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DIGITAL SIGNAL PROCESSING

� A signal is defined as any physical quantity that varies with time, space or another

independent variable. 

� A system is defined as a physical

� System is characterized by the type of operation that performs on the signal. Such

operations are referred to as signal

Advantages of DSP 

1. A digital programmable system allows flexibility in reconfi

signal processing operations by changing the program. In analog redesign of hardware is

required. 

2. In digital accuracy depends on word length, floating Vs fixed point arithmetic etc.

In analog depends on components.

3. Can be stored on disk.

4. It is very difficult to perform precise mathematical operations on signals in analog

form but these operations can be routinely implemented on a digital computer using

software. 

5. Cheaper to implement.

6. Small size.

7. Several filters need several boards in

processor is used for many filters.

Disadvantages of DSP 

1. When analog signal is changing

.(beyond 100KHz range) 

2. w=1/2 Sampling rate.

3. Finite word length problems.

4. When the signal is weak, within a few tenths of millivolts, we cannot amplify the

signal after it is digitized. 

5. DSP hardware is more expensive than general purpose microprocessors & micro

controllers. 

DIGITAL SIGNAL PROCESSING UNIT
A signal is defined as any physical quantity that varies with time, space or another

A system is defined as a physical device that performs an operation on a

System is characterized by the type of operation that performs on the signal. Such

operations are referred to as signal processing. 

A digital programmable system allows flexibility in reconfiguring the digital

signal processing operations by changing the program. In analog redesign of hardware is

In digital accuracy depends on word length, floating Vs fixed point arithmetic etc.

components. 

It is very difficult to perform precise mathematical operations on signals in analog

form but these operations can be routinely implemented on a digital computer using

Several filters need several boards in analog, whereas in digital same DSP

filters. 

changing very fast, it is difficult to convert

problems.

the signal is weak, within a few tenths of millivolts, we cannot amplify the

DSP hardware is more expensive than general purpose microprocessors & micro

1 

UNIT-1
A signal is defined as any physical quantity that varies with time, space or another 

device that performs an operation on a signal. 

System is characterized by the type of operation that performs on the signal. Such 

guring the  digital 

signal processing operations by changing the program. In analog redesign of hardware is 

In digital accuracy depends on word length, floating Vs fixed point arithmetic etc.

It is very difficult to perform precise mathematical operations on signals in analog

form but these operations can be routinely implemented on a digital computer using 

analog, whereas in digital same DSP 

convert digital form 

the signal is weak, within a few tenths of millivolts, we cannot amplify the

DSP hardware is more expensive than general purpose microprocessors & micro
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6. Dedicated DSP can do better than general purpose

Applications of DSP 

1. Filtering.

2. Speech synthesis in which white noise (all frequency components present to the

same level) is filtered on a selective frequency basis in order to get an audio

3. Speech compression and expansion for use in radio voice

4. Speech recognition.

5. Signal analysis.

6. Image processing: filtering, edge effects,

7. PCM used in telephone communication.

8. High speed MODEM data communication using pulse modulation systems such as

FSK, QAM etc. MODEM transmits high speed (1200

band limited (3-4 KHz) analog telephone wire

9. Wave form generation.

Classification of Signals 

I. Based on Variables:

1. f(t)=5t : single variable

2. f(x,y)=2x+3y : two

3. S1= A Sin(wt) : real valued

4. S2  = A ejwt    : A Cos(wt)+j A Sin(wt) : Complex valued

S1(t)  
5. S4(t)= S 2(t)  : Multichannel

  
S3(t)  

Ex: due to earth quake, ground acceleration recorder

Ir(x, y, t)  
6. I(x,y,t)= Ig(x, y, t) 

  
Ib(x, y, t)  

II. Based on Representation:

better than general purpose DSP. 

Speech synthesis in which white noise (all frequency components present to the

same level) is filtered on a selective frequency basis in order to get an audio

expansion for use in radio voice communication.

Image processing: filtering, edge effects, enhancement. 

communication.

High speed MODEM data communication using pulse modulation systems such as

, QAM etc. MODEM transmits high speed (1200-19200 bits per second) over a

4 KHz) analog telephone wire line. 

variable

f(x,y)=2x+3y : two variables 

Sin(wt) : real valued signal 

: A Cos(wt)+j A Sin(wt) : Complex valued signal

: Multichannel signal 

Ex: due to earth quake, ground acceleration recorder 

  multidimensional
 
 

Representation:

2 

Speech synthesis in which white noise (all frequency components present to the

same level) is filtered on a selective frequency basis in order to get an audio signal. 

communication. 

High speed MODEM data communication using pulse modulation systems such as

19200 bits per second) over a 

signal 
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III. Based on duration. 

1. right sided: x(n)=0 for

2. left sided :x(n)=0 for

3. causal : x(n)=0 for 

4. Anti causal : x(n)=0 for

5. Non causal : x(n)=0 for  

IV. Based on the Shape. 

1. δ (n)=0 n≠ 0 

=1 n=0 
 
 
 
 
 
 
 
 

2.  u (n) =1 n≥ 0 

=0 n<0 
 
 
 
 
 

 
Arbitrary sequence can be represented as a sum of scaled, delayed impulses.

right sided: x(n)=0 for n<N 

left sided :x(n)=0 for n>N 

n<0 

x(n)=0 for n ≥ 0 

Non causal : x(n)=0 for  n >N 

Arbitrary sequence can be represented as a sum of scaled, delayed impulses.

3 

Arbitrary sequence can be represented as a sum of scaled, delayed impulses. 
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4 

 

P (n) = a-3 δ (n+3) +a1 δ (u-1) +a2 δ (u-2) +a7 δ (u-7) 

Or 

x(n) = 

 

 

∑ x(k)δ (n − k) 
k =−∞ 

 

u(n) = 
 

 

∑ 
k =−∞ 

δ (k) = δ (n) + δ (n-1)+ δ (n-2)….. 

 
 

= ∑ 
k =0 

 
δ (n − k) 

3.Discrete pulse signals. 

Rect (n/2N) =1 n  ≤ N 

= 0 else where. 

5.Tri (n/N) = 1- n /N n  ≤ N 

= 0 else where. 

1. Sinc (n/N)= Sa(n∏ /N) = Sin(n∏ /N) / (n∏ /N), Sinc(0)=1 

Sinc (n/N) =0 at n=kN, k= ± 1,  ± 2… 

Sinc (n) = δ (n)  for N=1; (Sin (n∏ ) / n∏ =1= δ (n)) 

6.Exponential Sequence 

x (n) = A α n 

If A & α are real numbers, then the sequence is real. If 0<α <1 and A is +ve, then 

sequence values are +ve and decreases with increasing n. 

For -1<α <0, the sequence values alternate in sign but again decreases in magnitude 

with increasing n. If  α >1, then the sequences grows in magnitude as n increases. 

7. Sinusoidal Sequence 

x(n) = A Cos(won+φ )  for all n 
 
 
 
 
 
 
 

8. Complex exponential sequence 

∞

n

∞ 
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If α = α  ejwo 

A =  A  ej φ 

x(n) =  A  ej φ 

 
 
 
α n ejwon 

 

=   A  α  n  Cos(won+
Sin(won+

If  α >1, the sequence oscillates with exponentially growing 

If  α <1, the sequence oscillates with exponentially decreasing envelope.

So when discussing complex exponential signals of the form x(n)= A e

sinusoidal signals of the form x(n)= A Cos(w

in a frequency internal of length 2 

 

V. Deterministic (x (t) = α t 

& Non-deterministic Signals. 

 

VI. Periodic & non periodic based on

VII. Power & Energy Signals

Energy signal: E = finite, P=0

• Signal with finite energy is called energy
 

Power signal: E = ∞, P ≠ 0, P ≠

Neither energy nor power: E=

 

Based on Symmetry 

1. Even 

2. Odd 

3. Hidden 

4. Half-wave symmetry.

n+φ ) + j  A  α  n  

n+φ ) 

>1, the sequence oscillates with exponentially growing envelope.

<1, the sequence oscillates with exponentially decreasing envelope.

So when discussing complex exponential signals of the form x(n)= A e

sinusoidal signals of the form x(n)= A Cos(won+φ ) , we need only consider frequencies 

frequency internal of length 2 ∏ such as ∏ < Wo < ∏ or 0 ≤ Wo<2 

 x (t) = A Sin(wt)) 

deterministic Signals. (Ex: Thermal noise.) 

Periodic & non periodic based on repetition. 

Signals 

finite, P=0 

Signal with finite energy is called energy signal. 

≠ ∞  Ex: All periodic waveforms 

E= ∞, P=0  

x(n)=xe(n)+xo(n) 

x(-n)=xe(-n)+xo(-n)

x(-n)=xe(n)-xo(n) 

symmetry. xe(n)= 
1 

[x(n)+x(-n)]
2 

5 

envelope. 

<1, the sequence oscillates with exponentially decreasing envelope. 

So when discussing complex exponential signals of the form x(n)= A ejwon or real 

) , we need only consider frequencies 

Wo<2 ∏ . 

 

waveforms 

n) 

n)] 
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Operation on Signals: 
 

1. Shifting. 

x(n) → shift right or delay = x(n

x(n) → shift left or  advance =  x(n+m)

 

2. Time reversal or fold. 

x(-n+2) is x(-n) delayed by two samples. 

x(-n-2) is x(-n) advanced by two samples.

Or 

x(n) is right shift x(n-2), then fold x(

x(n) fold x(-n) shift left x(-(n+2)) = x(

Ex: 

x(n) = 2, 3 , 4 , 5, 6, 7 . 
 
 

↑ 
 

Find 1. y(n)=x(n-3)  2. x(n+2)  3. x(

1. y(n)= x(n-3) = { 0 ,2,3,4,5,6,7} shift x(
↑ 

xo(n)= 
1 [x(n)-x(-n)]
2 

shift right or delay = x(n-m) 

shift left or  advance =  x(n+m) 

n) delayed by two samples. 

n) advanced by two samples. 

2), then fold x(-n-2) 

(n+2)) = x(-n-2) 

3)  2. x(n+2)  3. x(-n)  4. x(-n+1)  5. x(-n-2) 

,2,3,4,5,6,7} shift x(n) right 3 units. 

6 

n)] 
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2. x(n+2) = { 2,3,4,5, 6 

 

3. x(-n) = { 7,6,5, 4 ,3,2} fold x(n) about n=0.
↑ 

 

4. x(-n+1) = { 7,6, 5 ,4,3,2}
↑ 

 

5. x(-n-2) = { 7,6,5,4,3,2} fold x(n), 

3. a. Decimation. 

Suppose x(n) corresponds to an analog signal x(t) sampled at intervals Ts. The signal 

y(n) = x(2n) then corresponds to the compressed signal x(2t) sampled at Ts and contains 

only alternate samples of x(n)( corresponding to 

directly from x(t) (not in compressed version). If we sample it at intervals 2Ts (or at a

sampling  rate  Fs  = 
1 

).  This  means  a  two  fold  reduction  in  the  sampling 
2Ts 

Decimation by a factor N is equivalent to sampling x(t) at intervals NTs and implies an 

N-fold reduction in the sampling rate.

b. Interpolation. 

y(n) = x(n/2) corresponds to x(t) sampled at Ts/2 and has twice the length of x(n) 

with one new sample between adjacent samples of

The new sample value as ‘0’ for Zero interpolation.

The new sample constant = previous value for step interpolation. 

The new sample average of adjacent samples for linear

Interpolation by a factor of N is equivalent to sampling x(t) at intervals Ts/N and 

implies an N-fold increase in both the sampling rate and the signal length.

Ex: Decimation 

{ 1 , 2, 6, 4, 8} → { 1 , 6, 8}
↑ 

n → 2n 
↑ 

 

Step interpolation 

 
{ 1 , 2, 6, 4, 8} → { 1 , 1,2,2,6,

↑ 
n →n/2 

↑ 

Since Decimation is indeed the inverse of interpolation, but the converse is not 

necessarily true. First Interpolation & Decimation.

Ex: x(n) = { 1 1, 2, 5, -1} 
↑ 

6 ,7} shift x(n) left 2 units. 
↑ 

,3,2} fold x(n) about n=0. 

,4,3,2} fold x(n), delay by 1. 

2) = { 7,6,5,4,3,2} fold x(n), advanced by 2. 

Suppose x(n) corresponds to an analog signal x(t) sampled at intervals Ts. The signal 

y(n) = x(2n) then corresponds to the compressed signal x(2t) sampled at Ts and contains 

only alternate samples of x(n)( corresponding to x(0), x(2), x(4)…). We can also obtain 

directly from x(t) (not in compressed version). If we sample it at intervals 2Ts (or at a

).  This  means  a  two  fold  reduction  in  the  sampling 

Decimation by a factor N is equivalent to sampling x(t) at intervals NTs and implies an 

fold reduction in the sampling rate. 

y(n) = x(n/2) corresponds to x(t) sampled at Ts/2 and has twice the length of x(n) 

with one new sample between adjacent samples of x(n). 

The new sample value as ‘0’ for Zero interpolation. 

The new sample constant = previous value for step interpolation. 

The new sample average of adjacent samples for linear interpolation.

y a factor of N is equivalent to sampling x(t) at intervals Ts/N and 

fold increase in both the sampling rate and the signal length.

Step interpolation 

8} → { 1 , 1, 6, 6, 8, 8} 
n →n/2 

↑
 

Decimation 

1,2,2,6, 6,4,4,8, 8} → { 1 , 2, 6, 4,
n → 2n 

↑
 

Since Decimation is indeed the inverse of interpolation, but the converse is not 

necessarily true. First Interpolation & Decimation. 

 

7 

Suppose x(n) corresponds to an analog signal x(t) sampled at intervals Ts. The signal 

y(n) = x(2n) then corresponds to the compressed signal x(2t) sampled at Ts and contains 

x(0), x(2), x(4)…). We can also obtain 

directly from x(t) (not in compressed version). If we sample it at intervals 2Ts (or at a 

).  This  means  a  two  fold  reduction  in  the  sampling  rate. 

Decimation by a factor N is equivalent to sampling x(t) at intervals NTs and implies an 

y(n) = x(n/2) corresponds to x(t) sampled at Ts/2 and has twice the length of x(n)  

interpolation. 

y a factor of N is equivalent to sampling x(t) at intervals Ts/N and 

fold increase in both the sampling rate and the signal length. 

4, 8} 

Since Decimation is indeed the inverse of interpolation, but the converse is not 
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x(n/3) = { 1,0,0, 2 2,0,0,5,0,0,
↑ 

 

= { 1,1,1, 2 ,2,2,5,5,5,-1,-
↑ 

 

= { 1, 4 , 5 , 2 , 3,4,5,3,1,-1, 
3 3 ↑ 

4. Fractional Delays. 

It requires interpolation (N), shift (M) and Decimation (n): x (n 

x(n) = {2, 4, 6 , 8}, find y(n)=x(n
↑ 

 
g(n) = x (n/2) = {2, 2, 4, 4, 6 

↑ 

h(n) =g(n-1) = x( n − 1 ) = {2, 2, 4,
2 

y(n) = h(2n) = x(n-0.5) = 

OR 

g(n) = x(n/2) = {2,3,4,5, 

 
 
6 
↑

h(n) = g(n-1) = {2,3,4, 5 , 6, 7,8,4}
↑ 

 

g (n) = h(2n)={3,5,7,4} 

Classification of Systems 

1. a. Static systems or memory less system. (Non Linear /

Ex. y(n) = a x (n) 

= n x(n) + b x3(n) 

= [x(n)]2 = a(n-1) x(n) 

y(n) = τ [x(n), n] 

If its o/p at every value of ‘n’ depends only on the input x(n) at the same value of ‘n’ 

Do not include delay elements. Similarly to combinational circuits.

b. Dynamic systems or memory.

If its o/p at every value of ‘n’ depends on the o/p till (n

‘n’ or previous value of ‘n’. 

Ex. y(n) = x(n) + 3 x(n-1) 

2,0,0,5,0,0,-1,0,0} Zero  interpolation. 

-1,-1}  Step interpolation. 

1, - 2 ,- 1 }  Linear interpolation. 
3 3 

It requires interpolation (N), shift (M) and Decimation (n): x (n - M 

N 

, 8}, find y(n)=x(n-0.5) = x ( 2n − 1 ) 
2 

6 , 6, 8,8} for step interpolation. 
 

{2, 2, 4, 
 
4 , 6, 6,8,8} 
↑ 

 x( 
2n − 1 

) = {2, 
2 

 
4 , 6, 8} 
↑ 

 
 
6 ,7,8,4} linear interpolation. 
↑ 

, 6, 7,8,4} 

a. Static systems or memory less system. (Non Linear / Stable) 

 

If its o/p at every value of ‘n’ depends only on the input x(n) at the same value of ‘n’ 

Do not include delay elements. Similarly to combinational circuits. 

b. Dynamic systems or memory. 

every value of ‘n’ depends on the o/p till (n-1) and i/p at the same value of 

8 

M ) = x ( (Nn − M ) ) 
N N 

Stable) 

If its o/p at every value of ‘n’ depends only on the input x(n) at the same value of ‘n’ 

 

1) and i/p at the same value of 
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∑ 

∑

= 2 x(n) - 10 x(n-2) + 15 y(n

Similar to sequential circuit. 

2. Ideal delay system. (Stable, linear, memo

Ex. y (n) = x(n-nd) 

nd is fixed = +ve integer. 

3. Moving average system. (LTIV
 

m2 

y(n) = 1/ (m1+m2+1) x(n 
k =−m1 

This system computes the nth 

samples of input sequence around the n

 
 
 
 
 
 
 
 
 
 

If M1=0; M2=5 
 

y(7) = 1/6 [ ∑ x(7 − k) ] 
k =0 

 

= 1/6 [x(7) + x(6) + x(5) + x(4) + x(3) + x(2)]

y(8) = 1/6 [x(8) + x(7) + x(6) + x(5) + x(4) + x(3)]

So to compute y (8), both dotted lines would move one sample

4. Accumulator. ( Linear , Unstable
 

y(n) = ∑ x(k) 
k =−∞ 

 
n−1 

= x(k) + x(n) 
k =−∞ 

 

= y(n-1) + x(n) 

5

n

2) + 15 y(n-1) 

 

Ideal delay system. (Stable, linear, memory less if nd=0) 

Moving average system. (LTIV ,Stable) 

n − k) 

th sample of the o/p sequence as the average of (m

sequence around the nth sample. 

= 1/6 [x(7) + x(6) + x(5) + x(4) + x(3) + x(2)] 

y(8) = 1/6 [x(8) + x(7) + x(6) + x(5) + x(4) + x(3)] 

So to compute y (8), both dotted lines would move one sample to right.

( Linear , Unstable ) 

9 

sample of the o/p sequence as the average of (m1+m2+1) 

to right. 
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n

x(n) = { …0,3,2,1,0,1,2,3,0,….}

y(n) = { …0,3,5,6,6,7,9,12,12…}

O/p at the nth  sample depends on the i/p’s till n

Ex: 

x(n) = n u(n) ; given y(-1)=0.  i.e. initially relaxed.
 

−1 n 

y(n) =  ∑ x(k)+ ∑ x(k) 
k =−∞ k =0 

 
= y(-1) + ∑ x(k) = 0 + ∑ 

k =0 
 

5. Linear Systems. 

k 

If y1(n) & y2(n) are the responses of a system when x

inputs, then the system is linear if and only if

τ[x1(n)+ x2(n)] = τ[x1(n)] + τ[x

=  y1(n) + y2(n) (Additive

τ[ax(n)]  = a τ[x(n)]  = a y(n) 
 

The two properties can be combined into principle of superposition stated as

τ[ax1(n)+ bx2(n)] = a τ[x1(n)] + b 

Otherwise non linear system.

6. Time invariant system. 

Is one for which a time shift or delay of 

in the o/p sequence. 

y(n-k) = τ[x(n − k)] TIV 
 

≠ TV 

7. Causality. 

A system is causal if for every choice of n

depends only on the input sequence values for n 

y(n) = x(n) + x(n-1) causal. 

y(n) = x(n) + x(n+2) + x(n-4)  non causal.

8. Stability. 

n

x(n) = { …0,3,2,1,0,1,2,3,0,….} 

y(n) = { …0,3,5,6,6,7,9,12,12…} 

sample depends on the i/p’s till nth sample 

1)=0.  i.e. initially relaxed. 

∑ n =  n(n + 1) 
 =0 2 

(n) are the responses of a system when x1(n) & x2(n) are the respective 

inputs, then the system is linear if and only if 

x2(n)] 

(Additive property) 

 (Scaling or Homogeneity) 

The two properties can be combined into principle of superposition stated as

+ b τ[x2(n)] 

Otherwise non linear system. 

