and organizing these

instructions into groups known as Functions (or) Procedures (or)

subroutines (or) Modules.

Example: A program may involve the following operations:

 Collecting data from user (Reading)

 Calculations on collected data (Calculation)

 Displaying the result to the user (Printing)

Characteristics of Procedural oriented programming:-

1. It focuses on process rather than data.

2. It takes a problem as a sequence of things to be done such as reading,

calculating and printing. Hence, a number of functions are written to solve a

problem.

3. A program is divided into a number of functions and each function has

clearly defined purpose.

4. Most of the functions share global data.

5. Data moves openly around the system from function to function.

6. Employs top-down approach in program design.

Drawback of POP

 Procedural languages are difficult to relate with the real world objects.

 Procedural codes are very difficult to maintain, if the code grows larger.

 Procedural languages do not have automatic memory management as like in Java.

Hence, it makes the programmer to concern more about the memory

management of the program.

 The data, which is used in procedural languages, are exposed to the whole

Main Program

Global Data

Procedure

1(Reading)

Local Data

Procedure
2(Calculation)

Local Data

Procedure
3(Printing)

Local Data

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 3

program. So, there is no security for the data.

 Examples of Procedural languages :

o BASIC

o C

o Pascal

o FORTRAN

 Difference between POP and OOP:

 Procedure Oriented
Programming

Object Oriented Programming

Divided Into In POP, program is divided into
small parts called functions.

In OOP, program is divided into parts
called objects.

Importance

In POP, Importance is not given
to data but to functions as well
as sequence of actions to be
done.

In OOP, Importance is given to the
data rather than procedures or
functions because it works as a
real world.

Approach POP follows Top Down
approach.

OOP follows Bottom Up
approach.

Access
Specifiers

POP does not have any access
specifier.

OOP has access specifiers
named Public, Private,

Protected, etc.

Data Moving

In POP, Data can move freely
from function to function in the
system.

In OOP, objects can move and
communicate with each other
through member functions.

Expansion To add new data and function
in POP is not so easy.

OOP provides an easy way to add
new data and function.

Data Access

In POP, Most function uses
Global data for sharing that can
be accessed freely from
function to function in the
system.

In OOP, data cannot move easily
from function to function, it can
be kept public or private so we
can c
ontrol the access of data.

Data Hiding POP does not have any
proper way for hiding data so it
is less secure.

OOP provides Data Hiding so
provides more security.

Overloading

In POP, Overloading is not
possible.

In OOP, overloading is possible in
the form of Function Overloading
and Operator Overloading.

Examples Examples of POP are: C,VB,
FORTRAN, and Pascal.

Examples of OOP are: C++, JAVA,
VB.NET, C#.NET.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 4

 : FEATURES / CHARACTERISTICS OF OBJECT ORIENTED PROGRAMMING

CONCEPTS of OOPS

OOPs simplify the software development and maintenance by providing some concepts:

1. Class - Blue print of Object

2. Object - Instance of class

3. Encapsulation - Protecting our data

4. Polymorphism - Different behaviors at different instances

5. Abstraction - Hiding irrelevant data

6. Inheritance - An object acquiring the property of another object

1. Class:

A class is a collection of similar objects and it contains data and methods that

operate on that data. In other words ― Class is a blueprint or template for a set

of objects that share a common structure and a common behavior. It is a logical

entity.

A class in Java can contain:

 fields

 methods

 constructors

 blocks

 nested class and interface

Syntax to declare a class:

Example:

2. Object:

Any entity that has state and behavior is known as an object. Object is an instance of

a class.

 For example: chair, pen, table, keyboard, bike etc. It can be physical and logical.

 The object of a class can be created by using the new keyword in Java

Programming language.

class <class_name>

{

fields;

methods;

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 5

Syntax to create Object in Java:

An object has three characteristics:

 State: represents data (value) of an object.

 Behavior: represents the behavior (functionality) of an object such as

deposit, withdraw etc.

 Identity: Object identity is an unique ID used internally by the JVM to

identify each object uniquely.

 For Example: Pen is an object. Its name is Reynolds, color is white etc. known

as its state. It is used to write, so writing is its behavior.

Difference between Object and Class

S.No. Object Class

1) Object is an instance of a class. Class is a blueprint or template from
which objects are created.

2)

Object is a real world entity
such aspen, laptop, mobile, bed,
keyboard, mouse, chair etc.

Class is a group of similar objects.

3) Object is a physical entity. Class is a logical entity.

4)

Object is created through new
keyword mainly e.g.
Student s1=new Student();

Class is declared using class
keyword
e.g.class Student{}

5) Object is created many times
as perrequirement.

Class is declared once.

class_name object_name = new class_name;
(or)

class_name object_name;

object_name = new class_name();

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 6

6) Object allocates memory
when it is created.

Class doesn't allocated memory
when it is created.

7)

There are many ways to create
object in java such as new
keyword, newInstance() method,
clone() method, factory method
and deserialization.

There is only one way to define class
in java using class keyword.

3. Encapsulation:

Wrapping of data and method together into a single unit is known as

Encapsulation.

For example: capsule, it is wrapped with different medicines.

 In OOP, data and methods operating on that data are combined together

to form a single unit, this is referred to as a Class.

 Encapsulation is the mechanism that binds together code and the data it

manipulates and keeps both safe from outside interference and misuse.

 The insulation of the data from direct access by the program is called

―data hiding. Since the data stored in an object cannot be accessed directly,

the data is safe i.e.,the data is unknown to other methods and objects.

4. Polymorphism:

 Polymorphism is a concept by which we can perform a single action by

different ways. It is the ability of an object to take more than one form.

 The word "poly" means many and "morphs" means forms. So polymorphism

meansmany forms.

 An operation may exhibit different behaviors in different instances. The

behavior depends on the data types used in the operation.

 For Example:- Suppose if you are in a classroom that time you behave like a

student, when you are in the market at that time you behave like a customer,

when you at your home at that time you behave like a son or daughter, Here

one person present in different-different behaviors.

 Two types of polymorphism:

1. Compile time polymorphism / Method Overloading: - In this method,

object is bound to the function call at the compile time itself.

2. Runtime polymorphism / Method Overriding: - In this method, object is

bound to the function call only at the run time.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 7

 In java, we use method overloading and method overriding to

achieve polymorphism.

 Example:

1. draw(int x, int y, int z)

2. draw(int l, int b)

3. draw(int r)

5. Abstraction:

 Abstraction refers to the act of representing essential features without

including the background details or explanations. i.e., Abstraction means

hiding lower-level details and exposing only the essential and relevant

details to the users.

 For Example: - Consider an ATM Machine; All are performing operations on the

ATM machine like cash withdrawal, money transfer, retrieve mini-

statement…etc. but we can't know internal details about ATM.

 Abstraction provides advantage of code reuse.

 Abstraction enables program open for extension.

 In java, abstract classes and interfaces are used to achieve Abstraction.

6. Inheritance:

 Inheritance in java is a mechanism in which one object acquires all the

properties and behaviors of another object.

 The idea behind inheritance in java is that we can create new classes that are

built upon existing classes. When we inherit from an existing class, we can

reuse methods and fields of parent class, and we can add new methods and

fields also.

 Inheritance represents the IS-A relationship, also known as parent-
child relationship.

 For example:- In a child and parent relationship, all the properties of a father

areinherited by his son.

 Syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

//methods and fields

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 8

7. Message Passing:

Message Communication:

 Objects interact and communicate with each other by sending messages to

each other. This information is passed along with the message as parameters.

 A message for an object is a request for execution of a procedure and

therefore will invoke a method (procedure) in the receiving object that

generates the desired result.

 Message passing involves specifying the name of the object, the name of the

method (message) and the information to be sent.

 Example:

Employee.getName(name);

Where,

Employee – object name

getName – method name (message)

name - information

 Java Buzzwords

The following are the features of the Java language:

1. Object Oriented

2. Simple

3. Secure

4. Platform

Independent

5. Robust

6. Portable

7. Architecture Neutral

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 9

1. Object Oriented:

 Java programming is pure object-oriented programming language. Like C++, Java

provides most of the object oriented features.

 Though C++ is also an object oriented language, we can write programs in C++

without a class but it is not possible to write a Java program without classes.

 Example: Printing “Hello” Message.

C++ (can be without class)
Java – No programs without classes and

objects

With Class:

#include<iostream.h>

class display {

public:

void disp()

{

cout<<”Hello!”;

}

};

main()

{

display d;

d.disp();

}
Without class:

 #include<iostream.h>

 void main()

{

clrscr();

cout<<”\n Hello!”;

getch();

}

With class:

import java.io.*;

class Hello {

public static void main(String args[])

{

System.out.println(“Hello!”);

}

}

Without class is not possible

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 10

2. Simple:

 Java is Easy to write and more readable and eye catching.

 Most of the concepts are drew from C++ thus making Java learning simpler.

3. Secure :

 Since Java is intended to be used in networked/distributed environments, lot of

emphasis has been placed on security.

 Java provides a secure means of creating Internet applications and to access web

applications.

 Java enables the construction of secured, virus-free, tamper-free system.

4. Platform Independent:

 Unlike C, C++, when Java program is compiled, it is not compiled into platform-specific

machine code. Rather it is converted into platform independent code called bytecode.

 The Java bytecodes are not specific to any processor. They can be executed in any

computer without any error.

 Because of the bytecode, Java is called as Platform Independent.

5. Robust:

 Java encourages error-free programming by being strictly typed and performing run-
time checks.

6. Portable:

 Java bytecode can be distributed over the web and interpreted by Java Virtual

Machine (JVM)

 Java programs can run on any platform (Linux, Window, Mac)

 Java programs can be transferred over world wide web (e.g applets)

7. Architecture Neutral:

 Java is not tied to a specific machine or operating system architecture.

 Machine Independent i.e Java is independent of hardware.

 Bytecode instructions are designed to be both easy to interpret on any machine and

easily translated into native machine code.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 11

8. Dynamic and Extensible:

 Java is a more dynamic language than C or C++. It was developed to adapt to an

evolving environment.

 Java programs carry with them substantial amounts of run-time information that are

used to verify and resolve accesses to objects at run time.

9. Interpreted:

 Java supports cross-platform code through the use of Java bytecode.

 The Java interpreter can execute Java Bytecodes directly on any machine to which

the interpreter has been ported.

10. High Performance:

 Bytecodes are highly optimized.

 JVM can execute the bytecodes much faster.

 With the use of Just-In-Time (JIT) compiler, it enables high performance.

11. Multithreaded:

 Java provides integrated support for multithreaded programming.

 Using multithreading capability, we can write programs that can do many tasks

simultaneously.

 The benefits of multithreading are better responsiveness and real-time behavior.

12. Distributed:

 Java is designed for the distributed environment for the Internet because it handles

TCP/IP protocols.

 Java programs can be transmit and run over internet.

 : Overview of Java

 Java programming language was originally developed by Sun Microsystems

which was initiated by James Gosling and released in 1995 as core component

of Sun Microsystems' Java platform (Java 1.0 [J2SE]).

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 12

 Java runs on a variety of platforms, such as Windows, Mac OS, and the various

versions of UNIX.

 Java is mainly used for Internet Programming.

 Java is related to the languages C and C++. From C, Java inherits its syntax and from

C++,Java inherits its OOP concepts.

 Ancestors of Java: - C, C++, B, BCPL.

Five primary goals in the creation of the Java language:

1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple operating systems.

3. It should contain built-in support for using computer networks.

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use.

 : BASIC JAVA TERMINALOGIES:

1. BYTECODE:

Byte code is an intermediate code generated from the source code by java compiler

and it is platform independent.

2. JAVA DEVELOPMENT KIT (JDK):

 The Java Development Kit (JDK) is a software development environment usedfor

developing Java applications and applets.

