

V Semester B.Tech. Degree (Reg./Sup./Imp. – Including Part Time)
Examination, November 2015
(2007 Admn. Onwards)
PT2K6/2K6 CE/ME/EE/EC/CS/IT/AEI 501 : ENGINEERING
MATHEMATICS – IV

Time: 3 Hours Max. Marks: 100

Instruction: Answer all questions.

- 1. a) A continuous random variable X that can assume any value between x = 2 and x = 5 has a density function given by f(x) = K(1 + x) find P(X < 4).
 - b) If the probability that a Burgler will be caught in any given job is 0.20. Find the probability that he will be caught for the first time on his 4th job.
 - c) A random sample of size 10 is taken from a normal population having the variance $\sigma^2 = 42.5$. Find approximately the probability of getting a sample standard deviation between 3.14 and 8.94.
 - d) If the s.d. is 10 find the sample size of the maximum error in the estimate of the population mean is not to exceed 3 with probability 0.99.

e) Show that
$$J_{q_{\ell}}(n) = \sqrt{\frac{1-n^2}{n}} \operatorname{Supin} - \frac{1}{n} \cos n$$
.

- f) Express $x^3 5x^2 + x + 2$ in terms of legendre polynomials.
- g) Define definite, semi definite and indefinite forms of quadrature form.
- h) Find Fourier transfer of $u(t)e^{-at}$, a > 0.

 $(8 \times 5 = 40)$

2. a) Solve Dessel's equation of order "n".

15

OF

b) Derive the generating function for Pn(X).

15

3. a) Fit a Poisson distribution for the following distribution and also test the goodness of fit

15

x: 0 1 2 3 4 5

f : 142 156 69 27 5 1

OR

b) Test the normality of the following distribution using χ^2 -test of goodness of fit. 15

x : 125 135 145 155 165 175 185 195 205

f : 1 1 14 22 25 19 13 3 2

4. a) Derive Rodrigue's formula.

15

OR

b) Show that:

where C is a constant.

15

5. a) Find the canonical form and nature of $x^2 - 2y^2 + z^2 + 4xy - 8xz - 4yz$. 15 OR

b) i) Find the Fourier cosine transfer of $f(x) = \frac{1}{1 + x^2}$.

8

ii) Find the Fourier transfer of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| \ge 1 \end{cases}$ hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.