

Software Design

R L L

L. What is Softwa re design? Explain. ' (e e
> i : ¢ : cnts so .
A Software design is « process to transform uscr requirem me suitapy

or i i implementation,
form, which helps the programmer in software coding and "“I_" n

For assessing user requirements, an SRS (Software I.lcqlil]r:lxzcir;l'lSpetc:llﬁcalion)
document is created whereas for coding and implcmcrllat:on,t) = ”‘fsncc of more
Specific and detailed requircments in soflware terms. I'he output of this process can

tre . = i ages.
dircetly be used into implementation in programming languag

SoNlware design is the first step in SDLC (Software Dcsig.n Life f:yc(]c), Wh.lch Moves
the concentration from probleni domain to solution domain. It tries to specify how ts

fulfill the requirements mentioned in SRS.

Software Design Levels: Soflware design yiclds three lcvcls. of rcsuLlst: -

* Architectural Design - The architectural design is the highest abstract .vgrsmn- of
the system. It identifies the software as a system with many congaonlcr:fs mteracpng
with each other, At this level, the designers gel the idea of proposcd solution domain,

. . :)
=High - level Design - The high - level design breaks the sTg!c ent}ty - multiple
components’ concept of architectural design into lcss—abst:ale?(\;lc‘vfl(:j S_Ub-Systcms
and modules and depicts their interaction with cach other. High _1 e t zs'lgn g
on how the system along with all of its components can i e:In::]nF ll‘; ff)rms of
modules. It recognizes modular structure of each sub-system and hicir relation ang
mteraction among cach other.

*Detailed Design - Detailed design deals with the implenicntation a0 of Whit is scei]
as a system and its sub - systems in the previous two chlg['lS-Ill 's more detailed
towards modules and their implementations. It dcﬁneSIliglCﬂ structure of eacti
module and their interfaces to communicate with other modulies.
vo-ao;oot-q-o-.o..‘oq44.-4|-+4++.oooo.-uun-‘-a-¢+¥‘=K'J'f1r'¢c-‘-”*""“""*‘***”"“*““"'““
2. Explain Design concepts.

A. A set of fundamental software design concepts has cvolv.cd over the past four
decades. Each provides the software designer with a foundation fom whichiinde

sophisticated design methods can be applied.

-
Page |aqg

SEaiGaG.

H page
. . golution 1©
1 Abstraction: Many levels of abstraction can be pnscd at modulat albtian

{=2

-

7

-

I -JI] {»

cd in broad terms,

dural mannct. ot
is 0 sequence ©
(ion 1s

the problem. At the highest level, a solution is stat
lowest level of abstraction a solution is stated in proce .
There are three levels of abstraction — procedural abstraction scq
instructions that has a specific and limited [unctions. Dafd ub.s:nr:c._ ;
collection of data that describes a data object. Control ub.':'trm:mm iy
program control mechanism without specilying internal details.

fually a proces:

is nc :
: inol

ratc on the ok
n designer to
| details.

Refinement: Refinement is a top — down design stralegys
of elaboration. Refinement causes the designer to clabo
statement providing more and more details. Abstraction cnables
suppress low level details, whereas refinement reveals the low leve
essnble
Modularity: Software divided into scparately named and _ “d(?;:;_:::\
components called modules that are integrated to satisfy problem ”fql‘" nodular
There are five criteria that enables the designers to define cffective MOt
system: " e
Modular decomposability 3
Modwlar composability :
Modular understandability
Modular continuity

Modular protection . -

1¢ hierarchical structure of

Software Architecture: Sofhware Architecture is tl of
4 interact. There- are five

program components in which these components
different models of architectural models available:
Structural Models

Framework Models -
Dynamic Models : T e ’
“Procéss Models: = == === o0 0

Functional Models

Control Hicrarchy: Control) .-
hierarchy is also called as program '
structure which organizes the

program components and implics a

hierarchy of control. Different

notations are used to represent

control hierarchy for architectural

styles. The most common is

treelike diagrams.

slics

(£

Depth and widh provides the indication ofthe levels of control. Fan — out is
measure of number of modules controlled by another module. Fan — j, is a
measure of number of modules control a given module. A module Controlg
other module is super ordinate, a module control by other is sub ordinate,

The control hierarchy has two characteristics: Visibility — the set of
components that may be used as data by given component. Connecn’vity ~ the|
st of components that are directly used as data by given component, '

Structural partitioning: The program structure can be partitioned both

horizontally and vertically. Horizontal partitioning defines separate brancheg

of program function, Vertical portioning ¢alled factoring should be distributeq
top — down in the program structure.

Data Structure: Data structure is a representation of logical relationship
among individual elements of data. Scalar item is the simplest of all data

structures. It represents a single item. Sequential vector is the collection of
scalar items.