 It includes the Java Runtime Environment (JRE), an interpreter/loader (java), a

compiler (javac), an archiver (jar), a documentation generator (javadoc) and

other tools needed in Java development.

3. JAVA RUNTIME ENVIRONMENT (JRE):

JRE is used to provide runtime environment for JVM. It contains set of libraries

+other files that JVM uses at runtime.

4. JAVA VIRTUAL MACHINE (JVM):

 JVM is an interpreter that converts a program in Java bytecode (intermediate

language) into native machine code and executes it.

 JVM needs to be implemented for each platform because it will differ from

platform to platform.

Java is a high-level object-oriented programming language, which provides

developers with the means to create powerful applications, which are very small in

size, platform independent, secure and robust.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 13

 The JVM performs following main tasks:

• Loads code

• Verifies code

• Executes code

• Provides runtime environment

5. JIT (JUST IN TIME) COMPILER:

It is used to improve the performance. JIT compiles parts of the byte

code that have similar functionality at the same time, and hence reduces the

amount of time needed for compilation.

Types of Java program:

In Java, there are two types of programs namely,

1. Application Program

2. Applet Program

1. Application Programs

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 14

Application programs are stand-alone programs that are written to carry

out certain tasks on local computer such as solving equations, reading and

writing files etc. The application programs can be executed using two steps:

1. Compile source code to generate Byte code using javac compiler.

2. Execute the byte code program using Java interpreter.

2. Applet programs:

Applets are small Java programs developed for Internet applications. An

applet located in distant computer can be downloaded via Internet and executed

on a local computer using Java capable browser. The Java applets can also be

executed in the command line using applet viewer, which is part of the JDK.

 : JAVA SOURCE FILE - STRUCTURE – COMPILATION

THE JAVA SOURCE FILE:

A Java source file is a plain text file containing Java source code and having

.java extension. The .java extension means that the file is the Java source file. Java source

code file contains source code for a class, interface, enumeration, or annotation type.

There are some rules associated to Java source file.

Java Program Structure:

Java program may contain many classes of which only one class defines the main

method.

A Java program may contain one or more sections.

Documentation Section

Package Statement

Import Statements

Interface Statements

Class Definitions

main Method Class

{

Main Method Definition

}

Of the above Sections shown in the figure, the Main Method class is Essential part,

Documentation Section is a suggested part and all the other parts are optional.

Documentation Section

 It Comprises a Set of comment lines giving the name of the program, the authorand

other details.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 15

 Comments help in Maintaining the Program.

 Java uses a Style of comment called documentation comment.

/* * …… */

 This type of comment helps is generating the documentation automatically.

 Example:

/*

* Title: Conversion of Degrees

* Aim: To convert Celsius to Fahrenheit and vice versa

* Date: 31/08/2000

* Author: tim

*/

Package Statement

 The first statement allowed in a Java file is a package statement.

 It declares the package name and informs the compiler that the classes defined

belong to this package.

 Example :

package student;

package basepackage.subpackage.class;

 It is an optional declaration.

Import Statements

 The statement instructs the interpreter to load a class contained in a particular

package.

 Example :

import student.test;

Where, student is the package and test is the class.

Interface Statements

 An interface is similar to classes which consist of group of method declaration.

 Like classes, interfaces contain methods and variable.

 To link the interface to our program, the keyword implements is used.

 Example:

public class xx extends Applet implements ActionListener

where, xx – class name (subclass of Applet)Applet – Base class name

ActionListener – interface Extends & implements - keywords

 It is used when we want to implement the feature of Multiple Inheritance in Java

 It is an optional declaration.

Class Definitions

 A Java Program can have any number of class declarations.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 16

 The number of classes depends on the complexity of the program.

Main Method Class

 Every Java Standalone program requires a main method as its starting point.

 A Simple Java Program will contain only the main method class.

 It creates objects of various classes and uses those objects for performing various

operations.

 When the end of main is reached the program terminates and the control

transferred back to the Operating system.

 Syntax for writing main:

public static void main(String arg[])

where,

public – It is an access specifier to control the visibility of class members. main()

must be declared as public, since it must be called by code outside of its class when

the program is started.

static – this keyword allows main() method to be called without having to instantiate

the instance of the class.

void – this keyword tells the compiler that main() does not return any value.

main() – is the method called when a Java application begins.

String arg[] – arg is an string array which receives any command-line arguments

present when the program is executed.

Rules to be followed to write Java Programs:

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity - Java is case sensitive, which means identifier Hello and hellowould

have different meaning in Java.

 Class Names - For all class names the first letter should be in Upper Case.

If several words are used to form a name of the class, each inner word's first letter should

be in Upper Case.

Example class MyFirstJavaClass

 Method Names - All method names should start with a Lower Case letter.

If several words are used to form the name of the method, then each inner word's first

letter should be in Upper Case.

Example public void myMethodName()

 Program File Name - Name of the program file should exactly match the classname.

When saving the file, you should save it using the class name (Remember Java is case

sensitive) and append '.java' to the end of the name (if the file name and the class name

do not match your program will not compile).

Example : Assume 'MyFirstJavaProgram' is the class name. Then the file should be saved as

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 17

'MyFirstJavaProgram.java'

 public static void main(String args[]) - Java program processing starts from the

main() method which is a mandatory part of every Java program.

Steps for Compiling and running a java program in command prompt

1. Set the path of the compiler as follows (type this in command prompt):

Set path=”C:\Program Files\Java\jdk1.6.0_20\bin”;

2. To create a Java program, ensure that the name of the class in the file is the sameas the

name of the file.

3. Save the file with the extension .java (Example: HelloWorld.java)

4. To compile the java program use the command javac as follows:

javac HelloWorld.java

This will take the source code in the file HelloWorld.java and create the javabytecode in

a file HelloWorld.class

5. To run the compiled program use the command java as follows:

java HelloWorld

(Note that you do not use any file extension in this command.)

At compile time, java file is compiled by Java Compiler (It does not interact with

OS) and converts the java code into bytecode.

Class Loader : is the subsystem of JVM that is used to load class files.

Bytecode Verifier : checks the code fragments for illegal code that can violate access

right to objects
Interpreter : read bytecode stream then execute the instructions.

Example 1: A First Java Program:

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 18

public class HelloWorld

{

public static void main(String args[])

{

System.out.println("Hello World");

}

}

Save: HelloWorld.java
 Compile: javac HelloWorld.java
Run: java HelloWorld

Output: Hello World

Program Explanation:

public is the access specifier, class is a keyword and HelloWorld is the class name. {

indicates the start of program block and } indicates the end of the program block.

System.out.println() – is the output statement to print some message on the screen.

Here, System is a predefined class that provides access to the system, out is the output

stream that is connected to the console and println() is method to display the given

string.

Example 2: A Second Java Program:

import java.util.Scanner; // Scanner is a class which contains necessary methods

to provide a user an access to the i/p console.

public class Example2 // class declaration

{ // class definition starts

public static void main(String args[])

{

//main() definition starts

int num=0,res; // declares two integer with initial value 0

Scanner in=new Scanner(System.in); //creating object of Scanner class to access the i/p stream.

System.out.println(“Enter a Number : “);

num=in.nextInt(); // to read the next integer value from the i/pstream

res=num*2; // manipulation of the data

System.out.println("The value of "+num+” * 2 = “+res); //displaysresult

}

}

Save: Example2.java Compile: javac Example2.javaRun: java Example2

Output:

Enter a Number: 25

The value of 25 * 2 = 50

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 19

 : JAVA – DATA TYPES

Data type is used to allocate sufficient memory space for the data. Data types

specify the different sizes and values that can be stored in the variable.

 Java is a strongly Typed Language.

 Definition: strongly Typed Language:

Java is a strongly typed programming language because every variable must be declared

with a data type. A variable cannot start off life without knowing the range of values it can

hold, and once it is declared, the data type of the variable cannot change.

Data types in Java are of two types:

1. Primitive data types (Intrinsic or built-in types) :- : The primitive data types

include boolean, char, byte, short, int, long, float and double.

2. Non-primitive data types (Derived or Reference Types): The non-primitive

data types include Classes, Interfaces, Strings and Arrays.

1. Primitive Types:

Primitive data types are those whose variables allow us to store only one value and

never allow storing multiple values of same type. This is a data type whose variable

can hold maximum one value at a time.

There are eight primitive types in Java:

Integer Types:

1. int

2. short

3. long

4. byte

Floating-point Types:

5. float

6. double

Others:

7. char

8. Boolean

 Integer Types:

The integer types are form numbers without fractional parts. Negative values are

allowed. Java provides the four integer types shown below:

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 20

Type
Storage

Requirement
Range Example

Default

Value

int

4 bytes

-2,147,483,648(-2^31)

to

2,147,483,647 (2^31-1)

int a = 100000,

int b = -200000

0

short 2 bytes -32,768 (-2^15) to 32,767 (2^15-1)
short s = 10000,

short r = -20000
0

long

8 bytes

-9,223,372,036,854,775,808 (-2^63)

to

9,223,372,036,854,775,808 (2^63-1)

long a = 100000L,

int b = -200000L

0L

byte 1 byte -128 (-2^7) to 127 (2^7-1)
byte a = 100 ,

byte b = -50
0

 Floating-point Types:

The floating-point types denote numbers with fractional parts. The

two floating-point types are shown below:

Type
Storage

Requirement
Range Example

Default

Value

float 4 bytes
Approximately ±3.40282347E+38F

(6-7 significant decimal digits)
float f1 =234.5f 0.0f

double

8 bytes

Approximately

±1.79769313486231570E+308

(15 significant decimal digits)

double d1 =

123.4

0.0d

 char:

 char data type is a single 16-bit Unicode character.

 Minimum value is '\u0000' (or 0).

 Maximum value is '\uffff' (or 65,535 inclusive).

 Char data type is used to store any character.

 Example: char letterA ='A'

 boolean:

 boolean data type represents one bit of information.

 There are only two possible values: true and false.

 This data type is used for simple flags that track true/false conditions.

 Default value is false.

 Example: boolean one = true

2. Derived Types (Reference Types):

 Derived data types are those whose variables allow us to store multiple

values of same type. But they never allow storing multiple values of

different types.

 A reference variable can be used to refer to any object of the declared type or any

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 21

compatible type.

 These are the data type whose variable can hold more than one value of similar

type.

 The value of a reference type variable, in contrast to that of a primitive type,

is a reference to (an address of) the value or set of values represented by

the variable.

 Example

int a[] = {10,20,30}; // valid

int b[] = {100, 'A', "ABC"}; // invalid

Animal animal = new Animal("giraffe"); //Object

 : JAVA - VARIABLES

 A Variable is a named piece of memory that is used for storing data in java

Program.

 A variable is an identifier used for storing a data value.

 A Variable may take different values at different times during the execution

if the program, unlike the constants.

 The variable's type determines what values it can hold and what

operations can be performed on it.

 Syntax to declare variables:

datatype identifier [=value][,identifier [=value] …];

 Example of Variable names:

int mark, total;

 Rules followed for variable names (consist of alphabets, digits,

underscore and dollar characters)

1. A variable name must begin with a letter and must be a sequence of letter or

digits.

2. They must not begin with digits.

3. Uppercase and lowercase variables are not the same.

a. Example: Total and total are two variables which are distinct.

4. It should not be a keyword.

5. Whitespace is not allowed.

6. Variable names can be of any length.

 Initializing Variables:

 After the declaration of a variable, it must be initialized by means of assignment

statement.

 It is not possible to use the values of uninitialized variables.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 22

 Two ways to initialize a variable:

1. Initialize after declaration:

Syntax:

int months;

months=1;

2. Declare and initialize on the same line:

Syntax:

int months=12;

 Dynamic Initialization of a Variable:

Java allows variables to be initialized dynamically using any valid expression at the

time the variable is declared.