 

Is one for which a time shift or delay of input sequence causes a corresponding shift 

 

A system is causal if for every choice of no the o/p sequence value at index n= n

depends only on the input sequence values for n ≤ no. 

4)  non causal. 
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(n) are the respective 

The two properties can be combined into principle of superposition stated as 

input sequence causes a corresponding shift 

the o/p sequence value at index n= no All 
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For every bounded input x(n
 

By such that y(n) ≤ By < ∞ . 
 

PROPERTIES OF LTI SYSTEM.
 

1.   x(n) =  ∑ x(k)δ (n − k) 
k =−∞ 

 

y(n) = τ [ ∑ x(k)δ (n − k) ] for linear
k =−∞ 

 
 

∑ x(k) 
k =−∞ 

 
τ [δ (n-k)] for time invariant

 
 

∑ x(k)h(n − k) = x(n) * h(n)
k =−∞ 

 

Therefore o/p of any LTI system is convolution of i/p and impulse response.
 

y(no) =  ∑h(k)x(no − k) 
k =−∞ 

 
−1 ∞

= ∑h(k)x(no − k) + ∑
k =−∞ k 

= h(-1) x(n0+1) + h(-

y(n) is causal sequence if 

y(n) is anti causal sequence if h(n) =0 

y(n) is non causal sequence if h(n) =0 |n|>N
 

Therefore causal system y(n) = 
 

If i/p is also causal y(n) = 
 

2. Convolution operation is commutative. 

x(n) * h(n) = h(n) * x(n) 

3. Convolution operation is distributive over

x(n) * [h1(n) + h2(n)] = x(n) * 

4. Convolution property is associative. 

x(n) * h1(n) * h2(n) = [x(n) * h1

∞

∞

∞

∞

∞

n) ≤  Bx  <  ∞  for all n, there exists a fixed +ve finite value

PROPERTIES OF LTI SYSTEM. 

] for linear 

k)] for time invariant 

h(n) 

Therefore o/p of any LTI system is convolution of i/p and impulse response.

∞ 

∑h(k)x(no − k) 
 =0 

-2) x(n0+2)……….+h(0) x(n0) + h(1) x(n

 h(n) =0 n<0 

y(n) is anti causal sequence if h(n) =0 n≥ 0 

y(n) is non causal sequence if h(n) =0 |n|>N 

Therefore causal system y(n) = ∑h(k)x(n − k) 
k =0 

If i/p is also causal y(n) = ∑h(k)x(n − k) 
k =0 

Convolution operation is commutative. 

Convolution operation is distributive over additive. 

* h1(n) + x(n) *  h2(n) 

Convolution property is associative. 

1(n)]  *   h2(n) 

∞

n 

11 

for all n, there exists a fixed +ve finite value 

Therefore o/p of any LTI system is convolution of i/p and impulse response. 

) + h(1) x(n0-1) + …. 
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5 y(n) = h2 * w(n) = h2(n)*h1(n)*x(n) =
 
 
 
 
 

6 
 
 
 
 
 
 
 
 

h (n) = h1(n) + h2(n) 

7 LTI systems are stable if and only if impulse response is 
 

y(n) 

 
 

= ∑h(k)x(n − k) 
k =−∞ 

 
 

≤  ∑
k =−∞

 

Since x (n) is bounded x(
 

∴  y(n) 

 

 

≤  Bx   ∑ 
k =−∞ 

 
h(k) 

 
 

∴S= ∑ 
k =−∞ 

 
h(k) 

 
is necessary & sufficient condition for stability.

8 δ (n) * x(n) = x(n) 

9 Convolution yields the zero state response of an LTI

10 The response of LTI system to 

period. 

y(n) = h (n) * x(n) 

∞ 

∞

∞∞

h2(n)*h1(n)*x(n) = h3(n)*x(n) 

LTI systems are stable if and only if impulse response is absolutely

 

∑ 
=−∞ 

 
h(k) 

 
x(n − k) 

(n) ≤ bx< ∞ 

is necessary & sufficient condition for stability. 

Convolution yields the zero state response of an LTI system. 

system to periodic signals is also periodic with identical 
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absolutely summable. 

periodic signals is also periodic with identical All 
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=  ∑h(k)x(n − k)
k =−∞ 

 

y (n+N) =  ∑h(k)x(n − k + N )
k =−∞ 

 

put n-k = m 

=  ∑h(n − m)x(m + N )
m=−∞ 

 

=  ∑h(n − m)x(m)
m=−∞ 

 

m=k 
 

=  ∑h(n − k)x(k)
k =−∞ 

 
=  y(n) (Ans)

Q. y (n)-0.4 y(n-1) =x (n). Find causal impulse response? h(n)=0 n<0.

h(n) = 0.4 h(n-1) + δ (n) 

h(0) = 0.4 h(-1) + δ (0) =1 

h(1) = 0.4 h(0) = 0.4 

h(2) = 0.42

h(n) = 0.4n  for n≥ 0 

Q. y(n)-0.4 y(n-1) = x(n). find the anti

h(n-1) = 2.5 [h(n)- δ (n)] 

h(-1) =  2.5 [h(0)- δ (0) ] =

h(-2) = -2.52  . …….. h(n) =

Q. x(n)={1,2,3} y(n)={3,4} Obtain difference equation from i/p & o/p information

y(n) + 2 y(n-1) + 3 y(n-2) = 3 x(n) + 4 x(n

Q. x(n) = {4,4,}, y(n)= x(n)- 

system. Sketch the realization of each system and find the outpu

Solution: 

The original system is y(n)=x(n)

The inverse system is x(n)= y(n)

y (n) = x (n) – 0.5 x(n-1) 

Y (z) = X (z) [1-0.5Z-1] 

∞

∞ 

∞

∞

∞

= y(n) (Ans) 

1) =x (n). Find causal impulse response? h(n)=0 n<0.

1) = x(n). find the anti-causal impulse response? h(n)=0 for

] = -2.5

. …….. h(n) = -2.5n  valid for n≤ -1

Obtain difference equation from i/p & o/p information

2) = 3 x(n) + 4 x(n-1) (Ans)

 0.5x(n-1). Find the difference equation of the inverse

system. Sketch the realization of each system and find the output of each system.

The original system is y(n)=x(n)-0.5 x(n-1) 

The inverse system is x(n)= y(n)-0.5 y(n-1) 

13 

1) =x (n). Find causal impulse response? h(n)=0 n<0.

causal impulse response? h(n)=0 for n≥ 0 

Obtain difference equation from i/p & o/p information

1). Find the difference equation of the inverse 

t of each system. All 
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Y (z) =1-0.5 Z-1

X (z) 

y (n) – 0.5 y(n-1) =x(n) 

Y (z) [1-0.5 Z-1] = X (z) 

Y (z) 

X (z) 
= [1-0.5 Z-1] -1

g (n) = 4 δ (n) - 2δ (n-1) + 4δ

y (n) = 0.5 y(n-1) + 4δ (n) + 2

y (0) = 0.5y(-1) + 4δ (0) = 4 

y(1) = 4 

y(2) = 0.5 y(1) - 2δ (0) = 0 

y(n) = {4, 4} same as i/p. 

Non Recursive filters 
∞ 

y(n) =  ∑  ak x(n-k) 
k =−∞ 

for causal system 
∞ 

= ∑ ak x(n-k) 
k =0 

For causal i/p sequence 

System 

Inverse System 

δ (n-1) - 2δ (n-2) = 4δ (n) + 2δ (n-1) - 2δ

(n) + 2δ (n-1) – 2δ (n-2) 

 

Recursive filters 
N 

y(n) = ∑  ak x(n-k)
k =0 

Present response is a function of the

present and past N values of the

excitation as well as the past N values

of  response.  It  gives IIR o/p but not

14 

δ (n-2) 

N 

k) –∑  bk y(n-k)
k =1 

Present response is a function of the 

present and past N values of the 

excitation as well as the past N values 

of response. It gives  IIR  o/p  but not 
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N 

y(n) = ∑ ak x(n-k) 
k =0 

 

Present response depends only on present  

i/p & previous i/ps but not future i/ps. It gives 

FIR o/p. 

 

Q. y(n) = 

1 [x (n+1) + x (n) +
3 

Let x(n) = δ (n) 
 

h(n) = 

h(0) = 

h(-1) = 

h(1) = 

1 
[δ  (n+1) + δ  (n) + 

3 

1 

3 

1 

3 

1 

3 

S= ∑h(n) < ∞ therefore Stable.

 
 
 
 

Q. y(n) = a y(n-1) + x(n) given y(

Let x(n) = δ (n) 

h(n) = y(n) = a y(n-1) + δ 

h(0) = a y(-1) + δ (0) = 1 = y(0) 

h(1) = a y(0) + δ (1) = a 

h(2) = a y(1) + δ (2) = a2  . . . . . . . h(n) =
 

y(n-1) = 
1 

[ y(n) – x(n)] 
a 

 
y(n) = 

1 
[ y(n+1) – x(n+1)]

a 

Present response depends only on present  

i/p & previous i/ps but not future i/ps. It gives 

always. 

y(n) – y(n-1) = x(n) 

[x (n+1) + x (n) + x (n-1)] Find the given system is stable or

(n) + δ  (n-1)] 

Stable. 

given y(-1) = 0 

δ (n) 

(0) = 1 = y(0) 

. . . . . . . h(n) = an u(n) stable if a<1. 

x(n+1)] 

15 

1) = x(n) – x(n-3) 

Find the given system is stable or not? 
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y(-1) = 
1 [ y(0) – x(0)]=0 
a 

y(-2) = 0 
 

Q. y(n) = 1 
 

 

n + 1 

 
y(n-1) + x(n) 

= 0 otherwise. Find whether given system is

Let x(n) = δ (n) 

h (0) = 1 y(-1) +δ (0) = 1 

h(1) = ½ y(0) + δ (1) = ½ 

h(2) = 1/6 

h(3) = 1/24 

if x(n) = δ (n-1) 

y(n) = h(n-1) 
 

h(n-1) = y(n) = 1 

n + 1 

 
h(n-2) + 

n=0 h(-1) = y(0) = 1 x 0+0

n=1 h(0) = y(1) = ½ x 0 + 

n=2 h(1) = y(2) = 1/3 x 1 + 0 =

h(2) = 1/12 

∴h (n, 0) ≠ h(n,1) ∴TV 

Q. y (n) = 2n x(n) Time varying
 

Q. y (n) = 
1 

[x (n+1) + x (n) + x (n
3 

Q. y (n) = 12 x (n-1) + 11 x(n

Q. y (n) = 7 x2(n-1) non linear

Q. y (n) = x2(n) non linear 

Q. y (n) =  n2 x (n+2) linear 

Q. y (n) = x (n2) linear 

Q. y (n) =  ex(n)  non linear 

Q. y (n) =  2x(n)  x (n) non linear, TIV

 

 for n≥ 0 

otherwise. Find whether given system is time variant or

 

(1) = ½ 

2) + δ (n-1) 

= 1 x 0+0 =0 

h(0) = y(1) = ½ x 0 + δ (0)= 1 

h(1) = y(2) = 1/3 x 1 + 0 = 1/3 

 

varying 

[x (n+1) + x (n) + x (n-1)] Linear 

1) + 11 x(n-2) TIV 

1) non linear 

x (n) non linear, TIV 

16 

or not? 
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(If the roots of characteristics equation are a magnitude less than unity. It is a 

necessary & sufficient condition)

Non recursive system, or FIR filter are always stable.

Q. y (n) + 2 y2(n) = 2 x(n) – x(n

Q. y (n) - 2 y (n-1) = 2x(n)  x (n) non linear,

Q. y (n) + 4 y (n) y (2n) = x (n) non linear, TIV

Q. y (n+1) – y (n) = x (n+1) is causal

Q. y (n) - 2 y (n-2) = x (n) causal

Q. y (n) - 2 y (n-2) = x (n+1) non causal

Q. y (n+1) – y (n) = x (n+2) non causal

Q. y (n-2) = 3 x (n-2) is static or Instanta

Q. y (n) = 3 x (n-2) dynamic 

Q. y (n+4) + y (n+3) = x (n+2) causal & dynamic 

Q. y (n) = 2 x (αn ) 

If α =1 causal, static 

α <1 causal, dynamic 

α >1 non causal, dynamic

α  ≠ 1 TV 

Q. y (n) = 2(n+1) x (n) is causal & static but TV.

Q. y (n) = x (-n) TV 

Solution of linear constant-

Q. y(n)-3 y (n-1) – 4 y(n-2) = 0 determine zero

Given y(-2) =0 & y(-1) =5

Let solution to the homogeneous equation be 

yh  (n) = λ n 

λ n - 3 λ n-1 - 4 λ n-2 =0 

λ n-2[ λ 2 - 3 λ - 4] =0 

λ = -1, 4 

yh  (n) = C1 λ 1
n + C2 λ 2

n = 

y(0) = 3y(-1) +4 y(-2) = 15 

characteristics equation are a magnitude less than unity. It is a 

necessary & sufficient condition) 

Non recursive system, or FIR filter are always stable. 

x(n-1)  non linear, TIV 

x (n) non linear, TIV 

Q. y (n) + 4 y (n) y (2n) = x (n) non linear, TIV 

y (n) = x (n+1) is causal 

2) = x (n) causal 

2) = x (n+1) non causal 

y (n) = x (n+2) non causal 

2) is static or Instantaneous. 

 

Q. y (n+4) + y (n+3) = x (n+2) causal & dynamic 

>1 non causal, dynamic 

Q. y (n) = 2(n+1) x (n) is causal & static but TV. 

-co-efficient difference equation 

2) = 0 determine zero-input response of the system; 

1) =5 

Let solution to the homogeneous equation be 

 C1(-1)n  + C2 4
n 

17 

characteristics equation are a magnitude less than unity. It is a 

input response of the system; 
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∴ C1+ C2 =15 

y (1) = 3y (0) +4 y (-1) = 65 

∴ -C1+4C2 = 65 Solve:

y(n) = (-1)n+1 + 4n+2 (Ans) 

If it contain multiple roots yh

or λ 1
n  [C1+ nC2   + n2 C3….]

Q. Determine the particular solution of y(n) + a

x(n) = u(n) 

Let yp (n) = k u(n) 

k u(n) + a1  k u(n-1) =u(n) 

To determine the value of k, we must evaluate this equation for any n 

k + a1  k =1 

k = 
1
 

1 + a1 

yp (n) = 1 

1 + a1 

 
u(n) Ans 

 

x(n) 

1. A 

2. Amn
 

3. Anm
 

4. A Coswon or A Sinw

Q. y(n) = 
5 

y(n-1) - 
6 

1 
y(n-2) 

6 

Let yp  (n) = K2n
 

K2n u(n) = 
5 

K 2n-1 u(n-1) - 
6 

 
1 

6

For n   ≥ 2 
 

4K = 
5 

(2K) - 
6 

1 
K +4 Solve for

6 

∴ yp  (n) = 
8 

2n Ans 
5 

Q. y(n) – 3 y(n-1) - 4 y(n-2) = x(n) + 2x(n

 

Solve: C1  = -1 & C2=16 

h(n) = C1 λ 1
n + C2 n λ 1

n  + C3 n
2  λ 1

n
 

….] 

Q. Determine the particular solution of y(n) + a1y(n-1) =x(n) 

To determine the value of k, we must evaluate this equation for any n 

yp(n) 

Sinwon 

K 

Kmn
 

Ko n
m + K1n

m-1 + …. Km 

K1  Coswon + K2 Sinwon

 + x(n) x(n) = 2n n≥ 0 

 
1 

K 2n-2  u(n-2) + 2n u(n) 
6 

Solve for K=8/5 

2) = x(n) + 2x(n-1) Find the h(n) for recursive system.

18 

To determine the value of k, we must evaluate this equation for any n ≥ 1 

m 

 

1) Find the h(n) for recursive system. 
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We know that yh (n) = C1 (-1)

yp  (n) =0 when x(n) = 

for n=0 

y(0) - 3y(-1) - 4 y(-2) = δ (0) + 2

∴y(0) =1 

y(1) = 3 y(0) +2 = 5 

C1  + C2 =1 

-C1  + C2 =5 Solving C1  = −

∴ h(n) = [ − 
1
 

5 
(-1)n + 

6 
4n ] u(n) Ans

5 

h(n) – 3 h(n-1) -4 h(n-2) = δ (n) + 2

h(0) = 1 

h(1) =3 h(0) + 2 = 5 

plot for h(n) in both the methods are same.

Q. y(n) – 0.5 y(n-1) = 5 cos 0.5n

yh(n) = λ n 

λ n – 0.5 λ n-1 =0 

λ n-1 [ λ -0.5] =0 

λ =0.5 

∴ yh(n) = C (0.5)n 

yp(n) = K1 cos 0.5n∏ + K2 sin 0.5n

yp(n-1) = K1 cos 0.5(n-1) ∏ + K

= - K1  sin 0.5n∏ - K2cos 0.5n

yp(n) - 0.5 yp(n-1) = 5 cos 0.5 n

= (K1 + 0.5 K2) cos 0.5 n

K1  + 0.5 K2  = 5 

0.5 K1  – K2 =0 Solving we get: K

∴ yp(n) = 4 cos 0.5 n∏ + 2 sin 0.5n

1)n + C2 4
n 

(n) =0 when x(n) = δ (n) 

(0) + 2δ (-1) 

− 
1
 

5 
; C2  = 6 

5 

] u(n) Ans 

OR 

(n) + 2δ (n-1) 

plot for h(n) in both the methods are same. 

1) = 5 cos 0.5n∏ n≥ 0 with y(-1) = 4 

sin 0.5n∏ 

+ K2 sin 0.5(n-1) ∏ 

cos 0.5n∏ 

1) = 5 cos 0.5 n∏ 

) cos 0.5 n∏ -(0.5 K1 – K2) sin 0.5n∏ 

Solving we get: K1= 4 & K2=2 

+ 2 sin 0.5n∏ 
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The final response 

y (n) = C (0.5)n + 4 cos 0.5 n∏

with y(-1) = 4 

4 = 2C-2 

 C=3 

∴ y (n) = 3 (0.5)n + 4 cos 0.5 

Concept of frequency in continuous

1) xa (t) = A Cos ( Ω 

x (nTs) = A Cos ( Ω 

= A Cos (wn) 

w = Ω Ts 

 
 
 
 
 

 
Ω = rad / sec w = rad /

F = cycles / sec f = cycles /

2) A Discrete- time – sinusoid 

x (n+N) = x (n) 

Cos 2π f0 (n+N) = Cos 2π f0 n

2π f0N = 2π K => f0 = 
K

 
N 

Ex: A Cos ( 
Π 

) n 
6 

w =  
Π 

= 2 π f 
6 

f =  
1 

N=12 Samples/Cycle
12 

Sampling Period 

Q. Cos (0.5n) is not periodic 

∏ + 2 sin 0.5n∏ 

+ 4 cos 0.5 n∏ + 2 sin 0.5n∏   for n≥ 0 

Concept of frequency in continuous-time and discrete-time. 

 t) 

 nTs) 

= A Cos (wn) 

w = rad / Sample 

f = cycles / Sample 

sinusoid is periodic only of its f is a Rational number. 

n 

Samples/Cycle ; Fs= Sampling Frequency;
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Q. x (n) = 5 Sin (2n) 
2π f = 2 => f =  

1 
 

Π 
Q. x (n) = 5 Cos (6π n) 

2π f = 6π => f = 3 
 

Q. x (n) = 5 Cos 6Πn 

35 

2π f = 
6Π => f = 
35 

3 

35 

Q. x (n) = Sin (0.01π n) 

2π f = 0.01π => f = 

 
 
0.01

2 

Q. x (n) = Cos (3π n)  

fo  = GCD (f1, f2) & T = LCM (T

[Complex exponential and sinusoidal sequences are not necessarily periodic in ‘n’ 

with period ( 2Π ) and depending on Wo, may not be periodic at all]
Wo 

N = fundamental period of a periodic sinusoidal.

3. The highest rate of oscillations in a discrete time sinusoid is obtained when 

w = π  or -π 

Non-periodic 

N=1 for K=3 Periodic 

for N=35 & K=3 Periodic

0.01 

 

 
 

for N=200 & K=1 Periodic

for N=2 

T = LCM (T1, T2) ------- For Analog/digital signal

[Complex exponential and sinusoidal sequences are not necessarily periodic in ‘n’ 

) and depending on Wo, may not be periodic at all] 

N = fundamental period of a periodic sinusoidal. 