Page |48

- Software Proceduy

: ¢: Sollwar
cach module mdlivic

€ procedure focuses on the processing details of
lually,
&= Information Hiding: The Principle of information hiding is (he inaccessibility
of procedures ang data within o module,
WA e v

'r‘t*'kir\\ﬂk*wﬁ****ﬂt**s‘rw*ﬁ***ﬁ*ﬁ*****************"’****

1]

2]

3]

E
e Page|ag

T
5 FMTILLLI L]
T T T T L T e L C T AT EER AL REE LA

3. Explain Effective Modular Design.

A. A modular design reduces the complexity, facilitates change, and results in casjer
implementation,

Functional Independence: The concept of functional independence is a direct

Joutgrowth of modularity and the concepts of abstraction and informatiop
“hiding. 1f we want to design software so that each module addresses a specifje

sub-function of requirements and has a simple interface, when viewed from
other parts of the program structure, Functional independence is a key to goog
design, and design is the key to software quality.

Cohesion: Cohesion is a measure that defines the degree of intra dependability
within elements of a module. The greater the cohesion the better is the Program

- design. There are 7 types of cohesions:

a. Co — incidental Cohesion: It is unplanned and random cohesion, which

breaks the program into smaller module. Because of unplanning, it may
confuse the programmer.

- Logical Cohesion: When logically categorized elements are put together

into a module, is called logical cohesion.
¢. Temporal Cohesion: When elements of module are organized such that
they are processed at a similar point in time. It is called temporal cohesion.
Procedural Cohesion: When elements of module are grouped together,

which are executed sequentially in order to perform a task, it is called
procedural cohesion.

communicational cohesion.

Sequential Cohesion: When elements of module are grouped because the

output of one element serves as input to another and so on. It is called
sequential cohesion.

72

Functional cohesion: It is considered to be highest degree of cohesion, and
it is highly expected. Elements of module in functional cohesion are

grouped because they all contribute {o a single well defined function. It can
also be reused.

Coupling: Coupling is measure that defines the level of inter-

dependability
among modules of

a program. It tells at what level the modules interfere and

Communicational Cohesion: When elements of module are ‘grouped [.
"f(')géﬂ)'ér',”'\'\’hiéli‘,}ii"'c"exeéiltéa"'s'c'qﬁ'é’lﬂi'z'ill)" drid WOTk oit"sae data, is called |+ -

interact with each other. The lower the coupling, the beltter the program. There
arc 5 levels of coupling;

a. Content coupling: When a module can directly access or modify or refer

to the tontent of another module, it is called content level coupling.
Common coupling: When multiple modules have read and write access to
some global data, it is called global or common coupling.
Control coupling: Two modules are called control couple if one of them
decides the function.of the other modulc or changes its flow of execution.
Stamp colipling: When multiple modules share common data structure and
work on différent part of it, it is called stamp coupling.
Data coupling: Data coupling is when two modules interact with each
other by.medns of Ppassing data. If a module passes data structure as
parameter, then the receiving module should use all its components.

...........

b.

o — e Fagen

Architectural Design and Procedural Design

4. Explain Software Architecture.
A. Software Architecture: The softrware architecture of 2 program or Computing

SYStem is the structure or swucnures of the system. which comprise software
COomponents, the externally visible properties of those components, and the
T"‘]"DO'LhJDa among them.

Importance of Software Architecture: There are three key TS that software
architecture is important:

* Representation of soffware architecture is the communication betwesn aj]
"EI’ 28 wWho are interest 2d in the da\'elor\m"ﬂa ofa COmpu:E:-b‘.St‘ﬂ system.
L]

The carly architecture design decisions that will have an impact on all software
enginesring work that follows.

* Architecture “constitutes a relativ ely small, undersiandzble model of how the
svstem 1s structurad and how its components work to ether™

Architecture Description: The IEEE standard definas an architectural dascripiion
(AD) as “z collection of products to document an architecture.™ The description itself
1S represented usi ing multiple views. where 22 h view is “a r-“'p“e;xem..tmn of 2 whole

n f D

erspective of a related set of [\;:L"h lder] concerns™ A view is

ot
Lnea n a viewpoin: —a a specification

Architectural Decisions: The process of defining a collecti

g on of hardware and
software components and their interfaces to establish the framework for the
development of a computer svstem. - .