Example: Program that computes the remainder of the division operation:

class FindRemainer

{

public static void main(String arg[])

 {int num=5,den=2;

int rem=num%den;

System.out.println(“Remainder is”+rem);

}

}

Output:

Remainder is 1

In the above program there are three variables num, den and rem. num and den are

initialized by constants whereas rem is initialized dynamically by the modulo division

operation on num and den.

There are three kinds of variables in Java:

1. Local variables

2. Instance variables

3. Class/static variables

Datatype variablename=value;

variablename=value;

JAVA - VARIABLE TYPES

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 23

Local Variables Instance Variable Class / Static Variables

Local variables are declared
in methods, constructors, or
blocks.

Instance variables are
declared in a class, but
outside a method,
constructor or any block.

Class variables also known as
static variables are declared
with the static keyword in a
class, but outside a method,
constructor or a block.
There would only be one copy
of each class variable per
class, regardless of how many
objects are created from it.

Local variables are created
when the method,
constructor or block is
entered and the variable will
be destroyed once it exits the
method, constructor or block.

Instance variables are created
when an object is created with
the use of the keyword 'new'
and destroyed when the
object is destroyed.

Static variables are created
when the program starts and
destroyed when the program
stops.

Access modifiers cannot be
used for local variables.

Access modifiers can be used
for instance variables.

Access modifiers can be
used for class variables.

Local variables are visible
only within the declared
method, constructor or
block.

The instance variables are
visible for all methods,
constructors and block in the
class.

Visibility is similar to
instance variables.

There is no default value for
local variables so local
variables should be declared
and an initial value should be
assigned before the first use.

Instance variables have
default values. For numbers
the default value is 0, for
Booleans it is false and for
object references it is null.
Values can be assigned during
the declaration or within the
constructor.

Default values are same as
instance variables.

Local variables can only be
access inside the declared
block.

Instance variables can be
accessed directly by calling the
variable name inside the class.
However within static
methods and different class
should be called using the fully
qualified name as follows:
ObjectReference.VariableNa
me.

Static variables can be
accessed by calling with the
class name.
ClassName.VariableName.

Example program illustrating the use of all the above variables:

class area

{

int length=20;

int breadth=30;

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 24

static int classvar=2500;

void calc()

{

int areas=length*breadth;

System.out.println(“The area is “+areas+” sq.cms”);

}

public static void main(String args[])

{

area a=new area();

a.calc();

System.out.println(“Static Variable Value : “+classvar);

}

}

Output:

The area is 600 sq.cms

Static Variable Value : 2500

Program Explanation:

Class name: area

Method names: calc() and main()

Local variables: areas (accessed only in the particular method)

Instance variables: length and breadth (accessed only through the object‘s method)

Static variable: accessed anywhere in the program, without object reference

 : ARRAYS

Definition:

An array is a collection of similar type of elements which has contiguous

memory location.

Java array is an object which contains elements of a similar data type.

Additionally, The elements of an array are stored in a contiguous memory location.

It is a data structure where we store similar elements. We can store only a fixed set of

elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the 0th index, 2nd

element is stored on 1st index and so on.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 25

Advantage of Array:

• Code Optimization: It makes the code optimized; we can retrieve or sort the data

easily.

• Random access: We can get any data located at any index position.

Disadvantage of Array:

 Size Limit: We can store only fixed size of elements in the array. It doesn't growits

size at runtime.

Types of Array:

There are two types of array.

1. One-Dimensional Arrays

2. Multidimensional Arrays (multi includes 2D, 3D, and nD dimensions)

1. One-Dimensional Array:

 Creating an array:

Three steps to create an array:

1. Declaration of the array

2. Instantiation of the array

3. Initialization of arrays

1. Declaration of the array:

Declaration of array means the specification of array variable, data_type and

array_name.

Syntax to Declare an Array in java:

Example:

int[] a; (or) int [] a (or) int a[];

2. Instantiation of the array:

Definition:

Definition: One-dimensional array is an array in which the elements are stored
in one variable name by using only one subscript.

dataType[] arrayRefVar; (or)

dataType []arrayRefVar; (or)

dataType arrayRefVar[];

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 26

Syntax:
arrayRefVar=new datatype[size];

Example: a=new int[10];

3. Initialization of arrays:Definition:

Syntax to initialize values to array element:

Example:

a[0]=20;

SHORTHAND TO CREATE AN ARRAY OBJECT:

Java has shorthand to create an array object and supply initial values at the

same time when it is created.

Example 1:

int regno[]={101,102,103,104,105,106};

int reg[]=regno;

Example 2: double[] myList = new double[10];

ARRAY LENGTH:

The variable length can identify the length of array in Java. To find the number of

elements of an array, use array.length.

Example1:

int regno[10]; len1=regno.length;

dataType[] arrayRefVar={list of values};
(or)

dataType arrayRefVar[]={list of values};
(or)

dataType []arrayRefVar={list of values};
(or)

dataType arrayRefVar[]=arrayVariable;

Allocating memory spaces for the declared array in memory (RAM) is called as
Instantiation of an array.

Storing the values in the array element is called as Initialization of arrays.

arrayRefVar[index value]=constant or value;

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 27

Example 2:

for(int i=0;i<reno.length;i++)

System.out.println(regno[i]);

Following picture represents array myList. Here, myList holds ten double values and

the indicesare from 0 to 9.

Example: (One-Dimensional Array)

class Array
{

public static void main(String[] args)

{

int month_days[];

month_days=new int[12];

month_days[0]=31;

month_days[1]=28;

month_days[2]=31;

month_days[3]=30;

month_days[4]=31;

month_days[5]=30;

month_days[6]=31;

month_days[7]=31;

month_days[8]=30;

month_days[9]=31;

month_days[10]=30;

month_days[11]=31;

System.out.println(“April has ”+month_days[3]+ “ days.”);
}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 28

Output:

April has 30 days.

Example 2: Finding sum of the array elements and maximum from the array:

public class TestArray

{

public static void main(String[] args)

{

double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements

for (double element: myList)

{

System.out.println(element);

}

// Summing all elements

double total = 0;

for (int i = 0; i < myList.length; i++)

{

total += myList[i];

}

System.out.println("Total is " + total);

// Finding the largest element
double max = myList[0];

for (int i = 1; i < myList.length; i++)

{

if (myList[i] > max)

max = myList[i];

}

System.out.println("Max is " + max);

}

}

Output:

1.9

2.9

3.4

3.5

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 29

Total is 11.7

Max is 3.5

2. Multidimensional Arrays:

Definition:

Uses of Multidimensional Arrays:

 Used for table

 Used for more complex arrangements

Syntax to Declare Multidimensional Array in java:

Example to instantiate Multidimensional Array in java:

int[][] arr=new int[3][3]; //3 row and 3 column - internally this matrix is implemented as arrays of arrays of int.

Example to initialize Multidimensional Array in java:

arr[0][0]=1;

arr[0][1]=2;

arr[0][2]=3;

Multidimensional arrays are arrays of arrays. It is an array which uses more than
one index to access array elements. In multidimensional arrays, data is stored in
row and column based index (also known as matrix form).

1. dataType[][] arrayRefVar; (or)

2. dataType [][]arrayRefVar; (or)

3. dataType arrayRefVar[][]; (or)

4. dataType []arrayRefVar[];

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 30

arr[1][0]=4;

arr[1][1]=5;

arr[1][2]=6;

arr[2][0]=7;

arr[2][1]=8;

arr[2][2]=9;

Examples to declare, instantiate, initialize and print the 2Dimensional array:

class twoDarray

{

public static void main(String args[])

{

int array1[][]=new int[2][5];// declares an 2D array.

int array2[][]={{1,2,3},{2,4,5},{4,4,5}}; //declaring and initializing 2D array

int i,j,k=0;
// Storing and printing the values of Array1

System.out.println("-------Array 1 ------- ");

for(i=0;i<2;i++)

{

for(j=0;j<5;j++)

{

array1[i][j]=k;

k++;

System.out.print(array1[i][j]+ " “);

}

System.out.println();

}

// printing 2D array2

System.out.println("-------Array 2 ------- ");

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

System.out.print(array2[i][j]+” “);

}

System.out.println();

}

}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 31

Output:

-------------Array1------------

0 1 2 3 4

5 6 7 8 9

------------Array2------------

1 2 3

2 4 5

4 4 5

In the above program, the statement int array1[][]=new int[2][5]; is interpreted

automatically as follows:

array1[0]=new int[5];
array1[1]=new int[5];

It means that, when we allocate memory for a multidimensional array, we need to only

specify the memory for the first (leftmost) dimension. We can allocate the remaining

dimensions separately with different sizes.

Example: Manually allocate differing size second dimensions:

class twoDarray

{

public static void main(String args[])

{

int array1[][]=new int[4][]; // declares an 2D array.

array1[0]=new int[1];

array1[1]=new int[2];

array1[2]=new int[3];

array1[3]=new int[4];

int i,j,k=0;

// Storing and printing the values of Array

for(i=0;i<4;i++)

{

for(j=0;j<i+1;j++)

{

array1[i][j]=k;

k++;

 System.out.print(array1[i][j]+ " ");

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 32

}

System.out.println();

}

}

}

Output:

0

1 2

3 4 5

6 7 8 9

 : OPERATORS

Operators are used to manipulate primitive data types.

Java operators can be classified as unary,binary, or ternary—meaning taking one, two,

or three arguments, respectively.

Java Unary Operator

The Java unary operators require only one operand. Unary operators are used to perform

various operations

i.e.:

o incrementing/decrementing a value by one

o negating an expression

o inverting the value of a boolean

Java Unary Operator Example: ++ and –

class OperatorExample

{

public static void main(String args[])

{

int x=10;

System.out.println(x++); //10 (11)

System.out.println(++x); //12

System.out.println(x--); //12 (11)

System.out.println(--x); //10.

}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 33

10

12

12

10

Java Unary Operator Example 2: ++ and –

1. class OperatorExample

2. {

3. public static void main(String args[])

4. {

5. int a=10;

6. int b=10;

7. System.out.println(a++ + ++a); //10+12=22

8. System.out.println(b++ + b++); //10+11=21 7.

9. }

10. }

Output:

22

21

Java Unary Operator Example: ~ and !

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=10;

4. int b=-10;

5. boolean c=true;

6. boolean d=false;

7. System.out.println(~a); //-11 (minus of total positive value which starts from 0)

8. System.out.println(~b); //9 (positive of total minus, positive starts from 0)

9. System.out.println(!c); //false (opposite of boolean value)

10. System.out.println(!d); //true

11. }

12. }

Output:
-11

9

False

true

A binary or ternary operator appears between its arguments. Java operators fall into

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 34

eight different categories:

1. Assignment

2. Arithmetic

3. Relational

4. Logical

5. Bitwise

6. Compound assignment

7. Conditional

8. Type.

Assignment Operators =

Arithmetic Operators - + * / % ++ --

Relational Operators > < >= <= == !=

Logical Operators && || & | ! ^

Bit wise Operator & | ^ >> >>>

Compound Assignment

Operators

+= -= *= /= %=

<<= >>= >>>=

Conditional Operator ?:

1. Java Assignment Operator

The java assignment operator statement has the following syntax:

<variable> = <expression>

If the value already exists in the variable it is overwritten by the assignment operator

(=).

Java Assignment Operator Example

1. class OperatorExample{

2. public static void main(String args[])

3. {

4. int a=10;

5. int b=20;

6. a+=4; //a=a+4 (a=10+4)

7. b-=4; //b=b-4 (b=20-4)

8. System.out.println(a);

9. System.out.println(b);

10. }

11. }

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 35

Output:

2. Java Arithmetic Operators

Java arithmetic operators are used to perform addition, subtraction, multiplication,

and division.They act as basic mathematical operations.

Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the operator
A + B will give

30

-
Subtraction - Subtracts right hand operand from left hand

operand

A - B will give

-10

* Multiplication - Multiplies values on either side of the operator
A * B will give

200

/ Division - Divides left hand operand by right hand operand B / A will give 2

%
Modulus - Divides left hand operand by right hand operand

and returns remainder

B % A will give

0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

Java Arithmetic Operator Example: Expression

1. class OperatorExample

2. {

3. public static void main(String args[])

4. {

5. System.out.println(10*10/5+3-1*4/2);

6. }

7. }

Output:

 21

14

16

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 36

3. Relational Operators

Relational operators in Java are used to compare 2 or more objects. Java provides

sixrelational operators: Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or not, if yes

then condition becomes true.

(A == B) is not

true.

!=
Checks if the values of two operands are equal or not, if values

are not equal then condition becomes true.
(A != B) is true.

>
Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.

(A > B) is not

true.

<
Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true.
(A < B) is true.

>=

Checks if the value of left operand is greater than or equal to

the value of right operand, if yes then condition becomes true.

(A >= B) is not

true.

<=

Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

(A <= B) is true.

Example:

public RelationalOperatorsDemo()
{

int x = 10, y = 5;

System.out.println("x > y : "+(x > y));

System.out.println("x < y : "+(x < y));

System.out.println("x >= y : "+(x >= y));

System.out.println("x <= y : "+(x <= y));

System.out.println("x == y : "+(x == y));

System.out.println("x != y : "+(x != y));

public static void main(String args[])

{

new RelationalOperatorsDemo();

}

}

Output:

$java RelationalOperatorsDemo

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 37

x > y : true

x < y : false
x >= y : true
x <= y : false
x == y : false
x != y : true

4. Logical Operators

Logical operators return a true or false value based on the state of the Variables. Given

that x and y represent boolean expressions, the boolean logical operators are defined

in the Table below.

x

y

!x

x & y

x && y

x | y

x || y

x ^ y

true true false true true False

true false false false true true

false true true false true true

false false true false false false

Example:

public class LogicalOperatorsDemo

{

public LogicalOperatorsDemo()

{

boolean x = true;

boolean y = false;

System.out.println("x & y : " + (x & y));

System.out.println("x && y : " + (x && y));

System.out.println("x | y : " + (x | y));

System.out.println("x || y: " + (x || y));

System.out.println("x ^ y : " + (x ^ y));

System.out.println("!x : " + (!x));

}

public static void main(String args[])

{

new LogicalOperatorsDemo();

}

}

Output:

$java LogicalOperatorsDemo

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 38

x & y : false

x && y : false

x | y : true

x || y: true

x ^ y : true

!x : false

5. Bitwise Operators

Java provides Bit wise operators to manipulate the contents of variables at the bit level.

The result of applying bitwise operators between two corresponding bits in the

operands is shown in the Table below.

A B ~A A & B A | B A ^ B

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

public class Test

{

public static void main(String args[])

{

int a = 60; /* 60 = 0011 1100 */

int b = 13; /* 13 = 0000 1101 */int c = 0;

c = a & b; /* 12 = 0000 1100 */

System.out.println("a & b = " + c);

c = a | b; /* 61 = 0011 1101 */

System.out.println("a | b = " + c);

c = a ^ b; /* 49 = 0011 0001 */

System.out.println("a ^ b = " + c);

c = ~a; /*-61 = 1100 0011 */

System.out.println("~a = " + c);

c = a << 2; /* 240 = 1111 0000 */

System.out.println("a << 2 = " + c);

c = a >> 2; /* 215 = 1111 */

System.out.println("a >> 2 = " + c);

c = a >>> 2; /* 215 = 0000 1111 */

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 39

System.out.println("a >>> 2 = " + c);

}

}

Output:

$java Test

a & b = 12

a | b = 61

a ^ b = 49

~a = -61

a << 2 = 240

a >> 2 = 15

a >>> 2 = 15

6. Compound Assignment operators

The compound operators perform shortcuts in common programming operations.

Java has compound assignment operators.

Syntax: argument1 operator = argument2.

Java Assignment Operator Example

1. class OperatorExample

2. {

3. public static void main(String[] args)

4. {

5. int a=10;

6. a+=3; //10+3

7. System.out.println(a);

8. a-=4; //13-4

9. System.out.println(a);

10. a*=2; //9*2

11. System.out.println(a);

12. a/=2; //18/2

13. System.out.println(a);12.

14. }

15. }

Output:
13

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 40

9

18

9

7. Conditional Operators

The Conditional operator is the only ternary (operator takes three arguments)

operator in Java. The operator evaluates the first argument and, if true, evaluates the

second argument.

If the first argument evaluates to false, then the third argument is evaluated. The

conditional operator is the expression equivalent of the if-else statement.

The conditional expression can be nested and the conditional operator associates from

right to left: (a?b?c?d:e:f:g) evaluates as (a?(b?(c?d:e):f):g)

Example:

8. instanceof Operator:

This operator is used only for object reference variables. The operator checks whether

the object is of a particular type(class type or interface type). instanceof operator is

written as:

 (Object reference variable) instanceof (class/interface type)

public class TernaryOperatorsDemo {

public TernaryOperatorsDemo() {

int x = 10, y = 12, z = 0;

z = x > y ? x : y;

System.out.println("z : " + z);

public static void main(String args[]) {

new TernaryOperatorsDemo();

Output:

$java TernaryOperatorsDemo
z : 12

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 41

If the object referred by the variable on the left side of the operator passes the IS-A

check for the class/interface type on the right side, then the result will be true.

Following is the Example

Example:

public class Test

{

public static void main(String args[])

{

String name = "James";
// following will return true since name is type of String

boolean result = name instanceof String;

System.out.println(result);

}

}

This would produce the following result:

True

OPERATOR PRECEDENCE:

The order in which operators are applied is known as precedence. Operators with a higher

precedence are applied before operators with a lower precedence.

The operator precedence order of Java is shown below. Operators at the top of the table

are applied before operators lower down in the table.

If two operators have the same precedence, they are applied in the order they appear in a

statement. That is, from left to right. You can use parentheses to override the default

precedence.

Category Operator Associativity

Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 42

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Example:

In an operation such as,

result = 4 + 5 * 3

First (5 * 3) is evaluated and the result is added to 4 giving the Final Result value as 19.

Note that ‗*‘ takes higher precedence than ‗+‘ according to chart shown above. This kindof

precedence of one operator over another applies to all the operators.

 : CONTROL-FLOW STATEMENTS

Java Control statements control the order of execution in a java program, based on data

values and conditional logic.

There are three main categories of control flow statements;

· Selection statements: if, if-else and switch.

· Loop statements: while, do-while and for.

· Transfer statements: break, continue, return, try-catch-finally and assert.

We use control statements when we want to change the default sequential order of

execution

There are many types of decision making statements in Java. They are:

 if statements

 if-else statements

 nested if statements

 if-else if-else statements

 switch statements

if Statement:

 An if statement consists of a Boolean expression followed by one or more

statements.

 Block of statement is executed when the condition is true otherwise no

statement will be executed.

1. Selection statements (Decision Making Statement)

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 43

Syntax:
if(<conditional expression>)
{

< Statement Action>

}

If the Boolean expression evaluates to true then the block of code inside the if statement

will be executed.

If not the first set of code after the end of the if statement (after the closing curly brace)

will be executed.

Flowchart:

Example:

public class IfStatementDemo {

public static void main(String[] args)
{
int a = 10, b = 20;
if (a > b)

System.out.println("a > b");
if (a < b)

System.out.println("b > a");
}

}

Output:

$java IfStatementDemo

b > a

if-else Statement:

The if/else statement is an extension of the if statement. If the statements in the

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 44

if statement fails, the statements in the else block are executed.

Syntax:

The if-else statement has the following syntax:

if(<conditional expression>)
{

< Statement Action1>

}

else

{

< Statement Action2>

}

Example:

public class IfElseStatementDemo {

public static void main(String[] args)

{
int a = 10, b = 20;

if (a > b) {

System.out.println("a > b");

}
else {

}

}

}

System.out.println("b > a");

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 45

Output:

$java IfElseStatementDemo
b > a

Nested if Statement:

Nested if-else statements, is that using one if or else if statement inside

another if or else if statement(s).

Syntax:

if(condition1)

{

if(condition2)

{

//Executes this block if condition is True

}

else

{

//Executes this block if condition is false

}

}

else

{

//Executes this block if condition is false

}

Example-nested-if statement:

class NestedIfDemo

{

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 46

public static void main(String args[])

{

int i = 10;

if (i ==10)

{

if (i < 15)

{

System.out.println("i is smaller than 15");

}

else

{

System.out.println("i is greater than 15");

}

}

else

{

System.out.println("i is greater than 15");

}

}

}

Output:

i is smaller than 15

if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is

very useful to test various conditions using single if...else if statement.

Syntax:

if(Boolean_expression 1){

//Executes when the Boolean expression 1 is true

}else if(Boolean_expression 2){

//Executes when the Boolean expression 2 is true

}else if(Boolean_expression 3){

//Executes when the Boolean expression 3 is true

}else {

//Executes when the none of the above condition is true.

}

Example:

public class Test {

public static void main(String args[]){

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 47

int x = 30;

if(x == 10){

System.out.print("Value of X is 10");

}else if(x == 20){

System.out.print("Value of X is 20");

}else if(x == 30){

System.out.print("Value of X is 30");

}else{

System.out.print("This is else statement");

}

}

}

Output:

Value of X is 30

switch Statement:

 The switch case statement, also called a case statement is a multi-way

branch with several choices. A switch is easier to implement than a

series of if/else statements.

 A switch statement allows a variable to be tested for equality against a list of

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 48

values. Each value is called a case, and the variable being switched on is checked

for each case.

 The switch statement begins with a keyword, followed by an expression that

equates to a no long integral value. Following the controlling expression is a

code block that contains zero or more labeled cases. Each label must equate to

an integer constant and each must be unique.

 When the switch statement executes, it compares the value of the controlling

expression to the values of each case label.

 The program will select the value of the case label that equals the value of the

controlling expression and branch down that path to the end of the code block.

 If none of the case label values match, then none of the codes within the

switch statement code block will be executed.

 Java includes a default label to use in cases where there are no matches.

We can have a nested switch within a case block of an outer switch.

Syntax:

switch (<expression>)

{

case label1:

<statement1>

case label2:

<statement2>

…

case labeln:

<statementn>

default:

<statement>

}

Example:
public class SwitchCaseStatementDemo {

public static void main(String[] args)

 {

 int a = 10, b = 20, c = 30;

int status = -1;

if (a > b && a > c)
 {status = 1;}

else if (b > c)

{status = 2;}

else

 {status = 3;}
switch (status)

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 49

 {case 1:

System.out.println("a is the greatest");break;

case 2:

case 3:

default:

}

}

}

System.out.println("b is the greatest");break;

System.out.println("c is the greatest");break;

System.out.println("Cannot be determined");

Output:

c is the greatest

While Statement

2. Looping Statements (Iteration Statements)

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 50

 The while statement is a looping control statement that executes a blockof code while

a condition is true. It is entry controlled loop.

 You can either have a single statement or a block of code within the while loop.The

loop will never be executed if the testing expression evaluates to false.

 The loop condition must be a boolean expression.

