

CS/B.TECH(ECE)/SEM-7/EC-703/2011-12 2011 CODING \& INFORMATION THEORY

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) A (7,4) linear block code has a code rate of
a) 7
b) 4
c) $1 \cdot 75$
d) 0.571 .
ii) Entropy represents
a) amount of information
b) rate of information
c) measure of uncertainty
d) probability of message.

CS/B.TECH(ECE)/SEM-7/EC-703/2011-12
iii) The channel capacity is a measure of

a) entropy rate
b) maximum rate of information a channel can handle
c) information contents of messages transmitted in a channel
d) none of these.
iv) The Hamming distance between $\mathrm{V}=1100001011$ and $\mathrm{W}=1001101001$ is
a) 1
b) 5
c) 3
d) 4 .
v) An encoder for a (4, 3, 5) convolution code has a memory order of
a) 4
b) 2
c) 3
d) 5 .

vi) Which of the following expressions is incorect $\&$
a) $\quad H(y / x)=H(x, y)-H(x)$
b) $\quad I(x, y)=H(x)-H(y / x)$
c) $\quad H(x / y)=H(x, y)+H(y)$
d) $\quad I(x, y)=H(y)-H(y / x)$.
vii) A polynomial is called monic if
a) odd terms are unity
b) even terms are unity
c) leading coefficient is unity
d) leading coefficient is zero.
viii) Which of the following techniques is used for Viterbi algorithm for decoding ?
a) Code tree
b) Trellis
c) State diagram
d) Parity generator.

CS/B.TECH(ECE)/SEM-7/EC-703/2011-12
ix) The generator polynomial of a cyclic code is a factor of
a) $x^{n}+1$
b) $x^{n+}+1$
c) $x^{n+2}+1$
d) none of these.
x) Consider the parity check matrix $H=\left|\begin{array}{l}010 \\ 001 \\ 110 \\ 011 \\ 101\end{array}\right|$ and the received vector $r=(001110)$. Then the syndrome is given by
a) (110)
b) (100)
c) (111)
d) (101).
xi) For a (7, 4) cyclic code generated by
$g(X)=1+X+X^{3}$ the syndrome for the error pattern $e(X)=X^{3}$ is
a) 101
b) 111
c) 110
d) 011 .
xii) The number of undetectable errors for a (n, k) linear code is
a) 2^{n-k}
b) 2^{n}
c) $2^{n}-2^{k}$
d) $\quad 2^{k}$.

2. a) Differentiate between block cipher and stream cipher. 2
b) What do you mean by symmetric key and asymmetric key cryptography? What is 'Man-in-the middle' attack?

$$
2+1
$$

3. A $(8,4)$ cyclic code is generated by $g(X)=1+X+X^{4}$. Find the generator and parity-check matrix in systematic form.
$3+2$
4. a) What is the systematic structure of a code word? $\quad 1$
b) What is syndrome and what is its significance? Draw the syndrome circuit for a (7,4) linear block code with parity-check matrix $H=\left[\begin{array}{ccccccc}1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]$. $\quad 2+2$
5. For a (2, 1, 3) convolutional encoder the generator sequences are $g^{0}=(1000)$ and $g^{(1)}=(1101)$.
6. Determine the generator polynomial of a double error correcting BCH code of block length, $n=15$.

CS/B.TECH(ECE)/SEM-7/EC-703/2011-12

GROUP - C (Long Answer Type guestions $1 / 2$ Answer any three of the following. $3 \times 15=45$

7. Consider a systematic (8,4) code with parity check equations

$$
\begin{aligned}
& V_{0}=U_{0}+U_{1}+U_{2} \\
& V_{1}=U_{1}+U_{2}+U_{3} \\
& V_{2}=U_{0}+U_{1}+U_{3} \\
& V_{3}=U_{0}+U_{2}+U_{3}
\end{aligned}
$$

where U_{0}, U_{1}, U_{2} and U_{3} are message, V_{0}, V_{1}, V_{2} and V_{3} are parity check digit
i) Find the generator matrix and the parity check matrix for this code.
ii) Find the minimum weight for this code.
iii) Find the error detecting and the error correcting capability of this code.
iv) Show through an example that the code can detect three errors in code word.
$6+4+4+1$
8. a) State and prove the Shannon-Hartley law of channel capacity.
$1+5$
b) A Gaussian channel has a 1 MHz bandwidth. If the signal power-to-noise power spectral density Error!
c) Show that $H(X, Y)=H(X / Y)+H(Y)$.
9. a) Show that $C=\{0000,1100,0011,1111\}$ is a linear code. What is its minimum distance?
b) $\mathrm{A}(7,3)$ linear code has the following generator matrix :
$G=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
Determine a systematic form of G. Hence find the parity-check matrix H for the code. $3+2$
c) Design the encoder circuit for the above code.
10. a) Write down the advantages of Huffman coding over Shannon-Fano coding.
b) A discrete memoryless source has seven symbols $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ and x_{7} with probabilities of occurrence $P\left(x_{1}\right)=0 \cdot 05, P\left(x_{2}\right)=0 \cdot 15, P\left(x_{3}\right)$ $=0 \cdot 2, P\left(x_{4}\right)=0 \cdot 05, P\left(x_{5}\right)=0 \cdot 15, P\left(x_{6}\right)=0 \cdot 3$ and $P\left(x_{7}\right)=0 \cdot 1$.

Construct the Huffman code and determine
i) Entropy
ii) Average code length
iii) Code efficiency. $3+5+3+3+1$
11. a) What are the functions of P-box and S-box in case of DES algorithm?
b) Explain the Diffy-Hellman key exchange algorithm.
c) What do you mean by Quantum Cryptography ? $4+9+2$

CS/B.TECH(ECE)/SEM-7/EC-703/2011-12
12. Write short notes on any three of the following
a) Shannon-Fano algorithm

b) Advanced version of DES
c) RSA algorithm
d) Hamming coding
e) Viterbi algorithm.