S. What are the Architectural Genres? (Or) Explain Architectural
classifications. ST

A. In architectural design, genre in

C
=

)
=)
—
r
%
)
1)
r:l
f /
—
oL
©

I category within the overall

£0r¥. You encounter a number of subcategories. For
example, within the genre of buildings, vou would encounter the following genersl
stylest houses. condos, apartment buildings. office buildings, industrial buildine.
warehouses, and so on.

i

sofiware domain. Within each cate

Grady Booch suggests the following architectural genres for software-based systems:

-

R

—— s =

) --_r:_n_.a] Rﬂiﬂﬁszmgg _.‘\\.1

LY

.Js-.':._-- —5 Iy o IDermes »io &=
sevicz 07 20 Imdnadaad

-Lrterizinment ond

s SIS i 5
JETEE 0D SSRITRZTYey e
Al TEDTIEAOTE

.f‘v—\zgm] S',':-vs-—-.-r- - : m -‘—"W ﬂ m E:G -—-'l:-—-'h.,, —
| mome=y z2nd ofher secniGer.

t ol R = - - - -— = =
_".__{d_.'.'li 5"“'-’*-'—-’-" EE s o1 FOWVInZ Zn =gEgTee— : ez L ':3;_1._._. =T m: =

ey

TS,

rLarrr f ¢ g - P PR | —— | 3 = = ezl s
YEITS ozt szpport the condne 2o on==Socs of 2 loczl st

I g Sl S e i | - e =
Industrial —Systerns fhet stomeilone o comten PavEasal procssses.
= = ’-‘--
| ’H_“ —— e — - — _-
* P -

12 boal = zal —dysienss L”"d'i '?u’--: m{E'gz_i DOy, -

; 52 or heal or thet comtribrts o medacel ressar

ultztaon, xm.ﬁ-}“m:x:_ oot commxol. 2=d
d defenstve wezpon]

‘Operating svstems —Systems that

—O¥Egns

- P - Thogd.. S, - S -~y
t 5 }"--2.3’"' CEECWZIE D EOWRET b=sic soffwass

“Platforms —Systems that sit just zbove operzting systems to provide advenced

| *Scientific —Systems that zre used for scientific research 2nd applications.

== TOUrRE —Symiems St mommes o evers oF SxE pTOVIOS 2.

i e

Page |53

*Tools —Systems that are used to develop other systems.

e i ace vehicles.
* Transportation —Systems that control water, ground, air, or sp les

« Utilitics —Systems that interact with other software to provide some point service,

P eI
T T v e v e R AN R A L At b g densy

=
-

(1. Explain Avchitectural styles. o

. The sollware that is built for computer-based systems also exhibits one of many
m‘chnm tueal styles, An architectural stvle is a transformanon that is imposed on the
design of an entire system. Each style describes a system’ category, that encompasses
(1) A set of components that perform a function required by a system;

(2) A set of connectors that enable “communication, coordination and cooperation™
among components;

(3) Constraints that define how components can be integrated to form the system;

(‘D) Semantic models that enable a designer to understand the ov-eral! properties of 5
system by analyzing the known propertics of its parts. .

Architectural Styles:

(1) Data-centered architectures: A data store (e.g., a fil€ or database) resides at the
center of this architecture and is accessed frequently by othf:r components that update,
add, delete, or otherwise. modify data within the store.

Data-centered architectures promate-integrability, that is, existing components can be

changed and new Tlient companents added to the architecture without concern about
other clients.

— R R R U Y T R e L e

e e L e
———— e . e -

—— . — | o e —

Client Cliont
Clien softwaro softwaro Client
software ¥z softwaroe

Cllont
softwaro

0

black boord)
_ Clien! X Client
softwore softwearo

(2) Data-Flow architectures: This architecture is applied when input data are (o be

transformed through a series of computational or manipulative components into
output data. A pipe-and-filter pattern has a set of components, called filters,
connected by pipes that transmit data front one component to the next.

Pigas’

| - (CFIier)
< Filter Y& Filter =>(Filter)

~(Filter)>(Filter)

(Fiiter

G |

(3) Call and Return-architectures: This architectural style enables you to achieve a ‘

exist within this category:

. Main program/subprogram
architectures: This classic program
structure decomposes function into a
control hierarchy where a “main”
program invokes a number of program
components that in turn may invoke
still other components,

program structure that _is relatively eﬂsy.t-o.-fi]b’dify dnd stale.~A mumber of $ub styles)

atas e *%a

= B e

Page |ss

-

Romote procedure ealls architeeturest The components — of main

!‘1\‘}‘~t=\l\‘='Stil\m\\mnm archittocire ave distributed across multiple computers on gy
natwae,

Lﬂl&‘l&iﬁLﬂ.‘i&?B&Bﬂ avchitectures: The components of & system encapsulate data and

the opemtions that must be applicd to manipulate the data. Communication and
Soendination between components we accomplished via message passing.