Syntax:

The syntax of the while loop is

while (<loop condition>)

<statements>

Example:

public class WhileLoopDemo {

public static void main(String[] args)

 {int count = 1;

System.out.println("Printing Numbers from 1 to 10");

while (count <= 10) {

System.out.println(count++);

}

}

}

Output
Printing Numbers from 1 to 10

1

2

3

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 51

4

5

6

7

8

9

10

do-while Loop Statement

 do while loop checks the condition after executing the statements atleast

once.

 Therefore it is called as Exit Controlled Loop.

 The do-while loop is similar to the while loop, except that the test is

performed at the end of the loop instead of at the beginning.

 This ensures that the loop will be executed at least once. A do-while loop

begins with the keyword do, followed by the statements that make up the

body of the loop.

Syntax:

Example:

public class DoWhileLoopDemo {

public static void main(String[] args)

{

do

<loop body>

}while (<loop condition>);

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 52

int count = 1;

System.out.println("Printing Numbers from 1 to 10");

do {

System.out.println(count++);

} while (count <= 10);

}

}

Output:

Printing Numbers from 1 to 10

1

2

3

4

5

6

7

8

9

10

For Loops

The for loop is a looping construct which can execute a set of

instructions a specified number of times. It‘s a counter controlled loop.

A for statement consumes the initialization, condition and

increment/decrement in one line. It is the entry controlled loop.

Syntax:

for (<initialization>; <loop condition>; <increment expression>)

{

<loop body>

}

 The first part of a for statement is a starting initialization, which

executes once before the loop begins. The <initialization> section can

also be a comma-separated list of expression statements.

 The second part of a for statement is a test expression. As long as the

expression is true, the loop will continue. If this expression is evaluated

as false the first time, the loop will never be executed.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 53

 The third part of the for statement is the body of the loop. These are the

instructions that are repeated each time the program executes the loop.

 The final part of the for statement is an increment expression that

automatically executes after each repetition of the loop body. Typically,

this statement changes the value of the counter, which is then tested

to see if the loop should continue.

Exmple:

public class ForLoopDemo {

public static void main(String[] args)

{

System.out.println("Printing Numbers from 1 to 10");

for (int count = 1; count <= 10; count++)

{

System.out.println(count);

}

}

}

Output:

Printing Numbers from 1 to 10

1

2

3

4

5

6

7

8

9

10

Enhanced for loop or for- each loop:

As of Java 5, the enhanced for loop was introduced. This is mainly used for

Arrays.

 The for-each loop is used to traverse array or collection in java.

 It is easier to use than simple for loop because we don't need to

increment value and use subscript notation.

 It works on elements basis not index.

 It returns element one by one in the defined variable.

Syntax:

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 54

 Declaration: The newly declared block variable, which is of a type

compatible with the elements of the array you are accessing. The

variable will be available within the for block and its value would be the

same as the current array element.

 Expression: This evaluates to the array you need to loop through. The

expression can be an array variable or method call that returns an

array.

Example:

public class Test {

public static void main(String args[])

{

int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers)

{
System.out.print(x);

System.out.print(",");

}

System.out.print("\n\n");
String [] names ={"B", "C", "C++", "JAVA"};

for(String name : names)

{

System.out.print(name);

System.out.print(",");

}

}
}

Output:

10,20,30,40,50,

B,C,C++,JAVA

for(declaration : expression)

//Statements

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 55

3. Transfer Statements / Loop Control Statements/Jump Statements)

1. break statement

2. continue statement

1. Using break Statement:

 The break keyword is used to stop the entire loop. The break

keyword must be used inside any loop or a switch statement.

 The break keyword will stop the execution of the innermost loop and

start executing the next line of code after the block.

Syntax:

The syntax of a break is a single statement inside any loop:

Flowchart:

Example:
public class Test {

public static void main(String args[]) {

int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers)

 {

if (x == 30)

 { break;

}

System.out.print(x);

 System.out.print("\n");

}

}

}

break;

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 56

Output:

10

20

2. Using continue Statement:

The continue keyword can be used in any of the loop control structures.

It causes the loop to immediately jump to the next iteration of the loop.

The Java continue statement is used to continue loop. It continues

the current flow of the program and skips the remaining code at

specified condition. In case of inner loop, it continues only inner

loop.

Syntax:

The syntax of a continue is a single statement inside any loop:

continue;

Example:

public class Test {

public static void main(String args[]) {

int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers)

{

if(x == 30)

{
continue;

}

System.out.print(x);

System.out.print("\n");

}

}

}

Output:

10

20

40

50

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 57

 : DEFINING CLASSES and OBJECTS

A class is a collection of similar objects and it contains data and methods that operate

on that data. In other words ― Class is a blueprint or template for a set of objects

that share a common structure and a common behavior.

DEFINING A CLASS:

The keyword class is used to define a class.

Rules to be followed:

1. Classes must be enclosed in parentheses.

2. The class name, superclass name, instance variables and method names may be any

valid Java identifiers.

3. The instance variable declaration and the statements of the methods must end

with ;(semicolon).

4. The keyword extends means derived from i.e. the class to the left of the

extends (subclass) is derived from the class to the right of the extends (superclass).

Syntax to declare a class:

 The data, or variables, defined within a class are called instance variables.

 The code to do operations is contained within methods.

 Collectively, the methods and variables defined within a class are called members of

[public|abstract|final] class class_name [extends superclass_name implements interface_name]

{
data_type instance_variable1;

data_type instance_variable2;

.

.

data_type instance_variableN;

return_type method_name1(parameter list)

{

Body of the method

}

.

.

return_type method_nameN(parameter list)

{

Body of the method

}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 58

the class.

 Variables defined within a class are called instance variables because each instance of

the class (that is, each object of the class) contains its own copy of these variables.

 Thus, the data for one object is separate and unique from the data for another.

 Example:

Program Explanation:

Class : keyword that initiates a class definition

Box : class name

Double : primitive data type

Height, depth, width: Instance variables

Void : return type of the method

Volume() : method name that has no parameters

DEFINING OBJECTS

An Object is an instance of a class. It is a blending of methods and data.

 It is a structured set of data with a set of operations for manipulating that data.

 The methods are the only gateway to access the data. In other words, the methods

and data are grouped together and placed in a container called Object.

Characteristics of an object:

An object has three characteristics:

1) State: represents data (value) of an object.

2) Behavior: represents the behavior (functionality) of an object such as deposit,

withdraw etc.

3) Identity: Object identity is an unique ID used internally by the JVM to identify

each object uniquely.

For Example: Pen is an object. Its name is Reynolds, color is white etc. known as its

class box {

double width;

double height;

double depth;

void volume()

{

System.out.println(\n Volume is :);

System.out.println(width*height*depth);

}

}

Object = Data + Methods

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 59

state. It is used to write, so writing is its behavior.

CREATING OBJECTS:

Obtaining objects of a class is a two-step process:

1. Declare a variable of the class type – this variable does not define an object. Instead,

it is simply a variable that can refer to an object.

2. Use new operator to create the physical copy of the object and assign the reference

to the declared variable.

NOTE: The new operator dynamically allocates memory for an object and returns a

reference to it. This reference is the address in memory of the object allocated by new.

Advantage of using new operator: A program can create as many as objects it needs

during the execution of the program.

Syntax:

Example:

box b1=new box();(or)

box b2; b2=new box();

ACCESSING CLASS MEMBERS:

 Accessing the class members means accessing instance variable and instance methods in a

class.

 To access these members, a dot (.) operator is used along with the objects.

Syntax for accessing the instance members and methods:

Example:

class box

{

double width;

double height;

class_name object_name = new class_name();

(or)

class_name object_name;

object_name = new class_name();

object_name.variable_name;

object_name.method_name(parameter_list);

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 60

double depth;

void volume()

{

System.out.print("\n Box Volume is : ");

System.out.println(width*height*depth+" cu.cms");

}

}

public class BoxVolume

{

public static void main(String[] args)

{

box b1=new box(); // creating object of type box

b1.width=10.00; // Accessing instance variables through object

b1.height=10.00;

b1.depth=10.00;

b1.volume(); // Accessing method through object

}

}

Output:

Box Volume is: 1000.0 cu.cms

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 61

 : METHODS

DEFINITION :

Syntax: Method:

The syntax shown above includes:

 modifier: It defines the access type of the method and it is optional to use.

 returnType: Method may return a value.

 method_name: This is the method name. The method signature consists of the

method name and the parameter list.

 parameter List: The list of parameters, it is the type, order, and number of

parameters of a method. These are optional, method may contain zero

parameters.

 method body: The method body defines what the method does with statements.

Example:

This method takes two parameters num1 and num2 and returns the maximum between

the two:

/** the snippet returns the minimum between two numbers */

public static int minFunction(int n1, int n2)

{

int min;

if (n1 > n2)

min = n2;

else

min = n1;

return min;

}

 METHOD CALLING (Example for Method that takes parameters and returning

value):

 For using a method, it should be called.

A Java method is a collection of statements that are grouped together to perform an

operation.

modifier Return –type method_name(parameter_list) throws exception_list

{

// method body

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 62

 A method may take any no. of arguments.

 A parameter is a variable defined by a method that receives a value when the

method is called. For example, in square(), i is a parameter.

 An argument is a value that is passed to a method when it is invoked. For

example, square(100) passes 100 as an argument. Inside square(), the

parameter i receives that value.

 There are two ways in which a method is called.

• calling a method that returns a value or

• calling a method returning nothing (no return value).

 The process of method calling is simple. When a program invokes a method, the

program control gets transferred to the called method.

 This called method then returns control to the caller in two conditions, when:

1. return statement is executed.

2. reaches the method ending closing brace.

 Example:

Following is the example to demonstrate how to define a method and how to call it:

public class ExampleMinNumber

{

public static void main(String[] args)

{

int a = 11;

int b = 6;

int c = minFunction(a, b);

System.out.println("Minimum Value = " + c);

}

/** returns the minimum of two numbers */

public static int minFunction(int n1, int n2)

{

int min;

if (n1 > n2)

min = n2;

else

min = n1;

return min;

}

}

This would produce the following result:

Minimum value = 6

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 63

 : CONTRUCTORS

Definition:

 Rules for creating constructor:

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

3. Constructors can be declared public or private (for a Singleton)

4. Constructors can have no-arguments, some arguments and var-args;

5. A constructor is always called with the new operator

6. The default constructor is a no-arguments one;

7. If you don‘t write ANY constructor, the compiler will generate the default one;

8. Constructors CAN‘T be static, final or abstract;

9. When overloading constructors (defining methods with the same name

but with different arguments lists) you must define them with different

arguments lists (as number or as type)

 What happens when a constructor is called?

1. All data fields are initialized to their default value (0, false or null).

2. All field initializers and initialization blocks are executed, in the order in

which they occur in the class declaration.

3. If the first line of the constructor calls a second constructor, then the

body of the second constructor is executed.

4. The body of the constructor is executed.

 Types of constructors

There are three types of constructors:

1. Default constructor

2. no-arg constructor

3. Parameterized constructor

Constructor is a special type of method that is used to initialize the object.
Constructor is invoked at the time of object creation. Once defined, the constructor is
automatically called immediately after the object is created, before the new operator
completes.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 64

1. Default Constructor

 Default constructor refers to a constructor that is automatically created by
compiler in the absence of explicit constructors.

Rule: If there is no constructor in a class, compiler automatically creates a default

constructor.

Purpose of Default Constructor: It is used to provide the default values to the object

members like 0, null etc. depending on the data type.

Example:

// Java Program to demonstrate Default Constructor
import java.io.*;

// Driver class
class Sample {

 // Default Constructor
 Sample()

 { System.out.println("Default constructor"); }

 // Driver function
 public static void main(String[] args)
 {
 Sample a = new Sample();
 Sample b = new Sample();

 }
}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 65

Output:
Default constructor

 Default constructor

2) No-Argument Constructor
 Constructor without parameters is called no-argument constructor.

