

CS/B.Sc. (H) (BT/Mol·Bio/Genetics/MicroBio)/SEM-2/PTG-202/2011

2011

PRINCIPLES OF TRANSMISSION GENETICS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- If you cross a pea plant that is homozygous dominant for tallness and one that is heterozygous, what will be the genotypes of the offspring that are tall ? (if *D* and *d* represent the alleles for height in pea plants).
 - a) All will *DD*
 - b) *Dd* in most cases
 - c) *Dd* only
 - d) DD or Dd.

2702

[Turn over

- a) A cross between parents pure for a certain trait will produce hybrids
- b) Chromosomes move apart during anaphase II of meiosis
- c) For genes that are not on the same chromosome, alleles assort independently of one another into gametes
- d) Alleles of a gene are sorted into separate sex cells and then recombine with another allele at fertilization.
- iii) A rooster with gray feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are gray, 6 are black, and 8 are white. What is the simplest explanation for the inheritance of these colours in chickens ?
 - a) Codominance b) Incomplete dominance
 - c) Blending theory d) Multiple alleles.

2702

CS/B.	Sc. (H	I) (BT/Mol·Bio/Genetics/I	MicroE	Bio)/SEM-2/PTC-202/2011				
iv)	An	An allele, dominant or recessive is dependent on						
	a)	how common the allele is relative to other alleles						
	b)	whether it is inherited form the mother or the						
		father						
	c)	whether it or another allele determines the						
	phenotype when both are present							
	d) whether or not it is linked to other genes.							
V)	Son	Somatic cells of human have chromosomes						
	and	and are called						
	a)	10, haploid	b)	92, diploid				
	c)	23, haploid	d)	46, diploid.				
vi)	Cri	Du-Chat is caused by a deletion on the short arm of						
	chr	omosome						
	a)	3	b)	5				
	c)	7	d)	9.				
vii) A total X chromosome inactivation is also known as								
	a)	X-inactivation	b)	imprinting				
	c)	acetylation	d)	methylation.				
2702		3		[Turn over				

c) Codominant d) None of these.

- 2. Differentiate between back cross & test cross. Briefly write down the significance of test cross. 2 + 3
- 3. Explain the term 'pedigree'. State with example, the significance of outsider role with reference to pedigree. 2 + 3
- 4. What is FISH ? Briefly indicate its advantages & drawbacks. 1+4
- 5. Explain single gene inheritance.
- 6. Write a short note on Cri-Du-Chat syndrome.

GROUP – C

(Long Answer Type Questions)

		Answer any <i>three</i> of the following	g. $3 \times 15 = 45$
7.	Wri	ite short notes on the following :	3 × 5
	a)	Banding technique	
	b)	Induced polyploidy	
	c)	Down syndrome.	
270	2	5	[Turn over

CS/B.Sc. (H) (BT/Mol·Bio/Genetics/MicroBio)/SEM-2/PTG-202/2011
8. In corn, the following allelic pairs have been identified in chromosome 3 :

+/b = plant colour booster *vs* non-booster

+/Ig = ligulelid *vs* liguleless

+/v = green plant *vs* virescent.

A test cross involving triple recessives and F1 plants heterozygous for the three gene pairs gave in the progeny the following phenotype :

+	v	Ig	305
b	+	Ig	128
b	v	Ig	18
+	+	Ig	74
b	v	+	66
+	+	+	22
+	v	+	112
b	+	+	275

Give the gene sequence, the map distances between the genes and the coefficient of coincidence. 5 + 5 + 5

9. Explain the term 'linkage'. State the chromosome theory of linkage. Explain the phenomenon of incomplete linkage with supportive example. Why is linkage an exception to Mendel's second law? 2 + 5 + 5 + 3 CS/B.Sc. (H) (BT/Mol·Bio/Genetics/MicroBio)/SEM-2/PTG-202/2011 10. What is tetrad analysis ? How was *Neurospora* found suitable for the study of crossing over and recombination ? Using *Neurospora*, how can one show that crossing over takes place at four strand stage ? Briefly state the significance of crossing over. 2+4+6+3

11. Write short notes on the following : 3×5

- a) Bombay phenotype
- b) *t*-test
- c) Maternal inheritance.

[Turn over

2702

7