3. The highest rate of oscillations in a discrete time sinusoid is obtained when 

21 

Periodic 

Periodic 

Periodic 

signal 

[Complex exponential and sinusoidal sequences are not necessarily periodic in ‘n’ 

3. The highest rate of oscillations in a discrete time sinusoid is obtained when 
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Discrete-time sinusoidal signals with frequencies that are separated by an integral 

multiple of 2π  are Identical. 

4.  - Fs  ≤  F ≤  
Fs 

2 2 

- π Fs ≤  2π F ≤  π Fs 

-  
Π   

≤  Ω  ≤   
Π

 
Ts Ts 

- π  ≤  Ω Ts ≤ π 
Therefore - π  ≤  w ≤ π 

5. Increasing the frequency of a discrete

decrease the period of the signal.

x1(n) = Cos ( Πn ) 
4 

x2(n) = Cos ( 
3Πn 

) 
8 

2 π  f = 3π /8 

=> f =  
3
 

16 
 

6. If analog signal frequency = F
 

W = Ω
2 π  f = 2 π F Ts

 
 
 
 
 
 
 
 
 
 
 
 
 

Π 
2π F = 4 

 
 

; 

time sinusoidal signals with frequencies that are separated by an integral 

Increasing the frequency of a discrete- time sinusoid does not necessarily 

signal. 

N=8 

N=16 3/8 > 1/4 

If analog signal frequency = F = 

Ω Ts 

1   
samples/Sec = Hz then digital frequency f = 1

Ts 

s => f =1 

2π f =

22 

time sinusoidal signals with frequencies that are separated by an integral 

time sinusoid does not necessarily 

samples/Sec = Hz then digital frequency f = 1 

π /4 

All 
JN

TU
 W

or
ld



  

F = 1   ;  T = 8 ; 
8 

7. Discrete-time sinusoids are always periodic in
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Q. The signal x (t) = 2 Cos (40 

common period of the sampled signal x (n), and how many full periods of x (t) does it 

take to obtain one period of x(n)?

F1 = 20Hz F2  = 30Hz 

f1 = 20 = 4  = 
K1 

75 15 N1 

The common period is thus N=LCM (N

The fundamental frequency F

And fundamental period T = 
 

Since N=15 
 

1sample ---------- 
1 

sec 
75 

 
15 sample ----------- ? =>

f = 1 N=8 
8 

time sinusoids are always periodic in frequency. 

The signal x (t) = 2 Cos (40 π t) + Sin (60π t) is sampled at 75Hz. What is the 

common period of the sampled signal x (n), and how many full periods of x (t) does it 

take to obtain one period of x(n)? 

f2 = 30 = 
2 =  

K 2 
75 5 N 2 

The common period is thus N=LCM (N1, N2) = LCM (15, 5) = 15 

The fundamental frequency Fo  of x (t) is GCD (20, 30) = 10Hz 

 1 = 0.1s 
Fo 

=> 
15 = 0.2S 
75 

23 

t) is sampled at 75Hz. What is the 

common period of the sampled signal x (n), and how many full periods of x (t) does it 
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∴So it takes two full periods of x (t) to obtain one period of x (n) or GCD (K1, K2) = 

GCD (4, 2) = 2 

Frequency Domain Representation of discrete-time signals and systems 

For LTI systems we know that a representation of the input sequence as a weighted 

sum of delayed impulses leads to a representation of the output as a weighted sum of 

delayed responses. 

Let x (n) = ejwn
 

y (n) = h (n) * x (n) 
 

 

= ∑h(k)x(n − k) = 
k =−∞ 

 

 

∑h(k) ejw (n-k) 
k =−∞ 

 
 

 

= ejwn  ∑h(k) 
k =−∞ 

e-jwk 

 
 

Let H (ejw) = ∑ h(k ) 
k =−∞ 

 
e-jwk is the frequency domain representation of the system. 

∴y (n) = H (ejw) ejwn

 ejw

n   = eigen function of the system. 

H (ejw) = 
eigen value 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

∞

∞

∞ ∞ 
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UNIT 2 
 

DISCRETE FOURIER TRANSFORMS (DFT) 
 

1.1 Introduction: 
 

Before we introduce the DFT we consider the sampling of the Fourier transform of an 

aperiodic discrete-time sequence. Thus we establish the relation between the sampled Fourier 

transform and the DFT.A discrete time system may be described by the convolution sum, the 

Fourier representation and the z transform as seen in the previous chapter. If the signal is 

periodic in the time domain DTFS representation can be used, in the frequency domain the 

spectrum is discrete and periodic. If the signal is non-periodic or of finite duration the 

frequency domain representation is periodic and continuous this is not convenient to 

implement on the computer. Exploiting the periodicity property of DTFS representation the 

finite duration sequence can also be represented in the frequency domain, which is referred to 

as Discrete Fourier Transform DFT. 
 

DFT is an important mathematical tool which can be used for the software 

implementation of certain digital signal processing algorithms .DFT gives a method to 

transform a given sequence to frequency domain and to represent the spectrum of the sequence 

using only k frequency values, where k is an integer that takes N values, K=0, 1, 2,…..N-1. 
 
The advantages of DFT are: 
 

1. It is computationally convenient. 
 

2. The DFT of a finite length sequence makes the frequency domain analysis much 

simpler than continuous Fourier transform technique. 

 

1.2 FREQUENCY  DOMAIN  SAMPLING  AND  RECONSTRUCTION  OF  DISCRETE  
TIME   SIGNALS: 

 

Consider an aperiodic discrete time signal x (n) with Fourier transform, an aperiodic finite 

energy signal has continuous spectra. For an aperiodic signal x[n] the spectrum is: 

 
 
 

 X w   xne jwn
  ………………………………(1.1) 

 n 

  
  

 Page 6 

All 
JN

TU
 W

or
ld



Digital Signal Processing  
   

 

Suppose we sample X[w] periodically in frequency at a sampling of w radians between 

successive samples. We know that DTFT is periodic with 2, therefore only samples in the 

fundamental frequency range will be necessary. For convenience we take N equidistant 

samples in the interval (0<=w<2 ). The spacing between samples will be w 
2

N  

below in Fig.1.1.  

X[w]  
 
 
 
 
 
 
 
 

 

0  2

 

as shown 
 
 
 
 
 
 
 
 
 
 
 

 

w 

 

Fig 1.1 Frequency Domain Sampling 
 

 

Let us first consider selection of N, or the number of samples in the frequency domain. 

 

If we evaluate equation (1) at 

 
 

w 
2k 

N  
 

2k 
   

xne 
 j 2kn / N 

X 

N 
  

  n   

 

k 

 

 0,1,2,......., (N 

 


 

1) 

 

………………………. (1.2) 

 
We can divide the summation in (1) into infinite number of summations where each sum 

contains N terms. 

 
 

2k 
1 

 j 2kn / N 
N 1 

 j 2kn / N 
2 N 1 

 j 2kn / N 
 .......  xne  xne  xne X 


 


   

    

 N   n N  n0  nN  

 
 lN N 1 

 xne j 2kn
 
/
 
N 

l  nlN 

 

If we then change the index in the summation from n to n-l N and interchange the order of 
 

summations we get: 
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2k 
 N 1 





 
 j 2kn / N   e       

 N 
 

l 

xn  lN   

 n 0   

 

 

for 

 

 

k 

 

 

 0,1,2,......, (N 

 

 

1) 

 

 

…….(1.3) 

 

 

Denote the quantity inside the bracket as xp[n]. This is the signal that is a repeating version of 

x[n] every N samples. Since it is a periodic signal it can be represented by the Fourier series. 

 
 

N 1   

xp n ck e 
j 2kn / N 

n  0,1,2,........, (N 1)  

k 0   

 

 

With FS coefficients: 

 

  
1 N 1  ne ck   xp 

      j 2kn / N 

  N   
   n 0   

 
 
 

k 

 
 
 

 0,1,2,......., (N 

 
 
 

1) 

 
 
 

…………… (1.4) 

 

Comparing the expressions in equations (1.4) and (1.3) we conclude the following: 
 

c 
 


1 
X 
2

k 


k 

N 

 
    

     N  

 

 

k 

 

 

 0,1,......., (N 

 

 

1) 

 

 

………………. (1.5) 

 

Therefore it is possible to write the expression xp[n] as below: 
 

 

xp n
1 

N 1 
2 

 
j 2kn / N 

 e  X  k   

 N k 0  N   

 
 

 

n  0,1,....., (N 

 
 

 



 
 

 

1) 

 
 

 

………. (1.6) 

 

The above formula shows the reconstruction of the periodic signal xp[n] from the samples of 

the spectrum X[w]. But it does not say if X[w] or x[n] can be recovered from the samples. 

 
 

Let us have a look at that: 
 

Since xp[n] is the periodic extension of x[n] it is clear that x[n] can be recovered from xp[n] if 

there is no aliasing in the time domain. That is if x[n] is time-limited to less than the period N 

of xp[n].This is depicted in Fig. 1.2 below: 
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x[n] 
 
 
 

 

n 
 

0 L  

 xp[n] N>=L 

  No  aliasing 
 
 
 

n 
 

0 L N 
 
 

xp[n] N<L 
 

Aliasing 
 
 
 

n 
 

0 N 
 

 

Fig. 1.2 Signal Reconstruction 
 
 
 
 

Hence we conclude: 

The  spectrum  of  an  aperiodic  discrete-time  signal  with  finite  duration  L can  be  exactly 

recovered from its samples at frequencies wk 
2k 

if N >= L. 
N     

 

We compute xp[n] for n=0, 1,....., N-1 using equation (1.6) 

Then X[w] can be computed using equation (1.1). 

 

1.3 Discrete Fourier Transform: 
 

The DTFT representation for a finite duration sequence is 

∞ -jωn 

X (jω) = ∑ x (n) ℮ 

n= -∞  

 jωn 

X (n) =1/2π ∫X (jω) edω ,   Where ω═ 2πk/n 
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2π  
Where  x(n)  is  a  finite  duration  sequence,  X(jω)  is  periodic  with  period  2π.It  is 

 

convenient sample X(jω) with a sampling frequency equal an integer multiple of its period =m 
 

that is taking N uniformly spaced samples between 0 and 2π. 
 

Let ωk= 2πk/n, 0≤k≤N-1 

 

∞ -j2πkn/N  
Therefore X(jω) = ∑ x(n) ℮ 

n=−∞  
Since X(jω) is sampled for one period and there are N samples X(jω) can be expressed  

as 

N-1 -j2πkn/N 

X(k) = X(jω)│ ω=2πkn/N ═∑ x(n) ℮ 0≤k≤N-1 

n=0 
 

 

1.4 Matrix relation of DFT 
 

The DFT expression can be expressed as 

 

[X] = [x(n)] [WN] 

T 

Where [X] = [X(0), X(1),……..] 

 

[x] is the transpose of the input sequence. WN is a N x N matrix 

 

WN =  1 1 11   ………………1 

1 wn1 wn2  wn3……………...wn n-1 

1 wn2 wn4  wn6 ……………wn2(n-1) 

……………………………………………. 

……………………………………………. 

1………………………………..wN (N-1)(N-1) 

 

 ex;     

 4 pt DFT of the sequence 0,1,2,3  

X(0)  1 1 1 1 

X(1)  1 -j -1 j 

X(2) = 1 -1 1 -1 

X(3)  1 j -1 -j 
 

 

Solving the matrix X(K) = 6 , -2+2j, -2 ,  -2-2j 

 

1.5 Relationship of Fourier Transforms with other transforms 
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1.5.1 Relationship of Fourier transform with continuous time signal: 

 

Suppose that xa(t) is a continuous-time periodic signal with fundamental period Tp= 1/F0.The 

signal can be expressed in Fourier series as 

 

 

 

 

 

Where {ck} are the Fourier coefficients. If we sample xa(t) at a uniform rate Fs = N/Tp = 1/T, 

we obtain discrete time sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus {ck‟} is the aliasing version of {ck} 

 

1.5.2 Relationship of Fourier transform with z-transform 

 

Let us consider a sequence x(n) having the z-transform 
 

 

 

 

 

With ROC that includes unit circle. If X(z) is sampled at the N equally spaced points on the 

 
unit circle Zk = e for K= 0,1,2,………..N-1 we obtain 

 

 

 

 

 

 

 

 

The above expression is identical to Fourier transform X(ω) evaluated at N equally spaced 

frequencies ωk = 2πk/N for K= 0,1,2,………..N-1. 

 

 

 

 

 

 j2πk/N 
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If the sequence x(n) has a finite duration of length N or less. The sequence can be recovered 

from its N-point DFT. Consequently X(z) can be expressed as a function of DFT as 

Fourier transform of a continuous time signal can be obtained from DFT as 
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Recommended Questions with solutions 
 

Question 1  
The first five points of the 8-point DFT of a real valued sequence are {0.25, 0.125-j0.318, 0, 
0.125-j0.0518, 0}. Determine the remaining three points 

 

Ans: Since x(n) is real, the real part of the DFT is even, imaginary part odd. Thus the 

remaining points are {0.125+j0.0518,0,0, 0.125+j0.318}. 

 

Question 2  
Compute the eight-point DFT circular convolution for the following sequences. 
x2(n) = sin 3πn/8  
Ans: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question 3  
Compute the eight-point DFT circular convolution for the following 
sequence X3(n) = cos 3πn/8 
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Question 4  
Define DFT. Establish a relation between the Fourier series coefficients of a continuous time 
signal and DFT 

Solution 

The DTFT representation for a finite duration sequence is 

∞ 

X (jω) = ∑ x (n) ℮
-

jωn
 n= -∞ 

X (n) =1/2π ∫X (jω) e 
jωn

 dω , Where ω═ 2πk/n 2π

Where x(n) is a finite duration sequence, X(jω) is periodic with period 2π.It is 
convenient sample X(jω) with a sampling frequency equal an integer multiple of its period =m 
that is taking N uniformly spaced samples between 0 and 2π.  

Let ωk= 2πk/n, 0≤k≤N 
∞ 

Therefore X(jω) = ∑ x(n) ℮
-

j2πkn/N
 n=−∞ 

Since X(jω) is sampled for one period and there are N samples X(jω) can be expressed 

as 

N-1

X(k) = X(jω)│ ω=2πkn/N ═∑ x(n) ℮
-j2πkn/N

 0≤k≤N-1
n=0 

Question 5 

Solution:- 
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Question 6 

 

Find the 4-point DFT of sequence x(n) = 6+ sin(2πn/N), n= 0,1,………N-1 

 

Solution :- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question 7 
 
 
 
 
 
 
 
 
 

Solution 
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Question 8 
 
 
 
 

 

Solution 
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Properties of DFT 
 

 

2.1 Properties:- 

 

The DFT and IDFT for an N-point sequence x(n) are given as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this section we discuss about the important properties of the DFT. These properties are 

helpful in the application of the DFT to practical problems. 

 
 
 
 
 
 
 
 

Periodicity:- 
 
 
 
 
 
 
 
 
 
 
 

 

2.1.2 Linearity: If 
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Then A x1 (n) + b x2 (n)  a X1(k) + b X2(k) 

2.1.3 Circular shift: 

In linear shift, when a sequence is shifted the sequence gets extended. In circular shift the 

number of elements in a sequence remains the same. Given a sequence x (n) the shifted 

version x (n-m) indicates a shift of m. With DFTs the sequences are defined for 0 to N-1. 

If x (n) = x (0), x (1), x (2), x (3) 

X (n-1) = x (3), x (0), x (1).x (2) 

X (n-2) = x (2), x (3), x (0), x (1) 

2.1.4 Time shift: 

If x (n)  X (k)  
mk 

Then x (n-m)  WN X (k) 

2.1.5 Frequency shift 

If x(n) X(k) 

+nok

Wn x(n) X(k+no)

N-1 kn 

Consider x(k) = x(n) W n 

n=0 

N-1

(k+ no)n 

X(k+no)=\ x(n) WN 

n=0 

kn non 

=  x(n) WN WN 

non 

 X(k+no)x(n) WN
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2.1.6 Symmetry: 
 

For a real sequence, if x(n) X(k) 

 

X(N-K) = X* (k) 

 

For a complex sequence 

DFT(x*(n)) = X*(N-K) 
 

 

If x(n) then  X(k) 

Real and even   real and even 

Real and odd   imaginary and odd 

Odd and imaginary  real odd 

Even and imaginary  imaginary and even 
 

 

2.2 Convolution theorem; 
 

Circular convolution in time domain corresponds to multiplication of the DFTs 

 

If y(n) = x(n)  h(n) then Y(k) = X(k) H(k) 

 

Ex let x(n) = 1,2,2,1 and h(n) = 1,2,2,1 

Then y (n) = x(n)  h(n) 

 

Y(n) = 9,10,9,8 

 

N pt DFTs of 2 real sequences can be found using a single 

DFT If g(n) & h(n) are two sequences then let x(n) = g(n) +j 

h(n) G(k) = ½ (X(k) + X*(k)) 

 
H(k) = 1/2j (X(K) +X*(k)) 

 

2N pt DFT of a real sequence using a single N pt DFT 

 

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT 

 

Let y(n) = x(2n) and g(2n+1) 
k  

X (k) = Y (k) + WN G (k) 

Using DFT to find IDFT 

 
The DFT expression can be used to find IDFT 
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X(n) = 1/N [DFT(X*(k)]* 

Recommended Questions with solutions 

Question 1 

State and Prove the Time shifting Property of DFT 

Solution 

The DFT and IDFT for an N-point sequence x(n) are given as 

Time shift: 

If x (n)  X (k)  
mk 

Then x (n-m)  WN X (k) 

Question 2 

State and Prove the: (i) Circular convolution property of DFT; (ii) DFT of Real and even 
sequence. 

Solution 

(i) Convolution theorem

Circular convolution in time domain corresponds to multiplication of the DFTs 

If y(n) = x(n)  h(n) then Y(k) = X(k) H(k)  

Ex let x(n) = 1,2,2,1 and  h(n) = 1,2,2,1 Then y (n) = x(n)  h(n) 

Y(n) = 9,10,9,8 

N pt DFTs of 2 real sequences can be found using a single DFT 
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If g(n) & h(n) are two sequences then let x(n) = g(n) +j 
h(n) G(k) = ½ (X(k) + X*(k))  
H(k) = 1/2j (X(K) +X*(k)) 

2N pt DFT of a real sequence using a single N pt DFT  
Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT 
Let y(n) = x(2n) and g(2n+1) 
 

X (k) = Y (k) + WN
K

 G (k) 

Using DFT to find IDFT  
The DFT expression can be used to find IDFT 

X(n) = 1/N [DFT(X*(k)]* 

 

(ii)DFT of Real and even sequence. 

For a real sequence, if x(n) X(k)  
X (N-K) = X* (k) 

 

For a complex sequence 

DFT(x*(n)) = X*(N-K) 

 

If x(n) then  X(k) 

Real and even   real and even 

Real and odd   imaginary and odd 

Odd and imaginary  real odd 

Even and imaginary  imaginary and even 
 

 

Question 3 

 

Distinguish between circular and linear convolution 

 

Solution 

 

1) Circular convolution is used for periodic and finite signals while linear convolution is 
used for aperiodic and infinite signals.  

2) In linear convolution we convolved one signal with another signal where as in circular 
convolution the same convolution is done but in circular pattern depending upon the 
samples of the signal  

3) Shifts are linear in linear in linear convolution, whereas it is circular in circular 
convolution. 

 

Question 4 
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Solution(a) 

Solution(b) 

Solution(c) 

Solution(d) 
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Question 5 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question 6 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
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FAST-FOURIER-TRANSFORM (FFT) ALGORITHMS 
 

3.1 Digital filtering using DFT 
 

In a LTI system the system response is got by convoluting the input with the impulse 

response. In the frequency domain their respective spectra are multiplied. These spectra are 

continuous and hence cannot be used for computations. The product of 2 DFT s is equivalent 

to the circular convolution of the corresponding time domain sequences. Circular convolution 

cannot be used to determine the output of a linear filter to a given input sequence. In this case 

a frequency domain methodology equivalent to linear convolution is required. Linear 

convolution can be implemented using circular convolution by taking the length of the 

convolution as N >= n1+n2-1 where n1 and n2 are the lengths of the 2 sequences. 

