Vector Integral Theorems

In this chapter we discuss three important vector integral theorems

1. Gauss Divergence Theorem
2. Green's Theorem
3. Stoke's Theorem

Applicaions: In solid mechanics, fluid mechanics, quantum mechanics, electrical engineering and various other fields these theorems will be of great use.

Gauss Divergence Theorem :-

$>$ It is the relation between surface and volume integral.
Statement: If \bar{F} is continuously differentiate vector point function defined in the region V bounded by the closed surface S then

$$
\int_{V} \operatorname{Div} \bar{F} d v=\int_{S} \bar{F} \cdot \bar{n} d s
$$

Where n is the outward unit normal vector at any point on s .

Applications of Gauss Divergence Theorem :

1. In physics, Electrostatics, magnetism gravity can be expressed as Differential form and Integral form.
2. In fluid dynamics, quantum mechanics, electromagnetism, continuity equation.

Cartesian Form :

$$
\begin{aligned}
& \text { Let } \bar{F}=f_{1} \overline{\mathrm{i}}+f_{2} \bar{j}+f_{3} \bar{k} \\
& \operatorname{Div} \bar{F}=\nabla \cdot \bar{F}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z} \\
& \bar{n}=\overline{\mathrm{i}} \cos \alpha+\bar{j} \cos \beta+\bar{k} \cos \gamma
\end{aligned}
$$

Where α, β, γ are the angles with \bar{n} makes the positive directions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis. $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines of \bar{n}.

$$
\bar{F} \cdot \bar{n}=f_{1} \cos \alpha+f_{2} \cos \beta+f_{3} \cos \gamma
$$

\therefore By Divergence theorem

$$
\begin{gathered}
\int_{v} \nabla \cdot \bar{F} \mathrm{~d} v=\iint_{S}\left(f_{1} \cos \alpha+f_{2} \cos \beta+f_{3} \cos \gamma\right) \mathrm{d} s \\
\quad=\iint_{\mathrm{S}}\left(f_{1} d y \mathrm{~d} z+f_{2} d z \mathrm{~d} x+f_{3} d x \mathrm{~d} y\right)
\end{gathered}
$$

1. Verify the divergence theorem for $\bar{F}=4 x y \overline{\mathrm{i}}-y^{2} \bar{j}+x z \bar{k}$ over the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$?

Sol: By Gauss Theorem $\int_{V} \operatorname{Div} \bar{F} d v=\int_{S} \bar{F} \cdot \bar{n} d s$
Given $\bar{F}=4 x y \bar{i}-y^{2} \bar{j}+x z \bar{k}$

$$
\nabla \cdot \bar{F}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}
$$

$$
\begin{aligned}
& =\frac{\partial}{\partial x}(4 x y)+\frac{\partial}{\partial y}\left(-y^{2}\right)+\frac{\partial}{\partial z}(x z) \\
& =4 y-2 y+x=x+2 y
\end{aligned}
$$

Calculation of L.H.S

$$
\begin{aligned}
\int_{V} \nabla \cdot F d V & =\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1}(x+2 y) d x d \\
& =\int_{x=0}^{1} \int_{y=0}^{1}(x+2 y)[z]_{0}^{1} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{x=0}^{1}\left[x y+\frac{2 y^{2}}{2}\right]_{0}^{1} d x \\
& =\int_{x=0}^{1}(x+1) d x \\
& =\left[\frac{x^{2}}{2}+x\right]_{0}^{1}=1 / 2+1=3 / 2
\end{aligned}
$$

R.H.S

Evaluation of surface integral $\iint_{S} \bar{F} \cdot \bar{n} d s$

$$
\iint_{s} \bar{F} \cdot \bar{n} \mathrm{~d} s=\iint_{s_{1}} \bar{F} \cdot \bar{n} \mathrm{~d} s+\iint_{s_{2}} \bar{F} \cdot \bar{n} \mathrm{~d} s+\iint_{s_{3}} \bar{F} \cdot \bar{n} \mathrm{~d} s+\iint_{s_{4}} \bar{F} \cdot \bar{n} \mathrm{~d} s+\iint_{s 5} \bar{F} \cdot \bar{n} \mathrm{~d} s+\iint_{s 6} \bar{F} \cdot \bar{n} \mathrm{~d} s
$$

Since the surface of the cube divided into 6 faces.