Purpose of No-Arg Constructor: It is used to provide values to be common for all
objects of the class.

Syntax of default constructor:

Classname()

{

Example:

// Constructor body

}

class Box

{

double width;

double height;

double depth;

// This is the constructor for Box

Box()

{

System.out.println(“Constructing Box…”);
width=10;

height=10;
depth=10;

}

// Compute and return volume

double volume()

{

return width*height*depth;

}

}

class BoxDemo

{

public static void main(String arg[])

{
// declare, allocate and initialize Box objects

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 66

Box mybox1=new Box();

Box mybox2=new Box();

double vol;

// Get volume of first box

vol=mybox1.volume();

System.out.println(“Volume is ” +vol);

// Get volume of second box

vol=mybox2.volume();

System.out.println(“Volume is ”+vol);

}

}

Output:

Constructing Box

Constructing Box

Volume is 1000.0

Volume is 1000.0

As you can see, both mybox1 and mybox2 were initialized by the Box()

constructor when they were created. Since the constructor gives all boxes

the same dimensions, 10 by 10 by 10, both mybox1 and mybox2 will have

the same volume.

3. Parameterized Constructor

A constructor that takes parameters is known as parameterized constructor.

Purpose of parameterized constructor

Parameterized constructor is used to provide different values to the distinct

objects.

Example:

class Box

{

double width;

double height;

double depth;

// This is the constructor for Box

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 67

Box(double w, double h, double d)

{

width=w;height=h;depth=d;

}

// Compute and return volume

double volume()

{

return width*height*depth;

}

}

class BoxDemo

{

public static void main(String arg[])

{
// declare, allocate and initialize Box objects

Box mybox1=new Box(10,20,15);

Box mybox2=new Box(3,6,9);

double vol;
// Get volume of first box

vol=mybox1.volume();

System.out.println(“Volume is ” +vol);

// Get volume of second box

vol=mybox2.volume();

System.out.println(“Volume is ” +vol);
}

}

Output:

Volume is 3000.0

Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its

constructor. For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the

object. Thus,

mybox1‘s copy of width, height, and depth will contain the values 10, 20, and 15,

respectively.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 68

Difference between constructor and method:

There are many differences between constructors and methods.

They are given below

Constructor Method

Constructor is used to initialize the

state of an object.

Method is used to expose

behaviour of an object.

Constructor must not have return

type.

Method must have return type.

Constructor is invoked implicitly. Method is invoked explicitly.

The java compiler provides a default

constructor if you don't have any

constructor.

Method is not provided by

compiler in any case.

Constructor name must be same as

the class name.

Method name may or may not be

same as class name.

“this” KEYWORD:

Definition:

 Usage of this keyword

1. this keyword can be used to refer current class instance variable.

2. this() can be used to invoke current class constructor.

3. this keyword can be used to invoke current class method (implicitly)

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this keyword can also be used to return the current class instance.

Instance Variable Hiding:

It is illegal in Java to declare two local variables with the same name inside the same or

enclosing scopes.

We can also have local variables, which overlap with the names of the class‘ instance

In java, this is a reference variable that refers to the current object.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 69

variables.

However, when a local variable has the same name as an instance variable, the

local variable hides the instance variable.

We can use “this” keyword to resolve any namespace collisions that might occur

between instance variables and local variables.

Example:

class Student

{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee)

{

this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display()

{

System.out.println(rollno+" "+name+" "+fee);

}

}

class TestThis2

{

public static void main(String args[])

{

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}

}

Output:

ankit 5000

sumit 6000

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 70

CONSTRUCTOR OVERLOADING:

Definition:

Example of Constructor Overloading:

class Box

{

double width;

double height;

double depth;

// constructor used when all the dimensions are specified

Box(double w, double h, double d)

{

width=w;

height=h;

depth=d;

}

// constructor used when no dimensions are specified

Box()

{

width=1;

height=1;

depth=1;

}

// constructor used when cube is created

Box(double len)

{

width = height = depth = len;

}

// Compute and return volume

double volume()

{

return width*height*depth;

}

}

Constructor overloading is a technique in Java in which a class can have any
number of constructors that differ in parameter lists. The compiler differentiates
these constructors by taking into account the number of parameters in the list and
their type.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 71

class ConsOverloadDemo

{

public static void main(String arg[])

{
// declare, allocate and initialize Box objects

Box mybox1=new Box(10,20,15);

Box mybox2=new Box();

Box mybox3=new Box(7);

double vol;

// Get volume of first box

vol=mybox1.volume();

System.out.println(“Volume of Box1 is “+vol);

// Get volume of second box

vol=mybox2.volume();

System.out.println(“Volume of Box2 is “+vol);

}

}

Output:

// Get volume of cube

vol=mybox3.volume();

System.out.println(“Volume of Cube is “+vol);

Volume of Box1 is 3000.0

Volume of Box2 is 1.0

Volume of the cube is 343.0

As we can see, the proper overloaded constructor is called based upon the

parameters specified when new is executed.

CONSTRUCTOR CHAINING:

Constructor chaining is the process of calling one constructor of a class from

another constructor of the same class or another class using the current object

of the class.

 It occurs through inheritance.

Ways to achieve Constructor Chaining:

We can achieve constructor chaining in two ways:

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 72

o Within the same class: If we want to call the constructor from the same class, then

we use this keyword.

o From the base class: If we want to call the constructor that belongs to different

classes (parent and child classes), we use the super keyword to call the constructor

from the base class.

Rules of Constructor Chaining:
 An expression that uses this keyword must be the first line of the constructor.
 Order does not matter in constructor chaining.
 There must exist at least one constructor that does not use this

Advantage:
 Avoids duplicate code while having multiple constructors.
 Makes code more readable

Example

class Shape
{

int radius,length,breadth;

Shape(int radius)
{

this.radius=radius;
}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 73

Shape(int r,int l,int b)
{

this(r);
length=l;
breadth=b;

}

void areaCircle()
{

System.out.println("Area of Circle is "+(3.14*radius*radius));
}
void areaRectangle()
{

System.out.println("Area of Rectangle is "+(length*breadth));
}

}
public class ConstructorChaining
{

public static void main(String arg[])
{
Shape s1=new Shape(5,10,50);
s1.areaCircle();
s1.areaRectangle();
}

}

Output:

Area of Circle is 78.5
Area of Rectangle is 500

 : ACCESS SPECIFIERS

Definition:

Java classes, fields, constructors and methods can have one of four

different access modifiers:

1. Public

2. Private

3. Protected

4. Default (package)

Access specifiers are used to specify the visibility and accessibility of a class

constructors, member variables and methods.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 74

1. Public (anything declared as public can be accessed from anywhere):

A variable or method declared/defined with the public modifier can be accessed

anywhere in the program through its class objects, through its subclass objects and

through the objects of classes of other packages also.

2. Private (anything declared as private can’t be seen outside of the class):

The instance variable or instance methods declared/initialized as private can be

accessed only by its class. Even its subclass is not able to access the private members.

3. Protected (anything declared as protected can be accessed by classes in

the same package and subclasses in the other packages):

The protected access specifier makes the instance variables and instance methods

visible to all the classes, subclasses of that package and subclasses of other packages.

4. Default (can be accessed only by the classes in the same package):

The default access modifier is friendly. This is similar to public modifier except only

the classes belonging to a particular package knows the variables and methods.

Example: Illustrating the visibility of access specifiers:

Z:\MyPack\FirstClass.java

package MyPack;

public class FirstClass

{

public String i="I am public variable";

protected String j="I am protected variable";

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 75

private String k="I am private variable";

String r="I dont have any modifier";

}

Z:\MyPack2\SecondClass.java

package MyPack2;

import MyPack.FirstClass;

class SecondClass extends FirstClass {

void method()

{

System.out.println(i); // No Error: Will print "I am public variable".

System.out.println(j); // No Error: Will print “I am protected variable”.

System.out.println(k); // Error: k has private access in FirstClass

System.out.println(r); // Error: r is not public in FirstClass; cannot be accessed

// from outside package

}

public static void main(String arg[])

{

SecondClass obj=new SecondClass();

obj.method();

}

}

Output:

I am public variable

I am protected variable

Exception in thread "main" java.lang.Error: Unresolved compilation problems:

The field FirstClass.k is not visible

 The field FirstClass.r is not visible

 : “static” MEMBERS:

Static Members are data members (variables) or methods that belong to a static

or non-static class rather than to the objects of the class. Hence it is not necessary

to create object of that class to invoke static members.

 The static can be:

1. variable (also known as class variable)

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 76

2. method (also known as class method)

3. block

4. nested class

 Static Variable:

 When a member variable is declared with the static keyword, then it is called

static variable and it can be accessed before any objects of its class are created,

and without reference to any object.

 Syntax to declare a static variable:

[access_specifier] static data_type instance_variable;

 When a static variable is loaded in memory (static pool) it creates only a single copy

of static variable and shared among all the objects of the class.

 A static variable can be accessed outside of its class directly by the class name

and doesn‘t need any object.

Syntax : <class-name>.<variable-name>

Advantages of static variable

 It makes your program memory efficient (i.e., it saves memory).

 Static Method:

If a method is declared with the static keyword , then it is known as static

method.

 A static method belongs to the class rather than the object of a class.

 A static method can be invoked without the need for creating an instance of a class.

 A static method can access static data member and can change the value of it.

o Syntax: (defining static method)

o Syntax to access static method:

 Methods declared as static have several restrictions:

 They can only directly call other static methods.

 They can only directly access static data.

 They cannot refer to this or super in any way.

<class-name>.<method-name>

[access_specifier] static Return_type method_name(parameter_list)

// method body

 The most common example of a static member is main(). main() is declared as static

because it must be called before any objects exist.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 77

 Static Block:

Static block is used to initialize the static data member like constructors

helps to initialize instance members and it gets executed exactly once, when

the class is first loaded.

It is executed before main method at the time of class loading in JVM.

Syntax:

The following example shows a class that has a static method, some static variables,

and a static

initialization block:

// Demonstrate static variables, methods, and blocks.

1. class Student

2. {

3. int rollno;

4. String name;

5. static String college = "ITS";

6. //static method to change the value of static variable

7. static void change(){

8. college = "BBDIT";

9. }

10. //constructor to initialize the variable

11. Student(int r, String n){

12. rollno = r;

13. name = n;

14. }

15. //method to display values

16. void display()

17. {

18. System.out.println(rollno+" "+name+" "+college);

19. }

20. }

21. //Test class to create and display the values of object

22. public class TestStaticMembers

class classname

{
static

{

// block of statements

}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 78

23. {

24. static

25. {

26. System.out.println(“*** STATIC MEMBERS – DEMO ***”);

27. }

28.

29. public static void main(String args[])

30. {

31. Student.change(); //calling change method

32. //creating objects

33. Student s1 = new Student(111,"Karan");

34. Student s2 = new Student(222,"Aryan");

35. Student s3 = new Student(333,"Sonoo");

36. //calling display method

37. s1.display();

38. s2.display();

39. s3.display();

40. }

41. }

Here is the output of this program:

*** STATIC MEMBERS – DEMO ***

111 Karan BBDIT

222 Aryan BBDIT

333 Sonoo BBDIT

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 79

 : JavaDoc Comments

Definition:

Input: Java source files (.java)

 Individual source files

 Root directory of the source files

Output: HTML files documenting specification of java code

 One file for each class defined

 Package and overview files

HOW TO INSERT COMMENTS?

The javadoc utility extracts information for the following items:

• Packages

• Public classes and interfaces

• Public and protected methods

• Public and protected fields

Each comment is placed immediately above the feature it describes.