 
 

3.1.1 Overlap and add 
 

In order to convolve a short duration sequence with a long duration sequence x(n) ,x(n) 

is split into blocks of length N x(n) and h(n) are zero padded to length L+M-1 . circular 

convolution is performed to each block then the results are added. These data blocks may be 

represented as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The IDFT yields data blocks of length N that are free of aliasing since the size of the 

DFTs and IDFT is N = L+M -1 and the sequences are increased to N-points by appending 

zeros to each block. Since each block is terminated with M-1 zeros, the last M-1 points from 

each output block must be overlapped and added to the first M-1 points of the succeeding 

 

 Page 27 

All 
JN

TU
 W

or
ld



Digital Signal Processing  
   

 

block. Hence this method is called the overlap method. This overlapping and adding yields the 

output sequences given below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.1.2 Overlap and save method 
 

In this method x (n) is divided into blocks of length N with an overlap of k-1 samples. 

The first block is zero padded with k-1 zeros at the beginning. H (n) is also zero padded to 

length N. Circular convolution of each block is performed using the N length DFT .The output 

signal is obtained after discarding the first k-1 samples the final result is obtained by adding 

the intermediate results. 
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In this method the size of the I/P data blocks is N= L+M-1 and the size of the DFts and 

IDFTs are of length N. Each data block consists of the last M-1 data points of the previous 

data block followed by L new data points to form a data sequence of length N= L+M-1. An N-

point DFT is computed from each data block. The impulse response of the FIR filter is 

increased in length by appending L-1 zeros and an N-point DFT of the sequence is computed 

once and stored. 

The multiplication of two N-point DFTs {H(k)} and {Xm(k)} for the mth block of data yields 
 
 
 
 
 
 
 

 

Since the data record is of the length N, the first M-1 points of Ym(n) are corrupted by 

aliasing and must be discarded. The last L points of Ym(n) are exactly the same as the result 

from linear convolution and as a consequence we get 
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3.2 Direct Computation of DFT 
 

The problem:  
Given signal samples: x[0], . . . , x[N - 1] (some of which may be zero), develop a procedure to 
compute 
 
 
 
 

 

for k = 0, . . . , N - 1 where 
 
 
 

 

We would like the procedure to be fast, simple, and accurate. Fast is the most important, so we will 
sacrifice simplicity for speed, hopefully with minimal loss of accuracy 

 

3.3 Need for efficient computation of DFT (FFT Algorithms) 

Let us start with the simple way. Assume that    has been precompiled and stored in a 
 

table for the N of interest. How big should the table be? is periodic in m with period N, 

so we just need to tabulate the N values: 
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(Possibly even less since Sin is just Cos shifted by a quarter periods, so we could save just Cos 

when N is a multiple of 4.) 

Why tabulate? To avoid repeated function calls to Cos and sin when computing the DFT. Now 

we can compute each X[k] directly form the formula as follows 

For each value of k, there are N complex multiplications, and (N-1) complex additions. There 

are N values of k, so the total number of complex operations is 

Complex multiplies require 4 real multiplies and 2 real additions, whereas complex additions 

require just 2 real additions N
2
 complex multiplies are the primary concern.

N
2
 increases rapidly with N, so how can we reduce the amount of computation? By exploiting

the following properties of W: 

The first and third properties hold for even N, i.e., when 2 is one of the prime factors of N. 

There are related properties for other prime factors of N. 

Divide and conquer approach 

We have seen in the preceding sections that the DFT is a very computationally 

intensive operation. In 1965, Cooley and Tukey published an algorithm that could be used to 

compute the DFT much more efficiently. Various forms of their algorithm, which came to be 

known as the Fast Fourier Transform (FFT), had actually been developed much earlier by 

other mathematicians (even dating back to Gauss). It was their paper, however, which 

stimulated a revolution in the field of signal processing. 

It is important to keep in mind at the outset that the FFT is not a new transform. It is 

simply a very efficient way to compute an existing transform, namely the DFT. As we saw, a 
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straight forward implementation of the DFT can be computationally expensive because the 

number of multiplies grows as the square of the input length (i.e. N
2
 for an N point DFT). The 

FFT reduces this computation using two simple but important concepts. The first concept, 

known as divide-and-conquer, splits the problem into two smaller problems. The second 

concept, known as recursion, applies this divide-and-conquer method repeatedly until the 

problem is solved. 

 

Recommended Questions with solutions 
 

 

Question1 
 
 
 
 
 
 

Solution:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question 2 
 
 
 
 
 
 

 

Solution:- 
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Question 3 
 
 
 
 
 
 
 
 

 

Solution:- 
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Question 4 
 
 
 
 
 
 
 
 
 
 
 
 

Solution:- (a) 
 
 
 
 
 
 
 

 

(b) 
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RADIX-2 FFT ALGORITHM FOR THE COMPUTATION OF DFT AND 

IDFT 

4.1 Introduction: 

Standard frequency analysis requires transforming time-domain signal to frequency 

domain and studying Spectrum of the signal. This is done through DFT computation. N-point 

DFT computation results in N frequency components. We know that DFT computation 

through FFT requires N/2 log2N complex multiplications and N log2N additions. In certain 

applications not all N frequency components need to be computed (an application will be 

discussed). If the desired number of values of the DFT is less than 2 log2N than direct 

computation of the desired values is more efficient that FFT based computation. 

4.2 Radix-2 FFT 

Useful when N is a power of 2: N = r
v
 for integers r and v. „r‟ is called the radix, which

comes from the Latin word meaning .a root, and has the same origins as the word radish. 

When N is a power of r = 2, this is called radix-2, and the natural .divide and conquer 

approach. is to split the sequence into two sequences of length N=2. This is a very clever trick 

that goes back many years. 

4.2.1 Decimation in time 

Fig 4.1 First step in Decimation-in-time domain Algorithm 
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4.2.2 Decimation-in-frequency Domain 
 

Another important radix-2 FFT algorithm, called decimation-in-frequency algorithm is 

obtained by using divide-and-conquer approach with the choice of M=2 and L= N/2.This 

choice of data implies a column-wise storage of the input data sequence. To derive the 

algorithm, we begin by splitting the DFT formula into two summations, one of which involves 

the sum over the first N/2 data points and the second sum involves the last N/2 data points. 

Thus we obtain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, let us split X(k) into the even and odd-numbered samples. Thus we obtain 
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Fig 4.2 Shuffling of Data and Bit reversal 

 

The computation of the sequences g1 (n) and g2 (n) and subsequent use of these 

sequences to compute the N/2-point DFTs depicted in fig we observe that the basic 

computation in this figure involves the butterfly operation. 
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The computation procedure can be repeated through decimation of the N/2-point DFTs, 

X(2k) and X(2k+1). The entire process involves v = log2 N of decimation, where each stage 

involves N/2 butterflies of the type shown in figure 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.3 First step in Decimation-in-time domain Algorithm 
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Fig 4.4 N=8 point Decimation-in-frequency domain Algorithm  

4.2 Example: DTMF – Dual Tone Multi frequency 
 

This is known as touch-tone/speed/electronic dialing, pressing of each button generates a 

unique set of two-tone signals, called DTMF signals. These signals are processed at exchange 

to identify the number pressed by determining the two associated tone frequencies. Seven 

frequencies are used to code the 10 decimal digits and two special characters (4x3 array) 
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In this application frequency analysis requires determination of possible seven (eight) 

DTMF fundamental tones and their respective second harmonics .For an 8 kHz sampling freq, 

the best value of the DFT length N to detect the eight fundamental DTMF tones has been 

found to be 205 .Not all 205 freq components are needed here, instead only those 

corresponding to key frequencies are required. FFT algorithm is not effective and efficient in 

this application. The direct computation of the DFT which is more effective in this application 

is formulated as a linear filtering operation on the input data sequence. 

 

This algorithm is known as Goertzel Algorithm 
 

This algorithm exploits periodicity property of the phase factor. Consider the DFT definition 
 

N 1    

X (k )  x(n)W 
nk 

(1) N 

n0    

 

 

Since 

 
 

W kN 

N 
 

 

 

is equal to 1, multiplying both sides of the equation by this results in; 
 

N 1 N 1 

X (k )  WN
kN

 x(m)WN
mk

   x( 
m0 m0 

 

 

This is in the form of a convolution 
 

 N 1   

k ( nm) 

 

yk (n)  x(m)W 
 

N  

 m0     

h (n)  W kn u(n) (4) 
N k     

 

m)WNk ( N m) 

 

 

y 
k 
(n) 

  

 
 

(3) 

 

(2) 
 

 

 x(n) hk (n) 

 

Where yk(n) is the out put of a filter which has impulse response of hk(n) and input  x(n). 
 

The output of the filter at n = N yields the value of the DFT at the freq ωk = 2πk/N 
 

The filter has frequency response given by 
H

 k (z) 
 1 

(6)   

 

W k z 1  1  

   N  

 

The above form of filter response shows it has a pole on the unit circle at the frequency ωk = 
2πk/N. 
 

Entire DFT can be computed by passing the block of input data into a parallel bank of N 
single-pole filters (resonators) 
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The above form of filter response shows it has a pole on the unit circle at the frequency ωk = 
2πk/N. 
 

Entire DFT can be computed by passing the block of input data into a parallel bank of N 
single-pole filters (resonators) 
 

1.3 Difference Equation implementation of filter: 
 

From the frequency response of the filter (eq 6) we can write the following difference 
equation relating input and output; 
 

H  (z) Y (z)  1       
  k            

                 

  k  X (z)  1 W k z 1     
     N      
                 

y 
 
(n)  W k y 

 
(n 1)  x(n) y 

 
(1)  0 (7) 

k N  k k 
              

 

 

The desired output is X(k) = yk(n) for k = 0,1,…N-1. The phase factor appearing in the 
difference equation can be computed once and stored. 
 

The form shown in eq (7) requires complex multiplications which can be avoided 
 

doing suitable modifications (divide and multiply by 

the filter can be alternatively expressed as 

  

1 W k z 1 

N  
   

 
). Then frequency response of 

 
  

(z) 
1W k z 1     

        

H 
k 

N      (8) 

 2 cos(2k / N )z 
1 
 z 

2  

1 
 

     

 
 

 

This is second –order realization of the filter (observe the denominator now is a second-order 
expression). The direct form realization of the above is given by 
 

v  (n)  2 cos(2k / N )v (n 1)  v (n  2)  x(n) (9)  
k     k k     

y  (n)  v (n) W k v (n 1) v (1)  v (2)  0 (10) 
k 

 

 k N k   k k   
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The recursive relation in (9) is iterated for n = 0,1,……N, but the equation in (10) is computed 

only once at time n =N. Each iteration requires one real multiplication and two additions. 

Thus, for a real input sequence x(n) this algorithm requires (N+1) real multiplications to yield 

X(k) and X(N-k) (this is due to symmetry). Going through the Goertzel algorithm it is clear 

that this algorithm is useful only when M out of N DFT values need to be computed where M≤ 

2log2N, Otherwise, the FFT algorithm is more efficient method. The utility of the algorithm 

completely depends on the application and number of frequency components we are looking 

for. 

4.2. Chirp z- Transform 

4.2.1 Introduction: 

Computation of DFT is equivalent to samples of the z-transform of a finite-length 

sequence at equally spaced points around the unit circle. The spacing between the samples is 

given by 2π/N. The efficient computation of DFT through FFT requires N to be a highly 

composite number which is a constraint. Many a times we may need samples of z-transform 

on contours other than unit circle or we my require dense set of frequency samples over a 

small region of unit circle. To understand these let us look in to the following situations: 

1. Obtain samples of z-transform on a circle of radius „a‟ which is concentric to unit circle

The possible solution is to multiply the input sequence by a
-n

2. 128 samples needed between frequencies  ω = -π/8 to +π/8 from a 128 point sequence
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From the given specifications we see that the spacing between the frequency samples is 
 

π/512 or 2π/1024. In order to achieve this freq resolution we take 1024- point FFT of 

the given 128-point seq by appending the sequence with 896 zeros. Since we need only 

128 frequencies out of 1024 there will be big wastage of computations in this scheme. 

 
 
 

 

For the above two problems Chirp z-transform is the alternative. 
 

Chirp z- transform is defined as: 

 
N 1  

n 

  

X (zk )  x(n)z k  0,1,......L 1 (11) k 

n0     

 

Where zk is a generalized contour. Zk is the set of points in the z-plane falling on an arc which 

begins at some point z0 and spirals either in toward the origin or out away from the origin such 

that the points {zk}are defined as, 

z   r e j 0 (R e j
0 
) k k  0,1,....L 1 (12) 

 

k 0 
 

0 
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Note that, 

a. if R0< 1 the points fall on a contour that spirals toward the origin

b. If R0 > 1 the contour spirals away from the origin

c. If R0= 1 the contour is a circular arc of radius

d.If r0=1 and R0=1 the contour is an arc of the unit circle.

(Additionally this contour allows one to compute the freq content of the sequence x(n) at

dense set of L frequencies in the range covered by the arc without having to compute a large 

DFT (i.e., a DFT of the sequence x(n) padded with many zeros to obtain the desired resolution 

in freq.)) 

e. If r0= R0=1 and θ0=0 Φ0=2π/N and L = N the contour is the entire unit circle similar to the

standard DFT. These conditions are shown in the following diagram. 

Page 46 

All 
JN

TU
 W

or
ld



Digital Signal Processing  
    

    

    
 
Substituting the value of zk in the expression of X(zk) 

 

X (z 
k 

 

 

 

where 

 
 

 N 1  
k 

  N 1 
0 

      
      j  n nk  

)   x(n)z n   x(n)(r e  ) (13) 
     

0 

W  

             

 n0     n0        

 W  R e j 0 
  (14)       

  

0 
          

             

 
 
 

4.2.2 Expressing computation of X(zk) as linear filtering operation: 
 

By substitution of 
 

 
nk 

1 
(n

2 
 k 

2
  (k  n)

2
 ) (15) 

 
 2  

        

we can express X(zk) as   

     2 
/ 2 

   
X (z  ) W k y(k)  y(k) / h(k) k  0,1,..........L 1 (16) k    

          

Where 
 

h(n) W 
2 

/ 2 n 
  

 

 
 

 
j

  
n 

 2 
/ 2 g(n)  x(n)(r e 0 ) W n 

0 
      

       

 
N 1  

y(k )  g(n)h(k  n) (17) 
n0 

both g(n) and h(n) are complex valued sequences 
 

4.2.3 Why it is called Chirp z-transform? 
 

If R0 =1, then sequence h(n) has the form of complex exponential with argument ωn = 

n
2
Φ0/2 = (n Φ0/2) n. The quantity (n Φ0/2) represents the freq of the complex exponential 
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signal, which increases linearly with time. Such signals are used in radar systems are called 
 

chirp signals. Hence the name chirp z-transform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.2.4 How to Evaluate linear convolution of eq (17)  
1. Can be done efficiently with FFT 

 
2. The two sequences involved are g(n) and h(n). g(n) is finite length seq of length N and 

h(n) is of infinite duration, but fortunately only a portion of h(n) is required to compute 

L values of X(z), hence FFT could be still be used. 
 

3. Since convolution is via FFT, it is circular convolution of the N-point seq g(n) with an 

M- point section of h(n) where M > N 

 
4. The concepts used in overlap –save method can be used 

 
5. While circular convolution is used to compute linear convolution of two sequences we 

know the initial N-1 points contain aliasing and the remaining points are identical to 
 

the result that would be obtained from a linear convolution of h(n) and g(n), In view of 

this the DFT size selected is M = L+N-1 which would yield L valid points and N-1 

points corrupted by aliasing. The section of h(n) considered is for –(N-1) ≤ n≤ (L-1) 

yielding total length M as defined 
 

6. The portion of h(n) can be defined in many ways, one such way is, 
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h1(n) = h(n-N+1) n = 0,1,…..M-1 7. 

Compute H1(k) and G(k) to obtain 
 

Y1(k) = G(K)H1(k) 
 

8. Application of IDFT will give y1(n), for 
 

n =0,1,…M-1. The starting N-1 are discarded and desired values are y1(n) for 
 

N-1 ≤n ≤ M-1 which corresponds to the range 0 ≤n ≤ L-1 i.e., 
 

y(n)= y1(n+N-1) n=0,1,2,…..L-1 
 

9. Alternatively h2(n) can be defined as 
 

h2 (n)  h(n) 0  n  L 1 
 

 h(n  (N  L 1)) L  n  M 1 
 

10. Compute Y2(k) = G(K)H2(k), The desired values of y2(n) are in the range 
 

0 ≤n ≤L-1 i.e., 
 

y(n) = y2(n) n=0,1,….L-1 
 

11. Finally, the complex values X(zk) are computed by dividing y(k) by h(k) 

For k =0,1,……L-1 
 

4.3 Computational complexity 
 

In general the computational complexity of CZT is of the order of M log2M complex 

multiplications. This should be compared with N.L which is required for direct evaluation. 

If L is small direct evaluation is more efficient otherwise if L is large then CZT is more 

efficient. 

 

4.3.1 Advantages of CZT 
 

a. Not necessary to have N =L 
 

b.Neither N or L need to be highly composite 
 

c.The samples of Z transform are taken on a more general contour that includes the unit 
circle as a special case. 

 

4.4 Example to understand utility of CZT algorithm in freq analysis 
 

(ref: DSP by Oppenheim Schaffer) 
 

CZT is used in this application to sharpen the resonances by evaluating the z-transform 

off the unit circle. Signal to be analyzed is a synthetic speech signal generated by exciting a 
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five-pole system with a periodic impulse train. The system was simulated to correspond to a 

sampling freq. of 10 kHz. The poles are located at center freqs of 270,2290,3010,3500 & 4500 

Hz with bandwidth of 30, 50, 60,87 & 140 Hz respectively. 

Solution: Observe the pole-zero plots and corresponding magnitude frequency response for 

different choices of |w|. The following observations are in order: 

• The first two spectra correspond to spiral contours outside the unit circle with a resulting

broadening of the resonance peaks

• |w| = 1 corresponds to evaluating z-transform on the unit circle

• The last two choices correspond to spiral contours which spirals inside the unit circle and

close to the pole locations resulting in a sharpening of resonance peaks.
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4.5 Implementation of CZT in hardware to compute the DFT signals 
 

The block schematic of the CZT hardware is shown in down figure. DFT computation 

requires r0 =R0 =1, θ0 = 0 Φ0 = 2π/N and L = N. 

 

The cosine and sine sequences in h(n) needed for pre multiplication and post multiplication are 

usually stored in a ROM. If only magnitude of DFT is desired, the post multiplications are 

unnecessary, 

 

In this case |X(zk)| = |y(k)| k =0,1,….N-1 
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Recommended Questions with solutions 

Question 1 

Solution:- 
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Question 2 

Solution :- There are 20 real , non trial multiplications 

Figure 4.1 DIF Algorithm for N=16 
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Question 3 
 
 

 

Solution:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question 4 
 
 
 

 

Solution:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 4 

All 
JN

TU
 W

or
ld



Digital Signal Processing 

Question 5 

Solution:- 

Question 6 

Solution:- 

This can be viewed as the convolution of the N-length sequence x(n) with implulse 

response of a linear filter 
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Unit 3 

Design of IIR Filters 

5.1 Introduction 

A digital filter is a linear shift-invariant discrete-time system that is realized using finite 

precision arithmetic. The design of digital filters involves three basic steps: 


The specification of the desired properties of the system.


The approximation of these specifications using a causal discrete-time system.


The realization of these specifications using finite precision arithmetic.

These three steps are independent; here we focus our attention on the second step. The 

desired digital filter is to be used to filter a digital signal that is derived from an analog signal 

by means of periodic sampling. The specifications for both analog and digital filters are often 

given in the frequency domain, as for example in the design of low pass, high pass, band pass 

and band elimination filters. 

Given the sampling rate, it is straight forward to convert from frequency specifications 

on an analog filter to frequency specifications on the corresponding digital filter, the analog 

frequencies being in terms of Hertz and digital frequencies being in terms of radian frequency 

or angle around the unit circle with the point Z=-1 corresponding to half the sampling 

frequency. The least confusing point of view toward digital filter design is to consider the filter 

as being specified in terms of angle around the unit circle rather than in terms of analog 

frequencies. 
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Figure 5.1: Tolerance limits for approximation of ideal low-pass filter 
 

 

A separate problem is that of determining an appropriate set of specifications on the 

digital filter. In the case of a low pass filter, for example, the specifications often take the form 

of a tolerance scheme, as shown in Fig. 5.1. 

 
 
 
 
 

 

Many of the filters used in practice are specified by such a tolerance scheme, with no 

constraints on the phase response other than those imposed by stability and causality requirements; 

i.e., the poles of the system function must lie inside the unit circle. Given a set of specifications in 

the form of Fig. 5.1, the next step is to and a discrete time linear system whose frequency response 

falls within the prescribed tolerances. At this point the filter design problem becomes a problem in 

approximation. In the case of infinite impulse response (IIR) filters, we must approximate the 

desired frequency response by a rational function, while in the finite impulse response (FIR) filters 

case we are concerned with polynomial approximation. 