1. For s1(ASQR): $\bar{n}=\overline{\mathrm{i}}, x=1, d s=d y d z, \mathrm{y}=0$ to 1 and $\mathrm{z}=0$ to 1

$$
\begin{aligned}
\iint_{S_{1}} \bar{F} \cdot \bar{n} \mathrm{~d} s & =\int_{y=0}^{1} \int_{z=0}^{1} 4 x y d y d z=4 \int_{y=0}^{1} \int_{z=0}^{1} y d y d z \\
& =4 \int_{y=0}^{1} y[z]_{0}^{1} d y=4 \int_{y=0}^{1} y d y=4\left[\frac{y^{2}}{2}\right]_{0}^{1}=2
\end{aligned}
$$

2.For s2(OBPC): $\bar{n}=-\overline{\mathrm{i}}, x=0, d s=d x d z, y=0$ to $1, z=0$ to 1
$\iint_{S_{2}} \bar{F} \cdot \bar{n} \mathrm{~d} S=\int_{y=0}^{1} \int_{z=0}^{1} 4 x y d y d z=0(\because \mathrm{x}=0)$
3.For s3(OBRA): $\bar{n}=\bar{j}, y=1, d s=d x d z, x=0$ to 1 and $z=0$ to 1

$$
\begin{aligned}
\iint_{S_{3}} \bar{F} \cdot \bar{n} \mathrm{~d} s & =\int_{x=0}^{1} \int_{z=0}^{1}-y^{2} d x d z=\int_{x=0}^{1} \int_{z=0}^{1}-1 d x d z \\
& =\int_{x=0}^{1}-[z]_{0}^{1} d x=-\int_{x=0}^{1} d x=-[x]_{0}^{1}=-1
\end{aligned}
$$

4.For s4(OACS): $\bar{n}=-\bar{j}, y=0, d s=d x d z, x=0$ to 1 and $z=0$ to 1
$\iint_{S_{4}} \bar{F} \cdot \bar{n} \mathrm{~d} s=\int_{x=0}^{1} \int_{z=0}^{1}-y^{2} \mathrm{dxdz}=\mathrm{o}(\because \mathrm{y}=0)$
5. For s5(PQCS) : $\bar{n}=\bar{\kappa}, z=1, d s=d x d y, x=0$ to 1 and $\mathrm{y}=0$ to 1

$$
\iint_{S 5} \bar{F} \cdot \bar{n} \mathrm{~d} S=\int_{x=0}^{1} \int_{y=0}^{1} x z d x d y=\int_{x=0}^{1} \int_{y=0}^{1} x d x d y
$$

$$
=\left[\frac{x^{2}}{2}\right]_{0}^{1}[y]_{0}^{1}=1 / 2
$$

6.For s6(BRPQ): $\bar{n}=\bar{\kappa}, z=0, d s=d x d y, x=0$ to 1 and $y=0$ to 1

$$
\begin{aligned}
& \iint_{S_{6}} \bar{F} \cdot \bar{n} \mathrm{~d} S=\int_{x=0}^{1} \int_{y=0}^{1} x z d x d y=0(\because \mathrm{z}=0) \\
& \quad \therefore \int_{S} \bar{F} \cdot \bar{n} \mathrm{~d} s=-2-1+0+0+\frac{1}{2}+0=3 / 2
\end{aligned}
$$

\therefore Gauss Theorem verified
2.Evaluate $\iint_{S} x d y d z+y d z d x+z d x d y$ over the sphere $x^{2}+$ $y^{2}+z^{2}=1$