 Format:

 A Javadoc comment precedes similar to a multi-line comment except that it
begins with a forward slash followed by two asterisks (/**) and ends with
a */

 Each /** . . . */ documentation comment contains free-form text followed by

tags.

 A tag starts with an @, such as @author or @param.

 The first sentence of the free-form text should be a summary statement.

 The javadoc utility automatically generates summary pages that extract

these sentences.

 In the free-form text, you can use HTML modifiers such as ... for

emphasis, <code>...</code> for a mono spaced ―typewriter font,

... for strong emphasis, and even to include an

image.

 Example:

/**

This is a doc comment.

*/

Javadoc is a tool which comes with JDK and it is used for generating Java code

documentation in HTML format from Java source code. Java documentation can be

created as part of the source code.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 80

TYPES OF COMMENTS:

1. Class Comments

The class comment must be placed after any import statements, directly before the

class definition.

Example:

import java.io.*;

/** class comments should be written here */Public class sample

{

….

}

2. Method Comments

The method comments must be placed immediately before the method that it

describes.

Tags used:

Tag Description Syntax

@param It describes the method parameter @param name description

@return This tag describes the return value

from a method with the exception void

methods and constructors.

@return description

@throw s This tag describes the method that

throws an exception.

@throws class description

Example:

/** adding two numbers

@param a & b are two numbers to be added

@return the result of addition

**/

public double add(int a,int b)

{

int c=a+b;

return c;

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 81

3. Field Comments

Field comments are used to document public fields—generally that means static

constants.

For example:

/**

* Account number

*/

public static final int acc_no = 101;

4. General Comments

Tag Description Syntax

The following tags can be used in class documentation comments

@author This tag makes an ―author entry. You can

have multiple @author tags, one for each

author.

@author name

@version This tag makes a ―version‖ entry. The text can

be any description of the current version.

@version text

The following tags can be used in all documentation comments

@since This tag makes a ―since‖ entry. The text can

be any description of the version that

introduced thisfeature.

For example, @since version 1.7.1

@since text

@deprecate d This tag adds a comment that the class,

method, or variable should no longer be

used. The text should suggest a replacement.

For example:

@deprecated

Use <code>setVisible(true)</code>instead

@deprecated text

Hyperlinks to other relevant parts of the javadoc documentation, or to external

documents,with the @see and @link tags.

@link This tag place hyperlinks to other classes

or methods anywhere in any of your

documentation comments.

{@link

package.class#feature

label}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 82

@see This tag adds a hyperlink in the ―see also

section. It can be used with both classes and

methods. Here, reference can be one of the

following:

package.class#feature label

label

"text"

Example:

@see ―Core java 2

@see Core Java

@see reference

COMMENT EXTRACTION

Here, docDirectory is the name of the directory where you want the HTML files to go.

Follow these steps:

1. Change to the directory that contains the source files you want to document.

2. To create the document API, you need to use the javadoc tool followed by

java file name. There is no need to compile the javafile.

Here, docDirectory is the name of the directory where you want the HTML files to go.

Follow these steps:

1. Change to the directory that contains the source files you want to document.

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2...

to document multiple packages.

If your files are in the default package, then instead run

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, then the HTML files are extracted to

the current directory.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 83

Example:

OUTPUT:

D:\OOPs\Programs\JavaDoc>javadoc -d FindAvgDocument FindAvg.java
Loading source file FindAvg.java...

Constructing Javadoc information...

Creating destination directory: "FindAvgDocument\"

Standard Doclet version 1.8.0_251

//Java program to illustrate frequently used

// Comment tags

/**

* <h1>Find average of three numbers!</h1>

* The FindAvg program implements an application that

* simply calculates average of three integers and Prints

* the output on the screen.

*

* @author Pratik Agarwal

* @version 1.0

* @since 2017-02-18
*/

public class FindAvg

{

/**

* This method is used to find average of three integers.

* @param numA This is the first parameter to findAvg method

* @param numB This is the second parameter to findAvg method

* @param numC This is the third parameter to findAvg method

* @return int This returns average of numA, numB and numC.

*/

public int findAvg(int numA, int numB, int numC)
{

return (numA + numB + numC)/3;

}

/**

* This is the main method which makes use of findAvg method.

* @param args Unused.

* @return Nothing.

*/

public static void main(String args[])

{

FindAvg obj = new FindAvg();

int avg = obj.findAvg(10, 20, 30);

System.out.println("Average of 10, 20 and 30 is :" + avg);

}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 84

Building tree for all the packages and classes...

Generating FindAvgDocument\FindAvg.html...

Generating FindAvgDocument\package-frame.html...
Generating FindAvgDocument\package-summary.html...

Generating FindAvgDocument\package-tree.html...

Generating FindAvgDocument\constant-values.html...

Building index for all the packages and classes...

Generating FindAvgDocument\overview-tree.html...
Generating FindAvgDocument\index-all.html...

Generating FindAvgDocument\deprecated-list.html...

Building index for all classes...

Generating FindAvgDocument\allclasses-frame.html...

Generating FindAvgDocument\allclasses-noframe.html...

Generating FindAvgDocument\index.html...

Generating FindAvgDocument\help-doc.html...

1 Warning

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 85

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 86

 : Additional Topics

Comments, Literals, Keywords, Type Conversion, Garbage
Collection, Command Line Arguments

 : JAVA – COMMENTS

 Java comments are either explanations of the source code or descriptions of

classes,interfaces, methods, and fields.

 They are usually a couple of lines written above or beside Java code to clarify

what itdoes.

 Comments in Java do not show up in the executable program.

 The Java language supports three kinds of comments:

1. Line comment:

 When you want to make a one line comment type "//" and follow the

two forward slasheswith your comment.

 Syntax: // text

 Example: // this is a single line comment

 The compiler ignores everything from // to the end of the line.

2. Block Comment:

 To start a block comment type "/*". Everything between the forward

slash and asterisk, even if it's on a different line, will be treated as

comment until the characters "*/" end the comment.

 Syntax: /* text */

 Example: /* it is a comment */ (or)

/* thisis a block

comment

*/

 The compiler ignores everything from /* to */.

3. Documentation Comment:

 This type of comment helps is generating the documentation automatically.

 Syntax: /** documentation */

The JDK javadoc tool uses doc comments when preparing

automatically generated documentation. For more information on

javadoc, see the Java tool documentation.

 Example:

/*

* Title: Conversion of Degrees

* Aim: To convert Celsius to Fahrenheit and vice versa

* Date: 31/08/2023

* Author: CCC

*/

http://java.sun.com/products/JDK/tools/index.html
http://java.sun.com/products/JDK/tools/index.html

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 87

 : JAVA - CONSTANTS

 A constant is an identifier written in uppercase (convention and not a rule) that

prevents

its contents form being modified by the program during the execution.

 If an attempt is made to change the value, the compiler will give an error message.

 In Java, the keyword final is used to declare constants.

 The value of a final variable cannot change after it has been initialized.

 Syntax:
 Example: final float PI=3.14f;

 : JAVA - IDENTIFIERS

 Identifiers are names given to the variables, classes, methods, objects, labels,

package and interface in our program.

 The name we are giving must be meaningful and it may have random length.

 The following rule must be followed while giving a name:

1. The first character must not begin with a number.

2. The identifier is formed with alphabets, number, dollar sign ($) and underscore

(_).

3. It should not be a reserved word.

4. Space is not allowed in between the identifier name.

 Example:

String name = "Homer Jay Simpson";

int weight = 300;

double height = 6;

 : JAVA – RESERVED WORDS (KEYWORDS)

 There are some words that you cannot use as object or variable names in a Java

program. These words are known as reserved words; they are keywords that are

already used by the syntax of the Java programming language.

 For example, if you try and create a new class and name it using a reserved word:

// you can't use finally as it's a reserved word!

class finally {

public static void main(String[] args)

{

final datatype variablename=value;

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 88

//class code..

}

}

 It will not compile, instead you will get the following error: <identifier> expected

 The table below lists all the words that are reserved:

abstract assert boolean break byte Case

catch char class const* continue default

double do else enum extends false

final finally float for goto* if

implements import instanceof int interface long

native new null package private protected

public return short static strictfp Super

switch synchronized this throw throws transient

true try void volatile while

 : TYPE CONVERSIONS AND CASTING

Type Conversion is the task of converting one data type into another data type.

Two types of type conversion:

1. Implicit Type Conversion (or) Automatic Conversion

2. Explicit Type Conversion (or) Casitng

1. Implicit Type Conversion (or) Automatic Conversion;

If the two types are compatible, then Java will perform the conversion automatically.

When one type of data is assigned to another type of variable, an Automatic type

conversion (or) Widening Conversion will take place if the following two conditions are

met:

 Two types are compatible

 The destination type is larger than the source type

.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 89

Example:

byte a=100;

int b=a; // b is larger than a

long d=b; // d is large than b

float e=b; // e is larger than b

float sum=10;

int s=sum; // s is smaller than sum, So we need to go for explicit conversion.

1. Explicit Type Conversion (or) Casting:

If the two types are compatible, a forced conversion of one type into another type is

performed This forced conversion is called as Explicit Type Conversion. Casting (or)

narrowing conversion is an operation which performs an explicit conversion

between incompatible types.

Example: converting int to byte.

Syntax to perform “Cast”:

(target-type) value;

Here,

Target-type = specifies the desired type to convert the specified value.

Example:

class conversion {

public static void main(String arg[])

{

byte b;

int i=257;

double d=323.142;

System.out.println(“\nConversion of int to byte: “);

b=(byte) i;

System.out.println(“i and b : “+i+” , “+b);

System.out.println(“\nConversion of double to int: “);

i=(int) d;

System.out.println(“d and i : “+d+” , “+i);

System.out.println(“\nConversion of double to byte: “);

b=(byte) d;

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 90

System.out.println(“d and b : “+d+” , “+b);

// Automatic Type promotions in expressions

byte r=40;

byte s=50;

byte t=100;

int p=r * s / t 3; // r*s exceeds the range of byte, so automatic type promotion take place.

System.out.println(“Value of P = “+p);

s=s*2; //Error! cannot assign int to a byte.

s=(byte)(s*2); // Possible.

}

}

Output:

Conversion of int to byte:

i and b : 257 , 1

Conversion of int to byte:

d and i : 323.142 , 323

Conversion of int to byte:

d and b : 323.142 , 67

Value of P = 20

Type Promotions rules:

1. All byte, short and char values are promoted to int.

2. If one operand is long, the whole expression is promoted to long.

3. If one operand is float, the whole expression is promoted to float.

4. If any of the operand is double, the result is double.

 : GARBAGE COLLECTION

 Since objects are dynamically allocated by using the new operator, you might be

wondering how such objects are destroyed and their memory released for later

reallocation.

 In some languages, such as C++, dynamically allocated objects must be manually

released by use of a delete operator.

 Java takes a different approach;

Automatic Garbage Collection: The technique that accomplishes automatic

deallocation of memory occupied by an unused object is called garbage collection.

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 91

It works like this:

 When no references to an object exist, that object is assumed to be no longer

needed, and the memory occupied by the object can be reclaimed. There is no

explicit need to destroy objects as in C++.

 Garbage collection only occurs sporadically (if at all) during the execution of your

program.

 Finalization:

 Sometimes an object will need to perform some action when it is destroyed. For

example, if an object is holding some non-Java resource such as a file handle or

character font, then you might want to make sure these resources are freed before

an object is destroyed.

 To handle such situations, Java provides a mechanism called finalization. By using

finalization, you can define specific actions that will occur when an object is just

about tobe reclaimed by the garbage collector.

 Finalize() method:

A finalize() method is a method that will be called by the garbage collector on an

object when garbage collection determines that there are no more references to the

object.

Inside the finalize() method, we will specify those actions that must be performed

before an object is destroyed.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code

defined outside its class.