 

5.1 Design of IIR Filters from Analog Filters: 
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The traditional approach to the design of IIR digital filters involves the transformation 

of an analog filter into a digital filter meeting prescribed specifications. This is a reasonable 

approach because: 


The art of analog filter design is highly advanced and since useful results can be 

achieved, it is advantageous to utilize the design procedures already developed for 

analog filters.



Many  useful  analog  design  methods  have  relatively  simple  closed-form  design

formulas. 

Therefore, digital filter design methods based on analog design formulas are rather simple to 

implement. An analog system can be described by the differential equation 

And the corresponding rational function is 

The corresponding description for digital filters has the form 

and the rational function 

In transforming an analog filter to a digital filter we must therefore obtain either H(z) 

or h(n) (inverse Z-transform of H(z) i.e., impulse response) from the analog filter design. In 

such transformations, we want the imaginary axis of the S-plane to map into the nit circle of 

the Z-plane, a stable analog filter should be transformed to a stable digital filter. That is, if the 

analog filter has poles only in the left-half of S-plane, then the digital filter must have poles 

only inside the unit circle. These constraints are basic to all the techniques discussed here. 
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5.2 Characteristics of Commonly Used Analog Filters: 
 

From the previous discussion it is clear that, IIT digital filters can be obtained by 

beginning with an analog filter. Thus the design of a digital filter is reduced to designing an 

appropriate analog filter and then performing the conversion from Ha(s) to H (z). Analog filter 

design is a well - developed field, many approximation techniques, viz., Butterworth, 

Chebyshev, Elliptic, etc., have been developed for the design of analog low 
 
pass filters. Our discussion is limited to low pass filters, since, frequency transformation can 

be applied to transform a designed low pass filter into a desired high pass, band pass and band 

stop filters. 

 

5.2.1 Butterworth Filters: 
 

Low pass Butterworth filters are all - pole filters with monotonic frequency response in 

both pass band and stop band, characterized by the magnitude - squared frequency response 

 
 
 

 

Where, N is the order of the filter, Ώc is the -3dB frequency, i.e., cutoff frequency, Ώp is the 

pass band edge frequency and 1= (1 /1+ε
2
 ) is the band edge value of │Ha(Ώ)│

2
. Since the 

product Ha(s) Ha(-s) and evaluated at s = jΏ is simply equal to │Ha(Ώ)│
2
, it follows that 

 
 
 
 

 

The poles of Ha(s)Ha(-s) occur on a circle of radius Ώc at equally spaced points. From Eq. 

(5.29), we find the pole positions as the solution of 

 
 
 
 

 

And hence, the N poles in the left half of the s-plane are 
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Note that, there are no poles on the imaginary axis of s-plane, and for N odd there will 

be a pole on real axis of s-plane, for N even there are no poles even on real axis of s-plane. 

Also note that all the poles are having conjugate symmetry. Thus the design methodology to 

design a Butterworth low pass filter with δ2 attenuation at a specified frequency Ώs is Find N, 

Where by definition, δ2 = 1/√1+δ
2
. Thus the Butterworth filter is completely

characterized by the parameters N, δ2, ε and the ratio Ώs/Ώp or Ώc.Then, from Eq. (5.31) find 

the pole positions Sk; k = 0,1, 2,……..(N-1). Finally the analog filter is given by 

5.2.2 Chebyshev Filters: 

There are two types of Chebyshev filters. Type I Chebyshev filters are all-pole filters 

that exhibit equiripple behavior in the pass band and a monotonic characteristic in the stop 

band. On the other hand, type II Chebyshev filters contain both poles and zeros and exhibit a 

monotonic behavior in the pass band and an equiripple behavior in the stop band. The zeros of 

this class of filters lie on the imaginary axis in the s-plane. The magnitude squared of the 

frequency response characteristic of type I Chebyshev filter is given as 

Where ε is a parameter of the filter related to the ripple in the pass band as shown in Fig. 

(5.7), and TN is the Nth order Chebyshev polynomial defined as 

The Chebyshev polynomials can be generated by the recursive equation 
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Where T0(x) = 1 and T1(x) = x. 
 

At the band edge frequency Ώ= Ώp, we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2: Type I Chebysehev filter characteristic 

 

Or equivalently 
 
 

 

Where δ1 is the value of the pass band ripple. 

 

The poles of Type I Chebyshev filter lie on an ellipse in the s-plane with major axis 
 
 
 

 

And minor axis 
 
 
 
 
 
 

 

Where β is related to ε according to the equation 
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The angular positions of the left half s-plane poles are given by 

Then the positions of the left half s-plane poles are given by 

Where ζk = r2 Cos φk and Ώk = r1 Sinφk. The order of the filter is obtained from 

Where, by definition δ2 = 1/√1+δ
2
.

Finally, the Type I Chebyshev filter is given by 

A Type II Chebyshev filter contains zero as well as poles. The magnitude squared response is 
given as 

Where TN(x) is the N-order Chebyshev polynomial. The zeros are located on the imaginary 
axis at the points 

and the left-half s-plane poles are given 

Page 64 

All 
JN

TU
 W

or
ld



Digital Signal Processing 

Where 

and 

Finally, the Type II Chebyshev filter is given by 

The other approximation techniques are elliptic (equiripple in both passband and 

stopband) and Bessel (monotonic in both passband and stopband). 

5.3 Analog to Analog Frequency Transforms 

Frequency transforms are used to transform lowpass prototype filter to other filters like 

highpass or bandpass or bandstop filters. One possibility is to perform frequency transform in 

the analog domain and then convert the analog filter into a corresponding digital filter by a 

mapping of the s-plane into z-plane. An alternative approach is to convert the analog lowpass 

filter into a lowpass digital filter and then to transform the lowpass digital filter into the 

desired digital filter by a digital transformation. 

Suppose we have a lowpass filter with pass edge ΩP and if we want convert that into 

another lowpass filter with pass band edge Ω‟P then the transformation used is 

To convert low pass filter into highpass filter the transformation used is 
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Thus we obtain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The filter function is 
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Recommended Questions with answers 

Question 1 

I Design a digital filter to satisfy the following characteristics. 


-3dB cutoff frequency of 0:5_ rad.


Magnitude down at least 15dB at 0:75_ rad.


Monotonic stop band and pass band Using


Impulse invariant technique


Approximation of derivatives


Bilinear transformation technique

Figure 5.8: Frequency response plot of the example 

Solution:- 

a) Impulse Invariant Technique

From the given digital domain frequency, _nd the corresponding analog domain frequencies. 

Where T is the sampling period and 1/T is the sampling frequency and it always corresponds 

to 2Π radians in the digital domain. In this problem, let us assume T = 1sec. 

Then Ώc = 0:5Π and Ώs = 0:75Π 

Let us find the order of the desired filter using 
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Where δ2 is the gain at the stop band edge frequency ωs. 

Order of filter N =5. 

Then the 5 poles on the Butterworth circle of radius Ώc = 0:5 Π are given by 

Then the filter transfer function in the analog domain is 

where Ak's are partial fractions coefficients of Ha(s). 

Finally, the transfer function of the digital filter is 
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b) 
 
 
 
 
 
 
 

 

c) For the bilinear transformation technique, we need to pre-warp the digital frequencies 

into corresponding analog frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then the order of the filter 
 
 
 
 

 

The pole locations on the Butterworth circle with radius Ώc = 2 are 
 
 
 
 
 

 

Then the filter transfer function in the analog domain is 
 
 
 
 
 
 
 
 
 

 

Finally, the transfer function of the digital filter is 
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Question 2 

Design a digital filter using impulse invariant technique to satisfy following 

characteristics 

(i) Equiripple in pass band and monotonic in stop band

(ii) -3dB ripple with pass band edge frequency at 0:5П radians.

(iii) Magnitude down at least 15dB at 0:75 П radians.

Solution: Assuming T=1, Ώ= 0:5 П and s = 0:75 П 

The order of desired filter is 
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Question 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution:- 

For the design specifications we have 
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Question 4 
 
 
 
 
 
 

 

Solution:- 
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Implementation of Discrete-Time Systems 
 
 

6.1 Introduction  
The two important forms of expressing system leading to different realizations of FIR & IIR 
filters are  

a) Difference equation form  
 N   M 

y(n) ak y(n  k )  bk x(n  k ) 
 k 1   k 1 

b)  Ration of polynomials 
 M    
  k  

k 
 

 

b Z 
 

   

H (Z )  k 0    

N    
   

k  
1  a k Z   

 k 1    

 

The following factors influence choice of a specific realization,  

 Computational complexity
 Memory requirements

 Finite-word-length

 Pipeline / parallel processing



6.1.1 Computation Complexity  
This is do with number of arithmetic operations i.e. multiplication, addition & divisions. If 

the realization can have less of these then it will be less complex computationally.  
In the recent processors the fetch time from memory & number of times a comparison between 
two numbers is performed per output sample is also considered and found to be important 

from the point of view of computational complexity. 

 

6.1.2 Memory requirements  
This is basically number of memory locations required to store the system parameters, 

past inputs, past outputs, and any intermediate computed values. Any realization requiring less 
of these is preferred. 

 

6.1.3 Finite-word-length effects  
These effects refer to the quantization effects that are inherent in any digital 

implementation of the system, either in hardware or in software. No computing system has 

infinite precision. With finite precision there is bound to be errors. These effects are basically 

to do with truncation & rounding-off of samples. The extent of this effect varies with type of 

arithmetic used(fixed or floating). The serious issue is that the effects have influence on 

system characteristics. A structure which is less sensitive to this effect need to be chosen. 
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6.1.4 Pipeline / Parallel Processing  
This is to do with suitability of the 

parallel processing can be in software or 
efficient. 

 
structure for pipelining & parallel processing. The 
hardware. Longer pipelining make the system more 

 

6.2 Structure for FIR Systems: 
FIR system is described by, 

M 1 

y(n)  bk x(n  k ) 
k 0  

Or equivalently, the system function 
M 1 

H (Z )  bk Z 
k 

k 0 

 

Where we can identify 

 

b 0  n  n 1 
h(n)  n  

 

otherwise 0 
  

Different FIR Structures used in practice are,  
1. Direct form 

2. Cascade form 

3. Frequency-sampling realization 

4. Lattice realization 

 

6.2.1 Direct – Form Structure 
Convolution formula is used to express FIR system given by, 
 

M 1 

y(n)  h(k ) x(n  k ) 
k 0  

 It is Non recursive in structure
 
 
 
 
 
 
 
 
 
 

 

 As can be seen from the above implementation it requires M-1 memory locations for 
storing the M-1 previous inputs

 It requires computationally M multiplications and M-1 additions per output point

 It is more popularly referred to as tapped delay line or transversal system

 Efficient structure with linear phase characteristics are possible where 

h(n) h(M 1  n) 
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Prob: 

Realize the following system function using minimum number of multiplication 

(1) H (Z )  1 
1 

Z 1 


1 
Z 2 


1 
Z 3 


1 

Z 4  Z     

3 
 

4 
  

4 
  

3 
 

We recognize h(n) 
 1

, 
1 

, 
1 

, 
1  

1,  , 1 
 

3 4 4 3 


     

M is even = 6, and we observe h(n) = h(M-1-n) 
i.e h(0) = h(5) h(1) = h(4) h(2) Direct form
structure for Linear phase FIR can be

5

h(n) = h(5-n) 
= h(3)  
realized 

Exercise: Realize the following using system function using minimum number of 
multiplication. 

H (Z 

m=9 

 

)  1 
1 

Z 1 
1 

Z 2 
1 

Z 3 
1 

Z 5 
1 

Z 6  
1 

Z 7 Z 84 3 2 2 3 4 
            

h(n) 
 1

, 
1 
, 

1 
, 

1 
, 

1 
, 

1  
1,    , 1 



4 3 2 2 3 4 


 

odd symmetry 
h(n) = -h(M-1-n); h(n) = -h(8-n); h(m-1/2) = h(4) = 0 
h(0) = -h(8); h(1) = -h(7); h(2) = -h(6);   h(3) = -h(5) 
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6.2.2 Cascade – Form Structure 

 

The system function H(Z) is factored into product of second – order FIR system  
  K      

H (Z )  H k (Z )     
 k 1     

Where H 
k 
(Z )  b  b Z 

1
  b Z 2 k = 1, 2, ….. K 

  k 0 k1 k 2   

and K = integer part of (M+1) / 2  
The filter parameter b0 may be equally distributed among the K filter section, such that b0 

= b10 b20 …. bk0 or it may be assigned to a single filter section. The zeros of H(z) are grouped 

in pairs to produce the second – order FIR system. Pairs of complex-conjugate roots are 

formed so that the coefficients {bki} are real valued. 
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In case of linear –phase FIR filter, the symmetry in h(n) implies that the zeros of H(z) 
also exhibit a form of symmetry. If zk and zk* are pair of complex – conjugate zeros then 

1/zk and 1/zk* are also a pair complex –conjugate zeros. Thus simplified fourth order 
sections are formed. This is shown below, 

 

H  (z)  C   (1  z   z 1 )(1  z  * z 1 )(1  z 1 / z  )(1  z 1 / z  ) 
k k 0 k  k    k  k* 

                          

  
 C 

  
 C 

 
z 1  C 

  
z 2  C 

  
z 3  z 4       

  k 0 k1   k 2   k1         
                           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem: Realize the difference equation 

y(n)  x(n)  0.25x(n 1)  0.5x(n  2)  0.75x(n  3)  x(n  4) 
 
in cascade form. 
 
 
 

 

Soln: 

 
 

Y (z)  X (z){1  0.25z 1  0.5z 2 0.75z 3  z 4 )   
        

H (z)  1 0.25z 1  0.5z 2  0.75z _ 3  z 4      
          

H (z)  (1 1.1219z 1 1.2181z 2 )(1 1.3719z 1  0.821z 2 )      

H (z)  H 
1 
(z)H 

2 
(z)                  

                      

 
 
 
 
 
 
 
 
 

 

6.3 Frequency sampling realization: 

 

We can express system function H(z) in terms of DFT samples H(k) which is given by 
   

1 N 1 H (k) 
 

H (z)  (1  z 
N 

)   
     

 
N 1 W 

k 
z 
1 

   k 0 N  
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This form can be realized with cascade of FIR and IIR structures. The term (1-z
-N

) is realized 
 

as FIR and the term 

 

1 
N 1 

H (k) 
 

  

N 1W k z 1 

k 0 
  

 N   

 

as IIR structure. 

 

The realization of the above freq sampling form shows necessity of complex arithmetic. 
Incorporating symmetry in h(n) and symmetry properties of DFT of real sequences the 
realization can be modified to have only real coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.4 Lattice structures 
 

Lattice structures offer many interesting features: 

 

1. Upgrading filter orders is simple. Only additional stages need to be added instead of 
redesigning the whole filter and recalculating the filter coefficients.  

2. These filters are computationally very efficient than other filter structures in a filter 
bank applications (eg. Wavelet Transform)  

3. Lattice filters are less sensitive to finite word length effects. 

 

Consider 

 
 

Y (z) 
m   

H (z)   1  a m (i)z 
i 

 

X (z) 
 

 i 1   
     
m is the order of the FIR filter and am(0)=1 
 

when m = 1 Y(z)/ X(z)  = 1+ a1(1) z
-1 
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y(n)= x(n)+ a1(1)x(n-1) 

 

f1(n) is known as upper channel output and r1(n)as lower channel 

output. f0(n)= r0(n)=x(n) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The outputs are 
 

 f (n)  f 
0 
(n)  k r (n 1) 1a 

1         1  0     

r (n)  k 
1 

f 
0 
(n)  r (n 1) 1b 

1         0     

if k 
1 

 a (1), then f (n)  y(n) 
      1      1    

If m=2               

 Y (z)  1  a  (1)z 
1 
 a  (2)z 

2 
  

2 2  

X (z) 
             

                

 y(n)  x(n)  a2 (1)x(n 1)  a2 (2)x(n  2) 

 y(n)  f1 (n)  k2 r1 (n 1) (2) 

Substituting 1a and 1b in (2)  

 y(n)  f0 (n)  k1r0 (n 1)  k2 [k1 f0 (n 1)  r0 (n  2)] 

    f0 (n)  k1r0 (n 1)  k2 k1 f0 (n 1)  k2 r0 (n  2)] 

sin ce   f0 (n)  r0 (n)  x(n) 

 y(n)  x(n)  k1 x(n 1)  k2 k1 x(n 1)  k2 x(n  2)] 

    x(n)  (k1   k1k2 )x(n 1)  k2 x(n  2) 

We recognize        
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a 
2 

(1)  k   k k 
2 

       
   1  1        

a 
2 

(1)  k 
2 
         

             

Solving the above equation we get   

k  
a 

2 
(1) and k   a  (2) (4)  

        

      

2 2 
 

1  1  a  (2)       

   2         
               

 

Equation (3) means that, the lattice structure for a second-order filter is simply a cascade of 
two first-order filters with k1 and k2 as defined in eq (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Similar to above, an Mth order FIR filter can be implemented by lattice structures with 
M – stages 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

8.4.1 Direct Form –I  to lattice structure 
 

For m = M, M-1, ………..2, 1 do 

 

km   am (m)  

am1 (i) 
am (i)  am (m)am (m  i) 

1  i  m 1 
1  k 

2 
  

 m  
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 The above expression fails if km=1. This is an indication that there isa zero on the unit 
circle. If km=1, factor out this root from A(z) and the recursive formula can be applied 
for reduced order system.

 

for m  2 and m  1                 

k 
2 

 a 
2 

(2) &    k 
1 

 a (1)              
               1               

for m  2 & i  1                     

a (1) a 
2 
(1)  a 2 

(2)a 
2 
(1) 


a 

2 (1)[1  a 2 
(2)] 


a 

2 
(1) 

                    

           

2 
      

2 
        

 1       1  k        1  a (2)  1  a  (2)         2       2  2 
                             

Thus 
 
k 

  


a 
2 

(1)                  
                           

 1 
1  a 

  

(2) 
                

                        

        2                 
                               

 

8.4.2 Lattice to direct form –I 

 

For m = 1,2,…….M-1 

 

a 
m 

(0)  1       
         

a 
m 

(m)  k 
m 

     
        

a 
m 

(i)  a 
m1 

(i)  a 
m 

(m)a 
m1 

(m  i) 
     

 

Problem:  

Given FIR filter H (Z )  1  2Z 1 
 

Given a1 (1)  2 , a2 (2)  1 3     
                

Using the recursive equation for  

m = M, M-1, ……, 2, 1        

here M=2 therefore m = 2, 1  
if m=2  k2  a2 (2) 1 3         
                

if m=1 k1  a1 (1)           

also, when m=2 and i=1        

a1 (1) 
 a2 (1)  


 2  


 3    

1  a2 (2) 
 


1

3 

 

2 
   

 1       

Hence k  a (1)  
3 

          
 1 1  2          

 
 
 
 
 
 

1  i 

1 Z 2 
3  

  

 
 
 
 
 

 m 1 
 
 

 

obtain lattice structure for the same 
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Recommended questions with solution 
 

 

Problem:1  

Consider an FIR lattice filter with co-efficients k1 
1 

, k 2  
1 

, 
2 3             

filter co-efficient for the    direct   

( H (Z )  a3 (0)  a3 (1)Z 
1 
 a3 (2)Z 

2 
 a3 (3)Z 

3 
) 

      
         

a 
3 
(0)  1 a 

3 
(3)  k 

3 
 1 

    

4        

 
 
 

 
 

k3 
1 

. Determine the FIR 
4    

form structure 
 
 

a2 (2)  k2   
1

3  

a (1)  k  1 

1 
 

1   2     

 

for m=2, i=1  
a 

2 
 

 
 
 
 
 
 
 
 
 

 

for m=3, i=1  
a 

3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

for m=3 & i=2 

 

 
 

(1)  a (1)  a 
2 

(2)a (1)  
 1        1   

= a1 (1)[1  a2 (2)] 
1 

2              

= 
4 


2         

6 3 
        

          

(1)  a 
2 
(1)  a 

3 
(3)a 

2 
(2)  

           

= 
2 


1 
. 