)1 ;\.umm;_lnt_&:st_mr:_ A number oft diferent layers are defined, cacly
Anvomplishing operations that progeessively become closer to the machine instruction
STLCAT e onter layer, components serviee user interface operations. At the inner
e components perfon opemting svstem interfacing, Intermediate layers provide
VLY servives and application software functions.,

L3

v:$1\1nl§:issv1%-s\»::\ti\t-\ﬁ‘%*%‘#***\‘**%******#**#t*********tt************#*t*
sy 3 N v s s Ain O L. P RO FEPNRCE DI
7. Explain Procedural Design.

Av Frocediral design s best used to model programs that have an obvious flow of

I ma tame mTmAtEYA b

data from input o output. It represents the architecture of a program as a set of
meracting processes that pass data from one to another, The two major diagramming
toals used in procedural design are data flow diagrams and structure charts.

Data Flow Dingrams: A data flow diagram (or DFD) is a tool to help you discover
and document the program’s major processes. The following table shows the symbols
used and what each represents.,

The DED is a concepual model — it doesn’t represent the computer program, it
represents what the program must accomplish, By showing the input and output of

e,
.

e

SRR -

BECESIS R ST S=- TIESE = W - 5. L.

et ettt

5o |

Page |

cach major task, it shows how data must move through and be transformed by the
PH):,'J'"H]-

L Data Flow Nlodel - The Notation }

I e t————— -

Flow of dataf/information

(5 o U 'i ‘i;
“"Ago

-

- ‘Data Storo*

qnucmrt Charts: A structure ¢hart is a tool to help you derive and tloulmcnt the

pmf:,mm s architecture. It is similar to an organization chart. When a component is
divided into separate picces, it is called the parent and its pieces are called 1its
children. The structure chmt shows the hicrarchy between a parent and its children.

—
! 5 Structure Chart Symbols
Symbaol Deseri i
!
Component *A-mijor component within the program
|
.o Connects a parent component Lo one of its children {-
TR 1 MR O SOOI Bt T LR T S SR P ek o l
o Name Data that is passed between components !
- t
e B S S8 S ———— -y e S 1127 (8 PSRRI I DI o B e s s bt ¢ e st ewe) i
:L:{r-*:k****#**************iﬂi&*ﬂl************************-‘k*#‘-*************-‘F* ;

8. Explain Procedural Design methodology. (Or) Explain the steps involved

in creating procedural design.
A. Here are the basic steps you follow to create a procedural design.

Phase Product Actions

: e Identily the major lasks the

Functional program must perform
DUCOI‘nposilion DrD e Identily the inpuL and oulput
data for each task

Y

» Arrange the DFD

5 . Structure herarchically)
l"ﬂclormg Chart o Tdentify the required program
compoenents .
Y
Module Specificatio Module e Describe each program
L = on Descriptions component

Eunctional Decomposition:
of dividing a large entity int

In computer programming, decomposition is the process
A 0 more manageable pieces. For a procedural désign, this
me and dividing tasks into sequences of smaller tasks, which is functional

decompo.sit_ion. One technique for doing this, called data flow analysis, involves:
@) Identifying a major data flow,

(2) Following it from inpu
(3) Determinin
(4) Dividing th
To illustrate, g

t to'output, -

g where it undergoes a major transformation and
€ processing at that point.

iven the following program requirements:
Program Requirements

input
i

Data flow analysis yiclds: : Tl DT

i

Factoring: Factoring is the second phase of procedural design in which you create a
structure chart that shows what program components need to be implemented. We do
this in two passes. First, arrange your DFD hicrarchically. Second, identify exactly

which conceptual processes are to be implemented as physical components in the
program.

_—

Page | 5%

To arrange your DED hicrarchically, eot it info (hree partitions: (1) processcs thal |
prepare input for the main computation, (b) processes that perform the main
computation and (¢) processes that prepare the output,

e e — i

a——

Module Specification: Module Specification is the act of documenting your program
design by fully describing cach of its modules. Module is a gencral term that can refer
to any manner of computer program components, including a single method, a singlc
class, a single object or a collection of related methods.
When the module is a single method, the following facts must be provided. Seasoned
programmers generally write them using a combination of computer language and
English.

o The method’s name

o A description of what it does

o Its number of arguments and the data type and purpose of cach
A description of the return value and its data type
A description of any exceptions that it may throw. . v,
[1tis often useful to specify. the behavior of a method by, stating its preconditions and
post conditions. A precondition is a statement of what must be true when the method
is called; a post condition is a statement of what must be true when the method

returns.
404-011)#-044-0-inti*#*4’4’#0Q‘*t0'00**!01##01#‘!‘00#1&0'tt1'i!lt"ttt**l’ttt.t#?*#.#ti##ttt'

&)
@)