Example:

public class TestGarbage1

{

public void finalize()

{

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 92

System.out.println("object is garbage collected");

}

public static void main(String args[])

{

TestGarbage1 s1=new TestGarbage1();

TestGarbage1 s2=new TestGarbage1();

s1=null;

s2=null;

System.gc();

}

}

Output:

object is garbage collectedobject is garbage collected

 : USING COMMAND LINE ARGUMENTS:

 Sometimes you will want to pass information into a program when you run it.

This is accomplished by passing command-line arguments to main().

 A command-line argument is the information passed to the main() method

that directly follows the program’s name on the command line when it is

executed.

 To access the command-line arguments inside a Java program is quite easy—they are

stored as strings in a String array passed to the args parameter of main().

 The first command-line argument is stored at args[0], the second at args[1], and so

on.

 For example, the following program displays all of the command-line arguments that

it iscalled with:

// Display all command-line arguments.

class CommandLine

{

public static void main(String args[])

{

for(int i=0; i<args.length; i++)

System.out.println("args[" + i + "]: " + args[i]);

}

}

Panimalar Engineering College Chennai City Campus

CS3391 - Object Oriented Programming 93

Try executing this program, as shown here:

>java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0]: this

args[1]: is

args[2]: a

args[3]: test

args[4]: 100

args[5]: -1

	UNIT 1 INTORDUCTION TO OOP AND JAVA
	 OBJECT ORIENTED PROGRAMMING (OOP):
	 Features / advantages of Object Oriented Programming :-
	 PROCEDURE-ORIENTED PROGRAMMING [POP]:
	Characteristics of Procedural oriented programming:-
	Drawback of POP
	 Difference between POP and OOP:
	1. Class:
	 fields
	 constructors
	 nested class and interface
	Example:
	Syntax to create Object in Java:
	Difference between Object and Class
	Wrapping of data and method together into a single unit is known as Encapsulation.
	 In OOP, data and methods operating on that data are combined together to form a single unit, this is referred to as a Class.
	 The insulation of the data from direct access by the program is called
	4. Polymorphism:
	 Example:
	5. Abstraction:
	 In java, abstract classes and interfaces are used to achieve Abstraction.
	 Syntax of Java Inheritance
	 Example:
	Java Buzzwords
	1. Object Oriented:
	2. Simple:
	3. Secure :
	4. Platform Independent:
	5. Robust:
	6. Portable:
	7. Architecture Neutral:
	8. Dynamic and Extensible:
	9. Interpreted:
	10. High Performance:
	11. Multithreaded:
	12. Distributed:
	Five primary goals in the creation of the Java language:
	: BASIC JAVA TERMINALOGIES:
	2. JAVA DEVELOPMENT KIT (JDK):
	3. JAVA RUNTIME ENVIRONMENT (JRE):
	4. JAVA VIRTUAL MACHINE (JVM):
	5. JIT (JUST IN TIME) COMPILER:
	Types of Java program:
	1. Application Programs
	2. Applet programs:
	: JAVA SOURCE FILE - STRUCTURE – COMPILATION
	Java Program Structure:
	Documentation Section
	 Example:
	Package Statement
	 Example :
	package basepackage.subpackage.class;
	Import Statements
	import student.test;
	Interface Statements
	 Example: (1)
	Class Definitions
	Main Method Class
	 Syntax for writing main:
	Rules to be followed to write Java Programs:
	 Case Sensitivity - Java is case sensitive, which means identifier Hello and hellowould have different meaning in Java.
	 Method Names - All method names should start with a Lower Case letter.

	Steps for Compiling and running a java program in command prompt
	Set path=”C:\Program Files\Java\jdk1.6.0_20\bin”;
	javac HelloWorld.java
	java HelloWorld
	Example 1: A First Java Program:
	Program Explanation:
	Example 2: A Second Java Program:
	public static void main(String args[])
	System.out.println(“Enter a Number : “);
	Output:
	Data type is used to allocate sufficient memory space for the data. Data types specify the different sizes and values that can be stored in the variable.
	 Java is a strongly Typed Language.

	1. Primitive Types:
	Integer Types:
	Floating-point Types:
	Others:
	 Integer Types:
	 Floating-point Types:
	 char:
	 boolean:
	2. Derived Types (Reference Types):
	 The value of a reference type variable, in contrast to that of a primitive type, is a reference to (an address of) the value or set of values represented by the variable.
	 A Variable is a named piece of memory that is used for storing data in java Program.
	 Syntax to declare variables:
	 Rules followed for variable names (consist of alphabets, digits, underscore and dollar characters)
	 Initializing Variables:
	Syntax:
	Syntax: (1)
	 Dynamic Initialization of a Variable:
	Example: Program that computes the remainder of the division operation:
	Output: (1)
	Example program illustrating the use of all the above variables:
	Output: (2)
	Program Explanation: (1)

	: ARRAYS
	Definition:
	An array is a collection of similar type of elements which has contiguous memory location.

	Advantage of Array:
	Disadvantage of Array:
	Types of Array:
	1. One-Dimensional Array:
	1. Declaration of the array:
	Syntax to Declare an Array in java:
	2. Instantiation of the array:
	Syntax:
	3. Initialization of arrays:Definition:
	Example:
	SHORTHAND TO CREATE AN ARRAY OBJECT:
	Example 1:
	ARRAY LENGTH:
	Example1:
	Example 2:
	Output:
	Output: (1)
	2. Multidimensional Arrays:
	Uses of Multidimensional Arrays:
	Syntax to Declare Multidimensional Array in java:
	Example to initialize Multidimensional Array in java:
	Examples to declare, instantiate, initialize and print the 2Dimensional array:
	Output: (2)
	0 1 2 3 4
	------------Array2------------
	2 4 5
	Example: Manually allocate differing size second dimensions:
	Output: (3)

	: OPERATORS
	Java Unary Operator Example 2: ++ and –
	Output:
	5. boolean c=true;
	Output: (1)
	1. Assignment
	3. Relational
	5. Bitwise
	7. Conditional
	1. Java Assignment Operator
	Java Assignment Operator Example
	Output: (2)
	Java Arithmetic Operator Example: Expression
	Output: (3)
	3. Relational Operators
	Example:
	Output: (4)
	4. Logical Operators
	Example: (1)
	5. Bitwise Operators
	Output: (5)
	6. Compound Assignment operators
	Java Assignment Operator Example (1)
	Output: (6)
	7. Conditional Operators
	Example: (2)
	Example: (3)
	This would produce the following result:
	OPERATOR PRECEDENCE:
	Example: (4)
	result = 4 + 5 * 3

	: CONTROL-FLOW STATEMENTS
	if(<conditional expression>)
	Output:
	Syntax:
	if(<conditional expression>)

	Example:
	Output: (1)
	Nested if Statement:
	Syntax: (1)
	Example-nested-if statement:
	Output: (2)
	if...else if...else Statement:
	Syntax: (2)
	//Executes when the Boolean expression 1 is true
	//Executes when the Boolean expression 2 is true
	//Executes when the Boolean expression 3 is true
	//Executes when the none of the above condition is true.
	Example: (1)
	Syntax: (3)
	switch (<expression>)
	case label1:
	<statement2>
	case labeln:
	<statement>
	Example:

	Output: (3)
	While Statement
	Syntax: (4)
	while (<loop condition>)
	Example: (2)
	Output
	do-while Loop Statement
	Syntax: (5)
	Output: (4)
	For Loops
	Syntax: (6)
	{
	}
	Exmple:
	Output: (5)
	Enhanced for loop or for- each loop:
	Syntax: (7)
	Example: (3)

	3. Transfer Statements / Loop Control Statements/Jump Statements)
	1. Using break Statement:
	Syntax:
	Example:
	Syntax: (1)
	continue;
	Output:

	: DEFINING CLASSES and OBJECTS
	DEFINING A CLASS:
	extends (subclass) is derived from the class to the right of the extends (superclass).
	Syntax to declare a class:
	 Example:

	DEFINING OBJECTS
	Characteristics of an object:
	CREATING OBJECTS:
	Syntax:
	ACCESSING CLASS MEMBERS:
	Syntax for accessing the instance members and methods:
	Output:

	: METHODS
	DEFINITION :
	Example:
	 METHOD CALLING (Example for Method that takes parameters and returning value):
	 Example:

	: CONTRUCTORS
	Definition:
	 What happens when a constructor is called?
	 Types of constructors
	1. Default Constructor
	Example:
	Output:
	2) No-Argument Constructor
	Syntax of default constructor:
	Example: (1)
	Output: (1)
	3. Parameterized Constructor
	Purpose of parameterized constructor
	Example: (2)
	Output: (2)
	Box mybox1 = new Box(10, 20, 15);

	Difference between constructor and method:
	“this” KEYWORD:
	 Usage of this keyword
	Instance Variable Hiding:
	However, when a local variable has the same name as an instance variable, the local variable hides the instance variable.
	Example: (3)
	Output: (3)
	Definition: (1)
	Output: (4)
	CONSTRUCTOR CHAINING:
	Ways to achieve Constructor Chaining:
	Rules of Constructor Chaining:
	Advantage:
	Example
	Output: (5)

	: ACCESS SPECIFIERS
	Definition:
	1. Public (anything declared as public can be accessed from anywhere):
	2. Private (anything declared as private can’t be seen outside of the class):
	3. Protected (anything declared as protected can be accessed by classes in the same package and subclasses in the other packages):
	4. Default (can be accessed only by the classes in the same package):
	Example: Illustrating the visibility of access specifiers:
	Z:\MyPack2\SecondClass.java
	Output:

	: “static” MEMBERS:
	Static Members are data members (variables) or methods that belong to a static or non-static class rather than to the objects of the class. Hence it is not necessary to create object of that class to invoke static members.
	 Static Variable:
	[access_specifier] static data_type instance_variable;
	Syntax : <class-name>.<variable-name>
	 Static Method:
	o Syntax: (defining static method)
	 Static Block:
	Syntax:

	: JavaDoc Comments
	Definition:
	HOW TO INSERT COMMENTS?
	Format:
	TYPES OF COMMENTS:
	Tags used:
	/** adding two numbers
	**/
	Follow these steps:
	javadoc -d docDirectory nameOfPackage
	javadoc -d docDirectory nameOfPackage1 nameOfPackage2...
	javadoc -d docDirectory *.java
	Example:

	: Additional Topics
	1. Line comment:
	2. Block Comment:
	3. Documentation Comment:
	 Example:

	: JAVA - CONSTANTS
	 Syntax:

	: JAVA - IDENTIFIERS
	 Example:

	: JAVA – RESERVED WORDS (KEYWORDS)
	: TYPE CONVERSIONS AND CASTING
	Type Conversion is the task of converting one data type into another data type.
	1. Implicit Type Conversion (or) Automatic Conversion;
	Example:
	float sum=10;
	1. Explicit Type Conversion (or) Casting:
	Example: converting int to byte. Syntax to perform “Cast”:
	Example: (1)
	public static void main(String arg[])
	byte b; int i=257;
	System.out.println(“\nConversion of int to byte: “); b=(byte) i;
	System.out.println(“\nConversion of double to int: “); i=(int) d;
	System.out.println(“\nConversion of double to byte: “); b=(byte) d;
	byte r=40; byte s=50; byte t=100;
	}
	Output:
	Type Promotions rules:

	: GARBAGE COLLECTION
	It works like this:
	 Finalization:
	 Finalize() method:
	protected void finalize()
	// finalization code here
	Example:
	Output:

	: USING COMMAND LINE ARGUMENTS:
	 A command-line argument is the information passed to the main() method that directly follows the program’s name on the command line when it is executed.
	>java CommandLine this is a test 100 -1