1      

3 4 3 
     

    

8  1 
  

= 
2 


1 
= 

  

3 12 12 
   

         

= 9 


3         
  

4 
        

 12          
 
 
 
 

 

a3 (2)  a2 (2)  a3 (3)a 
 

= 
1 


1 
. 
2   

3 4 3 
  

   

2 1 
= 

1 


1 


3 6 6 
 

     

 
 
 
 

 
 




1 
1    

3   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2 (1) 
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a 
3 
(0) 

  

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 

1 

 
 
 
 
 
 
 

 

, 

 
 
 
 
 
 
 
 
 

a 
3 

(1) 
   

 
 
 
 
 
 

 

3 

4 

 

 

= 
 
 
 

 

, 

 
 

3 


1  

6 2 
 

   

 
a 
 
(2) 

1 
 3 

2    

    

 
 
 
 
 
 
 

 

, 

 
 
 
 
 
 

 
 

a 
 

(3) 
1 

3 
4    

    

 
 
 
 
 
 
 
 
 
 
 
 

 

6.5 Structures for IIR Filters 
 

The IIR filters are represented by system function; 
 

 

H(Z) = 

 

M      
 k   

k 
 

b 
 

z 
 

   

k 0      

N     

k 
1  a k z  

k 1       
and corresponding difference equation given by,  

N N 

y(n) ak y(n  k )  bk x(n  k ) 
k 1 k 0 

 

Different realizations for IIR filters are, 

 

1. Direct form-I 

2. Direct form-II 

3. Cascade form  
4. Parallel form 

5. Lattice form 

 

6.5.1 Direct form-I  
This is a straight forward implementation of difference equation which is very simple. 

Typical Direct form – I realization is shown below . The upper branch is forward path and 

lower branch is feedback path. The number of delays depends on presence of most previous 
input and output samples in the difference equation. 
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6.5.2 Direct form-II 

 

The given transfer function H(z) can be expressed as, 

 

H (z) 
Y (z) 


V (z) 

. 
Y (z) 

X (z) X (z) V (z)     

where V(z) is an intermediate term. We identify, 

V (z) 


  1     
-------------------all poles 

X (z) 
 N      

    

k 
   

 
1  a k z 

   

      

   k 1      

Y (z)   M  
k 

 
  1  bk z  -------------------all zeros 

V (z) 
 

  k 1    

The corresponding difference equations are, 

 
N 

v(n)  x(n)  ak v(n  k ) 
k 1  
M 

y(n)  v(n)  bk v(n 1) 
k 1 
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This realization requires M+N+! multiplications, M+N addition and the maximum of 
{M, N} memory location 
 

 

6.5.3 Cascade Form 

 

The transfer function of a system can be expressed as, 
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H (z)  H (z) H 
2 

(z)....H 
k 

(z)   
   1            

Where H k (Z ) could be first order or second order section realized in Direct form – II form 

i.e.,                  

  
(Z ) 

b  b  Z 
1

  b  Z 2   
H  k 0   k1    k 2     

k 
1  a 

  

Z 
1

  a 
  

Z 2 

  
         

    k1 k 2   
              

where K is the integer part of (N+1)/2   

  Similar to FIR cascade realization, the parameter b0 can be distributed equally among the  
k filter section B0 that b0 = b10b20…..bk0. The second order sections are required to realize 

section which has complex-conjugate poles with real co-efficients. Pairing the two complex-

conjugate poles with a pair of complex-conjugate zeros or real-valued zeros to form a 

subsystem of the type shown above is done arbitrarily. There is no specific rule used in the 

combination. Although all cascade realizations are equivalent for infinite precision arithmetic, 

the various realizations may differ significantly when implemented with finite precision 

arithmetic. 

 

6.5.4 Parallel form structure 

 

In the expression of transfer function, if 

 

N 

 



 

M 

 

we can express system function 

N  A   

H (Z )  C    k   

1  p Z 1 

k 1 
 

 k   

 
N  C  

H k (Z ) 
k 1 

Where {pk} are the poles, {Ak} are the coefficients in the partial fraction expansion, and the 

constant C is defined as C  bN aN , The system realization of above form is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
(Z ) 

 b   b Z 1   
Where H k 

  k 0 k1     

 

 a 
 

Z 
1

  a 
 

Z 2   1 k1 k 2 
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Once again choice of using first- order or second-order sections depends on poles of the 
denominator polynomial. If there are complex set of poles which are conjugative in nature then 
a second order section is a must to have real coefficients. 

 

Problem 2  
Determine the 

(i)Direct form-I 

(iv)Parallel form 
 
 

 

H 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

H 

 
 
 
 

(ii) Direct form-II (iii) Cascade & 

realization of the system function 

 

(Z ) 
        101 

1  Z 1 
1 

2 Z 1 
1  2Z 

1 
     

                                       

       
1 

     2   1   3    Z 
 1  

     Z 
 

 


 Z   


  Z      

 j 
    

 j 
  

 1 3 1 1  1 1  1 1 1 1 1 
                                    

    4          8              2     2   


    2   2    

 


  101  7 Z 1  1 Z 2 
1  2Z 

1             
                                         

 

1 
 

Z 
   6    

Z 
 3 1  Z 

  


 

Z 
  


           

                          

  7 1  3 2 1 1  2            
                                      

     8        32                   2                 

 

H (Z ) 

     101  5 Z 1  2Z 2  2 Z 3          
 

1 
 6      3      


    

                                   

 
15 Z 1 47 Z 2  17 Z 3  3 

 Z 4 
    

            
                                 

            8         32         32      64          

(z) 
(14.75 12.90z 1 ) 


(24.50 26.82z 1 ) 

      
           

   
7 

       
3 

                    
1 

            

 
(1  z 1  


 

z 2 ) 
     

(1  z 1 
 z 2  ) 

        
                      

 

8 
   

32 
          

2 
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Cascade Form  
H(z) = H1(z) H2(z) 

Where  

1 
7 

z 1 


1 
z 2 

  

(z)  6 
 

3 
  

H 1 7 3  

1  1 


2z 
 

z   

8 
 

32 

(z) 
10(1  2z 1 ) 

H 
   

1 1  

1  z 1  2z   

2 
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Parallel Form  
H(z) = H1(z) + H2(z) 
 
 

 

H (z) 
(14.75 12.90z 1 ) 


(24.50  26.82z 1 )    

 
7 

   
3 

        
1 

    

 
(1  z 1 

 z 2 ) 
 

(1  z 1 
 z 2 ) 

 
      

 

8 
 

32 
    

2 
  

                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem: 3 
Obtain the direct form – I, direct form-II  
Cascade and parallel form realization for the following system, 
y(n)= -0.1 y(n-1)+0.2y(n-2)+3x(n)+3.6 x(n-1)+0.6 x(n-2) 

 

Solution:  
The Direct form realization is done directly from the given i/p – o/p equation, show in below 
diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Direct form –II realization 

Taking ZT on both sides and finding H(z) 

 

H (z) 
Y (z) 


3  3.6z 

1 
 0.6z 

2 
 

X (z) 1  0.1z 
1 
 0.2z 

2 
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Cascade form realization  
The transformer function can be expressed as:  

H (z) 
(3  0.6z 1 )(1  z 1 )       

         

(1  0.5z 1 )(1  0.4z 1 ) 
     

      

          

which can be re written as          

 

H1 (z) 
3  0.6z 1     

(z) 
1  z 1  

where 
   

and H 2 
  

1  0.5z 
1  

 0.4z 
1 

         1  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parallel Form realization 

 

The transfer function can be expressed as  
H(z) = C + H1(z) + H2(z) where  H1(z) & H2(z) is given by, 

 

H (z) 3 
7  


1  

1  0.4z 1 1  0.5z 1   
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6.6 Lattice Structure for IIR System: 
 

Consider an All-pole system with system function. 

 

H (Z )  1    1 
N 

    
   

A 
 

(Z )  
1  a N (k )Z 

k N 
   

     

 k 1      

 

The corresponding difference equation for this IIR system is, 
 

N y(n) aN (k ) y(n 

 k )  x(n) k 1  
OR 
 

N x(n)  y(n)  

aN (k ) y(n  k ) k 1 

 

For N=1  

x(n)  y(n)  a1 (1) y(n 1)  
Which can realized as, 
 
 
 
 
 
 
 
 
 
 

 

We observe        
x(n)  f (n)    

 1       

y(n)  f0 (n)  f1 (n)  k1 g0 (n 1) 

      x(n)  k y(n 1) 
       1 

g (n)  k f 
0 
(n)  g 

0 
(n 1)  k y(n)  y(n 1) 

1  1   1 

For N=2, then  

y(n)  x(n)  a2 (1) y(n 1)  a2 (2) y(n  2) 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

k  a (1) 
1 1  
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This output can be obtained from a two-stage lattice filter as shown in below fig 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

f 
2 
 (n)  x(n)               

                        

f 
1 
(n)  f 

2 
 (n)  k 

2 
g  (n 1)      

           1          

g 
2 
(n)  k 

2 
f  (n)  g  (n 1)      

     1     1         

f 
0 
 (n)  f  (n)  k g 

0 

(n 1)      
   1       1           

g 
1 

 (n)  k    f 
0 

(n)  g 
0 

 (n 1)      
   1                  

y(n)  f 0 (n)  g0 (n)  f1 (n)  k1 g0 (n 1) 

 f 2 (n)  k2 g1 (n 1)  k1 g0 (n 1)  

 f 2 (n)  k 2 k1 f0 (n 1)  g0 (n  2) k1 g0 (n 1) 

 x(n)  k2 k1 y(n 1)  y(n  2) k1 y(n 1) 

 x(n)  k (1 k 
2 
) y(n 1)  k 

2 
y(n  2) 

      1               

Similarly                          

g 
2 
(n)  k 

2 
y(n)  k (1 k 

2 
) y(n 1)  y(n  2) 

           1          

We observe                          

a 
2 
 (0) 1; a 

2 
(1)  k (1 k 

2 
); a 

2 
(2)  k 

2            1       

N-stage IIR filter realized in lattice structure is, 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

f N (n)  x(n)  

f m1 (n)  f m (n)  km gm1 (n 1) m=N, N-1,---1 

gm (n)  km f m1 (n)  gm1 (n 1) m=N, N-1,---1 
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y(n)  f (n)  g (n)   
0 0    

 

8.6.1 Conversion from lattice structure to direct form: 

 

a 
m 

(m)  k 
m 

; a 
m 

(0)  1 
      

a 
m 

(k)  a 
m1 

(k)  a 
m 

(m)a 
m1 

    

 

(m  k) 

 

Conversion from direct form to lattice structure 

 

a 
 

 

a 

 

 
m1 

 
 
 
m1 

 

(0) 
 

 

(k) 

 

 1 

 

a 
m  

  

 
 

k 
m 
 a 

m 
(m) 

   

 

(k)  a 
m 

(m) a 
m 

(m  k) 
     

1  a 2 (m) 
 

m  
      

 

 

6.6.2 Lattice – Ladder Structure: 

 

A general IIR filter containing both poles and zeros can be realized using an all pole 
lattice as the basic building block. 
 
 
 
 

If, 
      M 

k 

 

      bM (k )Z 
 

H (Z ) B  (Z ) 
  

M k 0   
    

       

  A (Z )  N   
   

1  aN (k )Z k    N   
       

Where N  M 
 k 1   

    

A lattice  structure  can  be  constructed  by  first  realizing  an  all-pole  lattice  co-efficients 

km ,  1  m  N for the denominator AN(Z), and then adding a ladder part for M=N. The  
output of the ladder part can be expressed as a weighted linear combination of {gm(n)}. 
Now the output is given by  

M 

y(n)  Cm g m (n) 
m0  

Where {Cm} are called the ladder co-efficient and can be obtained using the recursive relation, 
M 

Cm   bm   Ci ai (i  m); 
im1 

 

m=M, M-1, ….0 
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Problem:4 
Convert the following pole-zero IIR filter into a lattice ladder structure, 
 

H (Z )  
1 

 

Solution: 
 
Given bM 

 
 

1  2Z 1  2Z 2  Z 3   
       

 13 Z 1  5 Z 2  1 Z 3  
         

 24    8      3      

(Z )  1  2Z 1  2Z 2  Z 3 
     

 

And 

  

A (Z )  1  13 Z 1  5 Z 2  1 Z 3 
   

N 24   8   3   

a (0)  1; a (1)  13 ; a (2) 5 ; a (3) 1 
3 3 

 

3 
 

3 24  8  3 

k   a (3)  1                
 

3 

 

3 
                   

      3                

Using the equation                       

am1 (k) 
am (k)  am (m)am (m  k) 

 
   

     

          1  a 
2
 m(m)         

for m=3, k=1                         
  

(1) 
a 3 

 (1)  a 
3 
(3)a 3 (2) 


13  1 . 5 


 

a 
  24 3 8 3 
            

2    1  a  2 (3)   1   2 8 
            

       

3 
   1     

                      

                 3      
                        

for m=3, & k=2                         

a2 (2)  k2  a3 (2)  a3 (3)a3 (1)        
        

            1  a3
2
 (3)           

5 

8 

 

 1 . 13 


4513 


 
   

 3  24 72 1 
    

1 1   8  2 
     

      

  9   9   

for m=2, & k=1      

a (1)  k  a2 (1)  a2 (2)a2 (1)  
1 

 

1 
1  a2

2
 (2)   
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3  1 
. 3 


3  3 


 

    

8  2 

) 
8 8 


16 1 

    

1  ( 1 2   1 1  4 
        

  2       4   

for lattice structure k1  4 ,  k2  2 , 
      1     1 
 

For ladder structure  
M 

Cm   bm   C1 .a1 (1  m) 
i m1 

 
 
 
 

 
 

k  
 

3 
1 

 3 

 

 

m=M, M-1,1,0 

  C 
3 
 b   1;  C 

2 
 b  C a (1) 

M=3       3       2 3 3  
  2 1.( 13 )  1.4583    

     
                  

         24          

   3                 

C1   b1  c1a1 (i  m)  m=1    

 b   c 
i2         


     

a 
2 
(1)  c a 

3( 2) 
     

1 2      3        

 2  1.4583( 3 ) 5  0.8281    
                 

       8   8          
 0 0  3 
  

c   b  
    i1 

    b 
    0 

    1 

 
 

c a (i  m) 
1 1  

 c a (1)  c a 
2 

(2)  c a 
3 
(3)

1 1  2    3   

02695 08281( 1 ) 1.4583( 1 )  1 
         

  4     2   3  

 

To convert a lattice- ladder form into a direct form, we find an equation to obtain  

aN (k)  from km (m=1,2,………N) then equation for cm   is recursively used to compute bm  
(m=0,1,2,………M). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 5 
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Question 6 
 
 

Consider a FIR filter with system function:  

H(z) = 1+2.82 Z
-1

 +3.4048z-
2
 +1.74z

- 3
. Sketch the direct form and 

lattice realizations of the filter. 
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DESIGN OF IIR FILTERS FROM ANALOG FILTERS 

(BUTTERWORTH AND CHEBYSHEV) 

8.1 Introduction 
A digital filter is a linear shift-invariant discrete-time system that is realized using finite 

precision arithmetic. The design of digital filters involves three basic steps: 


The specification of the desired properties of the system.


The approximation of these specifications using a causal discrete-time system.


The realization of these specifications using _nite precision arithmetic.

These three steps are independent; here we focus our attention on the second step. 

The desired digital filter is to be used to filter a digital signal that is derived from an analog 

signal by means of periodic sampling. The speci_cations for both analog and digital filters are 

often given in the frequency domain, as for example in the design of low 

pass, high pass, band pass and band elimination filters. Given the sampling rate, it is straight 

forward to convert from frequency specifications on an analog _lter to frequency speci_cations 

on the corresponding digital filter, the analog frequencies being in terms of Hertz and digital 

frequencies being in terms of radian frequency or angle around the unit circle with 
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the point Z=-1 corresponding to half the sampling frequency. The least confusing point of 

view toward digital filter design is to consider the filter as being specified in terms of angle 

around the unit circle rather than in terms of analog frequencies. 

 
 
 

Figure 7.1: Tolerance limits for approximation of ideal low-pass filter 
 

 

A separate problem is that of determining an appropriate set of specifications on the digital 
filter. In the case of a low pass filter, for example, the specifications often take the  
form of a tolerance scheme, as shown in Fig. 4.1 
 
 
 
 
 
 
 
 
 
 
 

 

Many of the filters used in practice are specified by such a tolerance scheme, with no constraints 

on the phase response other than those imposed by stability and causality requirements; i.e., the 

poles of the system function must lie inside the unit circle. Given a set of specifications in the form 

of Fig. 7.1, the next step is to and a discrete time linear system whose frequency response falls 

within the prescribed tolerances. At this point the filter design problem becomes a problem in 

approximation. In the case of infinite impulse response (IIR) filters, we must approximate the 

desired frequency response by a rational function, while in the finite impulse response (FIR) filters 

case we are concerned with polynomial approximation. 

 

7.2 Design of IIR Filters from Analog Filters: 
 

The traditional approach to the design of IIR digital filters involves the transformation of an 
analog filter into a digital filter meeting prescribed specifications. This is a reasonable 
approach because: 

 

 The art of analog filter design is highly advanced and since useful results can be 
achieved, it is advantageous to utilize the design procedures already developed for 
analog filters.



 Many useful analog design methods have relatively simple closed-form design formulas.

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Therefore, digital filter design methods based on analog design formulas are rather simple to 
implement.  
An analog system can be described by the differential equation 

------------------------------------------------------------7.1 

And the corresponding rational function is 

---------------------------------------------------------7.2 

The corresponding description for digital filters has the form 

--------------------------------------------------7.3 

and the rational function 

--------------------------------------------------------7.4 

In transforming an analog filter to a digital filter we must therefore obtain either H(z)or h(n) 

(inverse Z-transform of H(z) i.e., impulse response) from the analog filter design. In such 

transformations, we want the imaginary axis of the S-plane to map into the finite circle of the 

Z-plane, a stable analog filter should be transformed to a stable digital filter. That is, if the

analog filter has poles only in the left-half of S-plane, then the digital filter must have poles 

only inside the unit circle. These constraints are basic to all the techniques discussed 

7.3 IIR Filter Design by Impulse Invariance: 
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This technique of transforming an analog filter design to a digital filter design corresponds to 
choosing the unit-sample response of the digital filter as equally spaced samples of the impulse 
response of the analog filter. That is, 

-------------------------------------------------------------------------
7.5 Where T is the sampling period. Because of uniform sampling, we have 

---------------------------------------------7.6 

Or 

---------------------------------------------7.7 

Figure 7.2: Mapping of s-plane into z-plane 

Where s = jω and Ω=ω/T, is the frequency in analog domain and ω is the frequency in digital 
domain.  

From the relationship Z = e
ST

 it is seen that strips of width 2π/T in the S-plane map into the

entire Z-plane as shown in Fig. 7.2. The left half of each S-plane strip maps into interior of the 
unit circle, the right half of each S-plane strip maps into the exterior of the unit circle, and the 
imaginary axis of length 2π/T of S-plane maps on to once round the unit circle of Z-plane. 
Each horizontal strip of the S-plane is overlaid onto the Z-plane to form the digital filter 
function from analog filter function. The frequency response of the digital filter is related to 
the frequency response of the 
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Figure 7.3: Illustration of the effects of aliasing in the impulse invariance technique 
 

 

analog filter as 
 
 

 

------------------------------------------------7.8 

 

From the discussion of the sampling theorem it is clear that if and only if 
 
 
 

 

Then 
 
 
 
 

 

Unfortunately, any practical analog filter will not be band limited, and consequently there is 

interference between successive terms in Eq. (7.8) as illustrated in Fig. 7.3. Because of the 

aliasing that occurs in the sampling process, the frequency response of the resulting digital 

filter will not be identical to the original analog frequency response. To get the filter design 

procedure, let us consider the system function of the analog filter expressed in terms of a 

partial-fraction expansion 
 
 
 

 

------------------------------------------------------------------ -----7.9 

The corresponding impulse response is  
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--------------------------------------------------------------- 7.10 

And the unit-sample response of the digital filter is then 

--------------7.11 

The system function of the digital filter H(z) is given by 

------------------------------------------------------------7.12 

In comparing Eqs. (7.9) and (7.12) we observe that a pole at s=sk in the S-plane transforms to 

a pole at exp
skT

 in the Z-plane. It is important to recognize that the impulse invariant design
procedure does not correspond to a mapping of the S-plane to the Z-plane. 

8.4 IIR Filter Design By Approximation Of Derivatives: 

A second approach to design of a digital filter is to approximate the derivatives in Eq. (4.1) by 
finite differences. If the samples are closer together, the approximation to the derivative would 

be increasingly accurate. For example, suppose that the first derivative is approximated by the 
first backward difference 

--------------------------7.13 

Where y(n)=y(nT). Approximation to higher-order derivatives are obtained by repeated 
application of Eq. (7.13); i.e., 

-------------------------- 7.14 

For convenience we define 

------------------------------------------------------------------- 7.15 

Page 147 

All 
JN

TU
 W

or
ld



Digital Signal Processing  
   

 

Applying Eqs. (7.13), (7.14) and (7.15) to (7.1), we obtain 
 
 
 
 

 

---------------------------------------------7.16 

 

Where y(n) = ya(nT) and x(n) = xa(nT). We note that the operation ∆
(1)

[ ] is a linear shift-

invariant operator and that ∆
(k)

[ ] can be viewed as a cascade of (k) operators ∆
(1)

[ ]. In 
particular 
 
 
 
 
 

 

And 
 
 
 
 
 
 
 

 

Thus taking the Z-transform of each side in Eq. (7.16), we obtain 
 
 
 

 

------------------------------------------------------------7.17 

 

Comparing Eq. (7.17) to (7.2), we observe that the digital transfer function can be obtained 
directly from the analog transfer function by means of a substitution of variables 
 
 

 

---------------------------------------------------------------------------------7.18 

 

So that, this technique does indeed truly correspond to a mapping of the S-plane to the Z-
plane, according to Eq. (7.18). To investigate the properties of this mapping, we must express 
z as a function of s, obtaining 
 
 
 
 

 

Substituting s = jΩ, i.e., imaginary axis in S-plane 
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------------------------------------------------------7.19 

Which corresponds to a circle whose center is at z =1/2 and radius is 1/2, as shown in Fig. 7.4. 

It is easily verified that the left half of the S-plane maps into the inside of the small circle and 
the right half of the S-plane maps onto the outside of the small circle. Therefore, although the 

requirement of mapping the jΩ-axis to the unit circle is not satisfied, this mapping does satisfy 
the stability condition. 

Figure 4.4: Mapping of s-plane to z-plane corresponding to first backward-
difference approximation to the derivative 

In contrast to the impulse invariance technique, decreasing the sampling period T, theoretically 

produces a better filter since the spectrum tends to be concentrated in a very small region of 
the unit circle. These two procedures are highly unsatisfactory for anything but low pass 

filters. An alternative approximation to the derivative is a forward difference and it provides a 
mapping into the unstable digital filters. 

8.5 IIR Filter Design By The Bilinear Transformation: 
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In the previous section a digital filter was derived by approximating derivatives by differences. 
An alternative procedure is based on integrating the differential equation and then using a 
numerical approximation to the integral. Consider the first - order equation 
 
 

 

-----------------------------------------------------------7.20 

 

Where y‟a(t) is the first derivative of ya(t). The corresponding analog system function is 
 
 
 
 
 

 

We can write ya(t) as an integral of y‟a(t), as in 
 
 
 

 

In particular, if t = nT and t0 = (n - 1)T, 
 
 
 
 
 

 

If this integral is approximated by a trapezoidal rule, we can write 
 
 

 

----------------------7.21 

 

However, from Eq. (7.20), 
 
 
 
 

 

Substituting into Eq. (4.21) we obtain 
 
 
 
 

 

Where y(n) = y(nT) and x(n) = x(nT). Taking the Z-transform and solving for H(z) gives 
 
 
 
 
 

 

-------------------------------------------- 7.22 
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From Eq. (7.22) it is clear that H(z) is obtained from Ha(s) by the substitution 

-------------------------------------------------------------------7.23 

That is, 

--------------------------------------------------------------7.24 

This can be shown to hold in general since an N
th

 - order differential equation of the form
of Eq. (7.1) can be written as a set of N first-order equations of the form of Eq. (7.20). 
Solving Eq. (7.23) for z gives 

----------------------------------------------------------------------------7.25 

The invertible transformation of Eq. (7.23) is recognized as a bilinear transformation. To see 

that this mapping has the property that the imaginary axis in the s-plane maps onto the unit 

circle in the z-plane, consider z = e
jω

, then from Eq. (7.23), s is given by
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Figure 7.5: Mapping of analog frequency axis onto the unit circle using the bilinear 
Transformation 

 

Thus for z on the unit circle, ζ = 0 and Ω and ω are related by 

 

T Ω/2 = tan 
(ω/2) or  

ω = 2 tan 
-1

(T Ω/2) 
 

This relationship is plotted in Fig. (7.5), and it is referred as frequency warping. From the 

_gure it is clear that the positive and negative imaginary axis of the s-plane are mapped, 

respectively, into the upper and lower halves of the unit circle in the z-plane. In addition to the 

fact that the imaginary axis in the s-plane maps into the unit circle in the z-plane, the left half 

of the s-plane maps to the inside of the unit circle and the right half of the s-plane maps to the 

outside of the unit circle, as shown in Fig. (7.6). Thus we see that the use of the bilinear 

transformation yields stable digital filter from analog filter. Also this transformation avoids the 

problem of aliasing encountered with the use of impulse invariance, because it maps the entire 

imaginary axis in the s-plane onto the unit circle in the z-plane. The price paid for this, 

however, is the introduction of a distortion in the frequency axis. 
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Figure 4.6: Mapping of the s-plane into the z-plane using the bilinear transformation 
 
 

 

8.6 The Matched-Z Transform: 
 

Another method for converting an analog filter into an equivalent digital filter is to map 
the poles and zeros of Ha(s) directly into poles and zeros in the z-plane. For analog filter 
 
 
 
 

 

-----------------------------------------------------------------7.26 

 

the corresponding digital filter is 
 
 
 
 

 

---------------------------------------------------------7.27 

 

Where T is the sampling interval. Thus each factor of the form (s-a) in Ha(s) is mapped 

into the factor (1- e
aT

 z
-1

). 
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Recommended questions with solution 
 
 

Question 1 
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Question 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question 3 
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Question 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question 5 
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Question 6 
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Question 7 
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UNIT 4  

Design of FIR Filters 
 

 

7.1 Introduction: 
 

Two important classes of digital filters based on impulse response type are 
 

Finite Impulse Response (FIR) 
 

Infinite Impulse Response (IIR) 
 
 

 

The filter can be expressed in two important forms as: 
 

1 ) System function representation; 
 

 M   
  k 

k 
 

 

b z 
 

   

H (z)  k 0  (1) N  
  

k  
1 ak z   

 k 1   
 

2) Difference Equation representation; 
 

N  k  M  


a y(n  k ) 
 k 

(2)   b x(n  k ) 
k 0    k 0  

 

Each of this form allows various methods of implementation. The eq (2) can be viewed as 

a computational procedure (an algorithm) for determining the output sequence y(n) of the 

system from the input sequence x(n). Different realizations are possible with different 
arrangements of eq (2) 
 

 

The major issues considered while designing a digital filters are : 
 

• Realiability (causal or non causal)  
• Stability (filter output will not saturate)  
• Sharp Cutoff Characteristics  
• Order of the filter need to be minimum (this leads to less delay)  
• Generalized procedure (having single procedure for all kinds of filters)  
• Linear phase characteristics 
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The factors considered with filter implementation are , 

a. It must be a simple design

b. There must be modularity in the implementation so that any order filter can be obtained with
lower order modules.

c. Designs must be as general as possible. Having different design procedures for different
types of filters( high pass, low pass,…) is cumbersome and complex.

d. Cost of implementation must be as low as possible

e. The choice of Software/Hardware realization

7.2 Features of IIR: 

The important features of  this class of filters can be listed as: 

• Out put is a function of past o/p, present and past i/p‟s 
• It is recursive in nature 
• It has  at least one Pole (in general poles  and zeros)

• Sharp cutoff chas. is achievable with minimum order 
• Difficult to have linear phase chas over full range of freq. 
• Typical design procedure is analog design then  conversion from analog to digital

7.3 Features of FIR : The main features of FIR filter are,

• They are inherently stable

• Filters with linear phase characteristics can be designed 
• Simple implementation – both recursive and nonrecursive structures possible

• Free of limit cycle oscillations when implemented on a finite-word length digital system

7.3.1 Disadvantages: 

• Sharp cutoff at the cost of higher order 
• Higher order leading to more delay, more memory and higher cost of implementation

7.4 Importance of Linear Phase: 

The group delay is defined as 

 g  d ()

d

which is negative differential of phase function. 

Nonlinear phase results in different frequencies experiencing different delay and arriving 
at different time at the receiver. This creates problems with speech processing and data 
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communication applications. Having linear phase ensures constant group delay for all 
frequencies. 

The further discussions are focused on FIR filter. 

6.5 Examples of simple FIR filtering operations: 1.Unity Gain Filter 

y(n)=x(n) 

2. Constant gain filter

y(n)=Kx(n)

3. Unit delay filter

y(n)=x(n-1)

4.Two - term Difference filter

y(n) = x(n)-x(n-1)

5. Two-term average filter

y(n) = 0.5(x(n)+x(n-1))

6. Three-term average filter (3-point moving average

filter) y(n) = 1/3[x(n)+x(n-1)+x(n-2)]

7. Central Difference filter

y(n)= 1/2[ x(n) – x(n-2)]

When we say Order of the filter it is the number of previous inputs used to compute the 
current output and Filter coefficients are the numbers associated with each of the terms x(n), 
x(n-1),.. etc 

The table below shows order and filter coefficients of above simple filter types: 
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 Ex. order a0 a1 a2  
        

 1 0 1 - -   
        

 2 0 K - -   
        

 3 1 0 1 -   
        

 4(HP) 1 1 -1 -   
        

 5(LP) 1 1/2 1/2 -   
        

 6(LP) 2 1/3 1/3 1/3   
        

 7(HP) 2 1/2 0 -1/2   
        

 
 

 

7.6 Design of FIR filters: 
 

The section to follow will discuss on design of FIR filter. Since linear phase can be 
achieved with FIR filter we will discuss the conditions required to achieve this. 
 

 

7.6.1 Symmetric and Antisymmetric FIR filters giving out Linear Phase characteristics: 
 

Symmetry in filter impulse response will ensure linear phase 

 

An FIR filter of length M with i/p x(n) & o/p y(n) is described by the difference equation: 

 
 M 1  

y(n)= b0 x(n) + b1 x(n-1)+…….+b M-1 x(n-(M-1)) = bk x(n  k ) -(1) 
 k 0  

Alternatively. it can be expressed in convolution form  

M 1   

y(n)  h(k )x(n  k ) - (2)  
k 0   

i.e bk= h(k), k=0,1,…..M-1   

Filter is also characterized by   
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M 1  

k 
H (z)  h(k )z  

k 0   

 

 

-(3) polynomial of degree M-1 in the variable z
-1

. The roots of this 

 
polynomial constitute zeros of the filter. 

 

An FIR filter has linear phase if its unit sample response satisfies the condition 

h(n)= ± h(M-1-n)  n=0,1,…….M-1 -(4) 

 

Incorporating this symmetry & anti symmetry condition in eq 3 we can show linear phase 
chas of FIR filters 

 

H (z)  h(0)  h(1)z 1  h(2)z 2  ...........  h(M   2)z ( M 2)  h(M 1)z ( M 1)      
           

If M is odd                           

   
1 

    
M 1 

 
( 

M 1 

) 

 
M 1 

 
( 

M 1 

) 

 
M  3 

 
( 

M 3 

) 

 
H (z)  h(0)  h(1)z  ..........  h( )z 2  h( )z 2  h( )z 2  ........... 

                        

        2       2      2      

 h(M  2)z ( M 2)  h(M 1)z ( M 1)                   
                      

 
 
 

 

 ( M 1 )  ( M 1 )   ( M 3 )   
M 1 

 
M 1 

  
M  3 

  ( M 1 ) 
 z  

2
    h(0)z 2   h(1)z 2   ............  h( )  h( )z 1  h( )z 2  .....h(M 1)z  2      

               2 2  2     

Applying symmetry conditions for M odd             

h(0) h(M  1)                   

h(1) h(M  2)                   

.                            

.                            

h( 
M  1 

) h( 
M  1 

) 
              

2 2 
                

                        

h( 
M  1 

) h( 
M  3 

) 
              

2 2 
                 

                        

.                            

.                            

h(M  1) h(0)                   
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M 1 

      M 3       
                 

 ( ) 
  

M 1 
 2       

 

2 
    

( M 12n) / 2 
  

( M 12n) / 2 H (z)  z   h( )  h(n){z  z    


     }  

       
2 

 

n0 

      
                             

                

similarly  for M even       


   

  
M 1 

 M 1           
                 

 ( ) 2          


   

 

2 
    

( M 12n) / 2 
  

( M 12n) / 2 
   

H (z)  z   h(n){z  z    
   


   }    

    

n0 

           

               

                 

 

7.6.2 Frequency response: 

 

If the system impulse response has symmetry property (i.e.,h(n)=h(M-1-n)) and M is odd  

H (e 
j

)  e 
j ()  

| H r (e 
j

) | where 
    

           

               M 3        
        

M 1 

   

2 
       

M 1 

 

  

j

   



            


H r (e )  h( )  2 h(n) cos (  n)      

2 
 

2 
              

n0 

       

                                            

                         

 () ( 
M 1 

)
 
if | H 

 
(e j) | 0 

   
          

 

2 
   r     

                        

                         

 
( 

M 1 
)  if | H 

 
(e j) | 0 

  
         

   

2 
 r    

                        

                         

In case of M even the phase response remains the same with magnitude response expressed as 
 

 M 1   
   

H r (e 
j

 )  

2 h(n) cos( 

M
 
1 

 n)


 2     


    


n0 

2  
   

     

 

If the impulse response satisfies anti symmetry property (i.e., h(n)=-h(M-1-n))then for 
M odd we will have 

h( M 1 ) h( M 1 ) i.e., h( M 1 )  0 
     

2  2 2    
   M 3      
          

H r (e j )  

2 h(n) sin ( 

M
 
1 

 n)


   2         
  


       

  
n0 

2   
        

           
 

If M is even then, 
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      M 1 

M 1 
  

 

j
   


      

     2      

H r (e  ) 2 h(n) sin ( 
2 

 n) 
      

n0 

  

                 

             

In both cases the phase response is given by 

 () ( M 1 )   / 2 if | H  (e 
j

 ) | 0 
  

r       

2 
        

               

( M 1 )  3 / 2   if | H  (e 
j

 ) | 0 
 

r      

2 
        

              

 

Which clearly shows presence of Linear Phase characteristics. 
 

 

7.6.3 Comments on filter coefficients: 
 

• The number of filter coefficients that specify the frequency response is (M+1)/2 when is M 
odd and M/2 when M is even in case of symmetric conditions  

• In case of impulse response antisymmetric we have h(M-1/2)=0 so that there are (M-1/2) 
filter coefficients when M is odd and M/2 coefficients when M is even 

 

 

7.6.5 Choice of Symmetric and antisymmetric unit sample response 
 

When we have a choice between different symmetric properties, the particular one is 
picked up based on application for which the filter is used. The following points give an 
insight to this issue.  
• If h(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(π)=0, consequently not 

suited for lowpass and highpass filter. This condition is suited in Band Pass filter design.  
• Similarly if M is even Hr(0)=0 hence not used for low pass filter  
• Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero response 

at w = 0 if desired.  
Looking at these points, antisymmetric properties are not generally preferred. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Page 110 

All 
JN

TU
 W

or
ld



Digital Signal Processing  
   

7.6.6 Zeros of Linear Phase FIR Filters:   

Consider the filter system function   

M 1 

n 

  

H (z)  h(n)z 
  

   

no    

 
 
 

 

Expanding this equation 

 

H (z)  h(0)  h(1)z 1  h(2)z 2 h(M  2)z ( M 2)  h(M 1)z ( M 1) 
       

sin ce for Linear  phase we need           

h(n)  h(M 1 n)   i.e.,                   

h(0)  h(M 1); h(1)  h(M  2);......h(M 1)  h(0);     

then                        

H (z)  h(M 1)  h(M  2)z 1 ........  h(1)z ( M 2)  h(0)z ( M 1)  
      

H (z)  z ( M 1) [h(M 1)z ( M 1)  h(M  2)z ( M 2) .....  h(1)z  h(0)] 
 

         

 
( M 1) 

M 1    
1 

 
n 

   
( M 1) 

  
1 

       

H (z)  z [h(n)( z ) 
 
]  z H (z ) 

      

             

  n0                       

This shows that if z = z1 is a zero then z=z1
-1

 is also a zero 
 

The different possibilities: 

1. If z1 = 1 then z1 = z1
-1

 =1 is also a zero implying it is one zero  
2. If the zero is real and |z|<1 then we have pair of zeros 
3. If zero is complex and |z|=1then and we again have pair of complex zeros. 

4. If zero is complex and |z|≠1 then and we have two pairs of complex zeros 
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The plot above shows distribution of zeros for a Linear – phase FIR filter. As it can be seen 
there is pattern in distribution of these zeros. 
 

7.7 Methods of designing FIR filters: 
 

The standard methods of designing FIR filter can be listed as: 

 

1. Fourier series based method 

2. Window based method 

3. Frequency sampling method 
 
7.7.1 Design of Linear Phase FIR filter based on Fourier Series method: 
 

Motivation: Since the desired freq response Hd(e
jω

) is a periodic function in ω with 
period 2π, it can be expressed as Fourier series expansion 

 

 

H 
d 
(e 

  

 
 
j

 
 

   

) 
 d 

(n)e h 
 n  

 
 
 jn 

where h (n)  are fourier series coefficients 
  d         

  
1 

       

d 

(n) 
  d  j jn 

dh 
  

H 
 

(e )e 
2    

          
          

 
 

This expansion results in impulse response coefficients which are infinite in duration and non 

causal. It can be made finite duration by truncating the infinite length. The linear phase can be 
obtained by introducing symmetric property in the filter impulse response, i.e., h(n) = h(-n). It 

can be made causal by introducing sufficient delay (depends on filter length) 
 

7.7.2 Stepwise procedure: 
 

1. From the desired freq response using inverse FT relation obtain hd(n)  

2. Truncate the infinite length of the impulse response to finite length with ( assuming 
 M odd)  

 

h(n)  hd (n) for  (M 1) / 2  n  (M 1) / 2 
 

 0   otherwise


3. Introduce h(n) = h(-n) for linear phase characteristics 

4. Write the expression for H(z); this is non-causal realization 

5. To obtain causal realization H‟(z) = z 
-(M-1)/2

 H(z) 
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Exercise Problems 

Problem 1 : Design an ideal bandpass filter with a frequency response: 

H (e 
j

) 1 for 

 

3
   
    

d  

4 
  

4 

 0  otherwise 

Find the values of h(n) for M = 11 and plot the frequency response. 

h (n)  1    H  (e 
j

 )e 
jn

 d 
 2    

d d 

 

1    / 4 3 / 4 

   e 
jn

 d  e 
jn

 d
2

   

 3 / 4  / 4 
   


1   3

n  sin 
 

 n  

sin n

n  4  4  

truncating to 11 samples we have h(n)  hd (n) for | n | 

5  0 otherwise 

For n = 0 the value of h(n) is separately evaluated from the basic 

integration h(0) = 0.5 

Other values of h(n) are evaluated from h(n) 

expression h(1)=h(-1)=0 

h(2)=h(-2)=-

0.3183 h(3)=h(-

3)=0 h(4)=h(-4)=0 

h(5)=h(-5)=0 

The transfer function of the filter is 
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( N 1) / 2 

H (z)  h(0)  [h(n){z 
n 
 z 

n 
}]  

n1 

 0.5  0.3183(z 2  z 2 )   

the transfer function of the realizable 

H ' (z)  z 5 [0.5  0.3183(z 2  z 2 )]     

0.3183z 3  0.5z 5  0.3183z   

the filter coeff are 
' 

(0)  h' (10)  h' (1)  h' (9)  h' (2) h 

h' (3)  h' (7) 0.3183  

h' (5)  0.5  

filter is 

7

h' (8)  h' (4)  h' (6)  0 

The magnitude response can be expressed as 

| H (e j

 
( N 1) / 2 

) | a(n) cosn
n1 

comparing this exp with 

j 5 

5 

| H (e ) || z [h(0)  2h(n) cosn] |  

n1 

We have a(0)=h(0) 

a(1)=2h(1)=0 

a(2)=2h(2)=-0.6366 

a(3)=2h(3)=0 

a(4)=2h(4)=0 

a(5)=2h(5)=0 

The magnitude response function is 

|H(e 
jω

)| = 0.5 – 0.6366 cos 2ω which can plotted for various values of ω

ω in degrees =[0 20 30 45 60 75 90 105 120 135 150 160 180]; 
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|H(e 
jω

)| in dBs= [-17.3 -38.17 -14.8 -6.02 -1.74 0.4346 1.11 0.4346 -1.74 -6.02 -14.8 -38.17 - 
17.3]; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Problem 2: Design an ideal lowpass filter with a freq response 

 

H 
d 

(e 
  

 
j

 
 

)  1 for 





2 2     

 0 for 



 

2 
 

     

 
 

 

Find the values of h(n) for N =11. Find H(z). Plot the magnitude response 

 

From the freq response we can determine hd(n), 

   

 / 2 

  

sin 

n  

  1 jn  2  

hd (n) 
 

e 
 

d 
  

 n   and   n  0 2  n 
    / 2      

Truncating hd(n) to 11 samples 

 

h(0) = 1/2 h(1)=h(-

1)=0.3183 h(2)=h(-

2)=0 h(3)=h(-3)=-

0.106 
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h(4)=h(-4)=0 

h(5)=h(-5)=0.06366 

 

The realizable filter can be obtained by shifting h(n) by 5 samples to right h‟(n)=h(n-5) 

 

h‟(n)= [0.06366, 0, -0.106, 0, 0.3183, 0.5, 0.3183, 0, -0.106, 0, 0.06366]; 

 

H '(z)  0.06366  0.106z 2  0.3183z 4 0.5z 5  0.3183z 6  0.106z 8  0.06366z 10 
       

Using the result of magnitude response for M odd and symmetry    

       M 3              
H r (e j )  [h( 

M
 
1

) 

 

h(n) cos( 
M

 
1

  n)] 

      

       

      2                
                     

    2  n0   2          

| H 
 

(e j) || [0.5  0.6366 cos w  0.212 cos 3w  0.127 cos 5w] | 
   

r     
                      

 

 

Problem 3 : 
 

Design an ideal band reject filter with a frequency response: 
 

H 
 

(e j ) 1 for  


and  
2

   

d  

3 3       

       

     0 otherwise   
 

 

Find the values of h(n) for M = 11 and plot the frequency response 
 

 

Ans:h(n)= [0  -0.1378 0  0.2757 0 0.667 0 0.2757 0 -0.1378 0]; 
 
 

 

7.8 Window based Linear Phase FIR filter design 
 

The other important method of designing FIR filter is by making use of windows. The 

arbitrary truncation of impulse response obtained through inverse Fourier relation can lead to 
distortions in the final frequency response.The arbitrary truncation is equivalent to multiplying 

infinite length function with finite length rectangular window, i.e.,  
h(n) = hd(n) w(n) where w(n) = 1 for n = ±(M-1)/2 

The above multiplication in time domain corresponds to convolution in freq domain, i.e., 
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H( e 
jω

 ) = Hd(e 
jω

) * W(e 
jω

 ) where W(e 
jω

 ) is the FT of window function w(n). 
 

 

The FT of w(n) is given by 
 

 

W (e 

 

 
j

 
 

) 
sin( M / 2) 

sin(  / 2)  

 

The whole process of multiplying h(n) by a window function and its effect in freq domain are 
shown in below set of figures. 
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Suppose the filter to be designed is Low pass filter then the convolution of ideal filter freq 

response and window function freq response results in distortion in the resultant filter freq 

response. The ideal sharp cutoff chars are lost and presence of ringing effect is seen at the 

band edges which is referred to Gibbs Phenomena. This is due to main lobe width and side 

lobes of the window function freq response.The main lobe width introduces transition band 

and side lobes results in rippling characters in pass band and stop band. Smaller the main lobe 

width smaller will be the transition band. The ripples will be of low amplitude if the peak of 

the first side lobe is far below the main lobe peak. 
 

 

7.8.1 How to reduce the distortions? 
 

1. Increase length of the window 
 

- as M increases the main lob width becomes narrower, hence the transition band width is 
decreased 
 

-With increase in length the side lobe width is decreased but height of each side lobe 
increases in such a manner that the area under each sidelobe remains invariant to changes in 
M. Thus ripples and ringing effect in pass-band and stop-band are not changed. 
 

2. Choose windows which tapers off slowly rather than ending abruptly - Slow tapering 
reduces ringing and ripples but generally increases transition width since main lobe width 
of these kind of windows are larger. 
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7.8.2 What is ideal window characteristics? 

Window having very small main lobe width with most of the energy contained with it 

(i.e.,ideal window freq response must be impulsive).Window design is a mathematical 

problem, more complex the window lesser are the distortions. Rectangular window is one of 

the simplest window in terms of computational complexity. Windows better than rectangular 

window are, Hamming, Hanning, Blackman, Bartlett, Traingular,Kaiser. The different 

window functions are discussed in the following sention. 

7.8.3 Rectangular window: The mathematical description is given by, 

wr (n) 1 for 0  n  M 1 

7.8.4 Hanning windows: 
It is defined mathematically by, 

whan (n)  0.5(1 cos M
2


n
1) for 0  n  M 1
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7.8.5 Hamming windows: 
 

This window function is given by, 
 

 

w (n)  0.54  0.46 cos 2n for 0  n  M 1 
  

ham  
M 1 

  
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.8.6 Blackman windows: 
 
This window function is given by, 
 

w  (n)  0.42  0.5 cos 2n   0.08 cos 4n  for 0  n  M 1 
  

blk 
M 1 

 
M 1 
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7.8.7 Bartlett (Triangular) windows: 
 

The mathematical description is given by, 

 

  
2 | n 

M 1 
|  

(n) 1 2 w  for 0  n  M 1 
  

bart  M 1 
 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.8.8 Kaiser windows: The mathematical description is given by, 
 

  


            

2   

 M 1 
2 


 

M 1 
 

        

 

I
0 

   


 

n 
   

      

2 
 

     2       

w (n)                  for 0  n  M 1 
                

k      M 1       
           

    

I 0 
 


      

    

2 
      

             
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Type of window Appr. Transition Peak 

 width of the main lobe sidelobe (dB) 

   

Rectangular 4π/M -13 
   

Bartlett 8π/M -27 

   

Hanning 8π/M -32 
   

Hamming 8π/M -43 
   

Blackman 12π/M -58 
   

 
 

 

Looking at the above table we observe filters which are mathematically simple do not 

offer best characteristics. Among the window functions discussed Kaiser is the most complex 

one in terms of functional description whereas it is the one which offers maximum flexibility 
in the design. 
 

7.8.9 Procedure for designing linear-phase FIR filters using windows: 

 

1. Obtain hd(n) from the desired freq response using inverse FT relation 

2. Truncate the infinite length of the impulse response to finite length with 
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( assuming M odd) choosing proper window 
 
 

 

h(n)  hd (n)w(n)  where 
 

w(n) is the window function defined  for  (M 1) / 2  n  (M 1) / 2 
 
 
 

 

3. Introduce h(n) = h(-n) for linear phase characteristics 
 
4. Write the expression for H(z); this is non-causal realization 
 

5. To obtain causal realization H‟(z) = z 
-(M-1)/2

 H(z) 

 

Exercise Problems 
 

Prob 1: Design an ideal highpass filter with a frequency response: 

 

H 
 

(e j )  1 for 

   

d  

4       

       

    
 0 |  |


     

4         

 

using a hanning window with M = 11 and plot the frequency response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

1 
  / 4      

d 

(n) 
   jn 

d 
  jn 

h 
 

[ 
 

e 
 

e 
2     

       / 4  
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

d] 
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h (n)  1 [sin n  sin  n ] for  n  and n  0 
   

d n      4        
             

 

1 
  / 4    

3 
    

d 

[ 


d 


d]   0.75 
   

     

h (0)  2    4    
     / 4       
           

 

hd(1) = hd(-1)=-0.225 

hd(2) = hd(-2)= -0.159 

hd(3) = hd(-3)= -0.075 

hd(4) = hd(-4)= 0 hd(5) 

= hd(-5) = 0.045 

The hamming window function is given by 

 

w 
 

(n)  0.5  0.5 cos 
2n  

hn 
M 1 

 
    

     

   0 otherwise  

for N  11    

w 
 

(n)  0.5  0.5 cos 
n 

 5 
hn 

5     

     

 

 

whn(0) = 1  
whn(1) = whn(-1)=0.9045 

whn(2)= whn(-2)=0.655 

whn(3)= whn(-3)= 0.345 

whn(4)= whn(-4)=0.0945 

whn(5)= whn(-5)=0 
 

 

h(n)= whn(n)hd(n) 
 

 

h(n)=[0 0 -0.026 -0.104  -0.204 
 
 

 

h' (n)  h(n  5) 

 
 

 ( 
M 1 

)  n  ( 
M 1 

) 
2 2    

 
 
 
 
 

 

 n  5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0.75 -0.204 -0.104 -0.026 0 0] 

 

H ' (z) 0.026z 2  0.104z 3  0.204z 4  0.75z 5  0.204z 6  0.104z 7  0.026z 8 
       

 

 

Using the equation 
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M 1 

 M 3 
M 1 

  
 

jw 
  2   

H r (e )  [h( 
  

)  2 h(n) cos( 
 

 n)   
2 2      n0   

         

     4     

H r (e 
jw 

)  0.75)  2h(n) cos(5  n) 
  

   

     n0     

 

 

The magnitude response is given by, 
 

|Hr(e 
jω

)| = |0.75 - 0.408cosω - 0.208 cos2ω - 0.052cos3ω| 
 
 

 

ω in degrees = [0 15 30 45 60 75 90 105 120 135 150 165 180] 

|H(e 
jω

)| in dBs = [-21.72 -17.14 -10.67 -6.05 -3.07 -1.297 -0.3726 

-0.0087 0.052 0.015 0 0 0.017] 
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Prob 2 : Design a filter with a frequency response: 

H (e j)  e  j 3 for 





   

d   

4 4 

 0

|  | 

4 
 

using a Hanning window with M = 7  

Soln: 

The freq resp is having a term e 
–j

 
ω(M-1)/2

 which gives h(n) symmetrical
about n = M-1/2 = 3 i.e we get a causal sequence. 

1 
 / 4

h (n)  e  j 3e jn d 

   

d 
2

       

 / 4
 

sin 


(n  3) 


4  

 

 (n  3)

this gives h (0)  h (6)  0.075 
d d 

h (1)  h (5)  0.159 
d d 

h (2)  h (4)  0.22 
d d 

h (3)  0.25  
d  

The Hanning window function values are given by 

whn(0) = whn(6) =0 

whn(1)= whn(5) =0.25 

whn(2)= whn(4) =0.75 

whn(3)=1 

h(n)=hd(n) whn(n) 

h(n)=[0 0.03975 0.165 0.25 0.165 0.3975 0] 
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7.9 Design of Linear Phase FIR filters using Frequency Sampling method 

7.9.1 Motivation: We know that DFT of a finite duration DT sequence is obtained by sampling FT of 
the sequence then DFT samples can be used in reconstructing original time domain samples if 

frequency domain sampling was done correctly. The samples of FT of h(n) i.e., H(k) are sufficient 

to recover h(n). 

Since the designed filter has to be realizable then h(n) has to be real, hence even 
symmetry properties for mag response |H(k)| and odd symmetry properties for phase response 
can be applied. Also, symmetry for h(n) is applied to obtain linear phase chas. 

Fro DFT relationship we have 

1 
N 1  

h(n)   H (k )e j 2kn / N for n  0,1,......N 1  

  

N 
0k 

N 1  

 j 2kn / N
H (k )  h(n)e for k  0,1,.........N 1 

n0  

Also we know H(k) = H(z)|z=e 
j2πkn/N

The system function H(z) is given by 

N 1 

H (z)  h(n)z 
n

n0 

Substituting for h(n) from IDFT relationship 

1  z N  N 1   H (k) 
H (z) 

 


  

 

N 1  e 
j 2kn / N 

z 
1

k 0   
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Since H(k) is obtained by sampling H(e
jω

) hence the method is called Frequency Sampling 
Technique. 

 

Since the impulse response samples or coefficients of the filter has to be real for filter to be 
realizable with simple arithmetic operations, properties of DFT of real sequence can be used. 
The following properties of DFT for real sequences are useful: 

 

H*(k) = H(N-k) 

 

|H(k)|=|H(N-k)| - magnitude response is even 

 

θ(k) = - θ(N-k) – Phase response is odd 

 
 

1 
N 1 

h(n)  H (k )e  

 N 
  k 0 

 

 
j 2kn / N 

 

 

can be rewritten as (for N odd) 

 

 1  N 1 

j 2kn / N 

    
h(n)  H (0) H (k )e     

       

 N  k 1      
 1  N 1 / 2  

j 2kn / N 

 N 1 

j 2kn / N h(n)  H (0)  H (k )e  H (k )e 
    

 N  k 1     k N 1 / 2  

 

Using substitution k = N – r or r = N- k in the second substitution 
with r going from now (N- 1)/2 to 1 as k goes from 1 to (N-1)/2 
 

 1  ( N 1) / 2      ( N 1) / 2           
h(n)   H (0)   H (k )e j 2kn / N  H (N  k )e  j 2kn / N 

         

 N   k 1       k 1         



 1  ( N 1) / 2      ( N 1) / 2          

h(n)   H (0)   H (k )e j 2kn / N  H * (k )e  j 2kn / N   
             

 N   k 1       k 1           
 1  ( N 1) / 2      ( N 1) / 2            

h(n)   H (0)   H (k )e j 2kn / N  (H (k )e j 2kn / N ) *   
            

 N   k 1       k 1      


    
 1  ( N 1) / 2                 

h(n)   H (0)  (H (k )e j 2kn / N  (H (k )e j 2kn / N ) *      
             

 N   k 1       


          
 1  ( N 1) / 2                 

h(n)   H (0)  2  Re( H (k )e j 2kn / N             
               

 N   k 1                   

Similarly for N even we have                  

 1   ( N 1) / 2                  
h(n)   

H (0)  2 Re( H (k)e 
j
 
2kn

 
/
 
N
 

           
            

 N   k 1                   
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Using the symmetry property h(n)= h (N-1-n) we can obtain Linear phase FIR filters using the 
frequency sampling technique. 

Exercise problems 

Prob 1 : Design a LP FIR filter using Freq sampling technique having cutoff freq of π/2 

rad/sample. The filter should have linear phase and length of 17. 

The desired response can be expressed as 

 j(
M 1 

) H  (e j )  e 2 for |  | c  
 

d 
   

 0 otherwise  

with M  17 and c   / 2 

H 
 
(e j )  e  j8  

for 0     / 2 
d   

 0 for / 2    

Selecting k 
2k 

M 

H (k)  H  (e j) | 
d 

 



 j 
2k 

8 
H (k )  e 17 

 0 for 


2k 

for k  0,1,......16  

17 

2k 

17  

for 0 
2k 




17 2 

/ 2 
2k 


17 

 j

16k 
17 H (k )  e 17 for 0  k 

4 

 0 for 
17 

 k 
17 

4 2 

The range for “k” can be adjusted to be an integer such as 

0  k  4   

and   5  k  8 
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The freq response is given by    
 

 j 
2k 

8 
    

H (k )  e 17 for   0  k  4 
  

    
       

 0   for 5  k  8    

 

Using these value of H(k) we obtain h(n) from the equation 
 

 

h(n) 

i.e., h 

h(n) 

 
 

 
1 

    ( M 1) / 2        


 

(H (0)  2 Re( H (k)e 
j 2kn / M  

)) 
 

    

M 
     

     k 1        
             

   
1 

 4        

(n)  (1  2 Re(e 
 j16k / 17 

e 
j 2kn / 17 

)) 
 

  

17 
     

    k 1        
            

 

1 
    4 

2k (8  n) 
    

 (H (0)  2cos( ) for n  0,1,........16 
17 17 

  
    k 1       
            

 

 Even though k varies from 0 to 16 since we considered ω varying between 0 and π/2 
only k values from 0 to 8 are considered

 While finding h(n) we observe symmetry in h(n) such that n varying 0 to 7 and 9 to 16 
have same set of h(n)

 

 

7.10 Design of FIR Differentiator 
 

Differentiators are widely used in Digital and Analog systems whenever a derivative 
of the signal is needed. Ideal differentiator has pure linear magnitude response in the freq 
range –π to +π. The typical frequency response characteristics is as shown in the below figure. 
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Problem 2: Design an Ideal Differentiator using a) rectangular window and b)Hamming 

window with length of the system = 7. 

 

Solution: 
As seen from differentiator frequency chars. It is defined as 
 

H(e
jω

) = jω between –π to +π 
 
  

1 
    

cosn 
   

d 

(n) 


j e 
jn 

d   n 
 

n  0 h 
   

and 
2  n         

           
The hd(n) is an add function with hd(n)=-hd(-n) and hd(0)=0 

 

a) rectangular window 

 

h(n)=hd(n)wr(n) 

 

h(1)=-h(-1)=hd(1)=-1 

h(2)=-h(-2)=hd(2)=0.5 

h(3)=-h(-3)=hd(3)=-0.33 

 

h‟(n)=h(n-3) for causal 
system thus, 

 

H ' (z)  0.33  0.5z 1  z 2  z 4  0.5z 5  0.33z 6 
      

Also from the equation           

      ( M 3) / 2        M 1     

H r (e 
j

)  2   h(n) sin ( 
   

 n) 
  

   
2 

  
      n0             
                    

For M=7 and h‟(n) as found above we obtain this as 

H 
 
(e j)  0.66 sin 3  sin 2  2 sin 

   
r      

                      

 
H (e j)  jH 

 
(e j)  j(0.66 sin 3  sin 2  2 sin )    r   

                      

 
 

 

b) Hamming window 
h(n)=hd(n)wh(n) 

 

where wh(n) is given by 
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w (n)  0.54  0.46 cos 2n  (M 1) / 2  n  (M 1) / 2 
  

h  
(M 1) 

    
      

  0   otherwise       

For the present problem 

n 

     

w (n)  0.54  0.46 cos  3  n  3    
    

h  3      
       

The window function coefficients are given by for n=-3 to +3  
Wh(n)= [0.08 0.31 0.77 1 0.77 0.31 0.08] 

 

Thus h‟(n) = h(n-5) = [0.0267, -0.155, 0.77, 0, -0.77, 0.155, -0.0267] 

 

Similar  to the  earlier case  of  rectangular  window  we  can   write  the  freq  response  of 

differentiator as     

H (e j)  jH  (e j)  j(0.0534 sin 3  0.31sin 2 1.54 sin )  r  
          

           

           
 
 
 

 

We observe  
 With rectangular window, the effect of ripple is more and transition band width is 

small compared with hamming window
 With hamming window, effect of ripple is less whereas transition band is more






7.11 Design of FIR Hilbert transformer: 
 

Hilbert transformers are used to obtain phase shift of 90 degree. They are also called j 
operators. They are typically required in quadrature signal processing. The Hilbert transformer 
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is very useful when out of phase component (or imaginary part) need to be generated from 
available real component of the signal. 
 
 
 
 
 
 
 

Problem 3: Design an ideal Hilbert transformer using a) rectangular window and b) 

Blackman Window with M = 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: 
 

As seen from freq chars it is defined as 

 

H  (e j )  j       0        

d          
                   

     j   0            

The impulse response is given by       

     
1 

 0       
(1  cosn) 

   
d 

(n) 
   jn 

d 


 je 
jn 

d]   n 
 

n  0 h 
 

[ 
 

je 
   

except 
2      n          0        

                  

At n = 0 it is hd(0) = 0 and hd(n) is an odd function    

 

a) Rectangular window  
h(n) = hd(n) wr(n) = hd(n) for -5 ≥n ≥5 

 

h‟(n)=h(n-5) 

 

h(n)= [-0.127, 0, -0.212, 0, -0.636, 0, 0.636, 0, 0.212, 0, 0.127] 
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j

 4         

H r (e )  2 h(n) sin (5  n) 
  

    

     n0         

H (e j )  j | H 
 
(e j ) |j{0.254 sin 5  0.424 sin 3 1.272 sin }   r  

             

b) Blackman Window     

window function is defined as   

w (n)  0.42  0.5 cos 
n

  0.08 cos 2n  5  n  5 
 

b         5 5   
           

   0 otherwise     

 

Wb(n) = [0, 0.04, 0.2, 0.509,0.849,1,0.849, 0.509, 0.2, 0.04,0] for -5≥n≥5 

h‟(n) = h(n-5) = [0, 0, -0.0424, 0, -0.5405, 0, 0.5405, 0, 0.0424, 0, 0] 

 

H (e j)  j[0.0848sin 3 1.0810sin ]  
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Recommended questions with solution 
 

 

Question1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Magnitude plot 
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Phase plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) Hamming window 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(d) Bartlett window 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Page 136 

All 
JN

TU
 W

or
ld



Digital Signal Processing  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question 2 
 
 
 
 
 
 

 

Solution:- 
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Question 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Magnitude and phase response 
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Question 4 
 
 
 
 
 
 
 
 
 
 
 

 

Solu 

 

tion:- 
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