Sol : By Gauss Divergence then

$$
\iint_{S} \bar{F} \cdot \bar{n} \mathrm{~d} s=\int_{V} \nabla \cdot \bar{F} \mathrm{~d} v
$$

From cartesian form, we can write

$$
\begin{aligned}
\iint_{S} & F_{1} \mathrm{~d} y \mathrm{~d} z+F_{2} d x \mathrm{~d} z+F_{3} d x \mathrm{~d} y=\int_{V} \nabla \cdot \bar{F} \mathrm{~d} v \\
\mathrm{~F} & =F_{1} \overline{\mathrm{i}}+F_{2} \bar{j}+F_{3} \bar{k} \\
& =x \overline{\mathrm{i}}+y \bar{j}+z \bar{k} \\
\nabla \cdot \bar{F} & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)
\end{aligned}
$$

$$
\begin{aligned}
\iint_{S}^{=} \bar{F} \cdot \bar{F} \cdot \bar{n} \mathrm{~d} s & \left.=\int_{V} 3 \mathrm{~d} v=3 \cdot \frac{4}{3} \pi r^{3}=4 \pi r^{3} \text { (Sphere with unit radius i.e } r=1\right) \\
& =4 \pi\left(\because \int_{V} d v=\text { Volume of the sphere } \frac{4}{3} \pi r^{3}\right)
\end{aligned}
$$

3. Evaluate $\iint_{S} x^{3} \mathrm{~d} y \mathrm{~d} z+x^{2} y d x \mathrm{~d} z+x^{2} z d x \mathrm{~d} y$ over the surface bounded by the planes $\mathrm{z}=0, \mathrm{z}=\mathrm{b}$ and the cylinder $x^{2}+y^{2}=a^{2}$?
Sol: By Gauss Divergence Theorem

$$
\begin{gathered}
\iint_{S} \bar{F} \cdot \bar{n} \mathrm{~d} s=\int_{V} \nabla \cdot \bar{F} \mathrm{~d} v \\
\bar{F}=x^{3} \overline{\overline{\mathrm{i}}}+x^{2} y \overline{\bar{j}}+x^{2} z \bar{\kappa} \\
\nabla \cdot \bar{F}=\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(x^{2} y\right)+\frac{\partial}{\partial z}\left(x^{2} z\right)
\end{gathered}
$$

$$
=3 x^{2}+x^{2}+x^{2}=5 x^{2}
$$

Limits : $\mathrm{z}=0$ to $\mathrm{b}, \mathrm{x}=-\mathrm{a}$ to $\mathrm{a}, \mathrm{y}=-\sqrt{a^{2}-x^{2}}$ to $\sqrt{a^{2}-x^{2}}$

$$
\begin{aligned}
\iint_{S} \bar{F} \cdot \bar{n} \mathrm{~d} s & =\int_{V} \nabla \cdot \bar{F} \mathrm{~d} v=\int_{V} 5 x^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{x=-a}^{a} \int_{y=-\sqrt{a^{2}-x^{2}}} \int_{z=0}^{b} 5 x^{2} d x d y d z \\
& =5 \int_{x=-a}^{a} \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} x^{2}[z]_{0}^{b} d x d y \\
& =5 \mathrm{~b} \int_{x=-a}^{a} x^{2}[y]_{-\sqrt{a^{2}-x^{2}}} \mathrm{dx}
\end{aligned}
$$

Put $\mathrm{x}=\operatorname{asin} \theta, d x=a \cos \theta \mathrm{~d} \theta$ if $\mathrm{x}=-\mathrm{a}$ then $\theta=-\frac{\pi}{2}$ and $x=$ a then $\theta=\frac{\pi}{2}$

$$
=10 \mathrm{~b} \int_{-\pi / 2}^{\pi / 2} a^{2} \sin ^{2} \theta \sqrt{a^{2}-a^{2} \sin ^{2} \theta} \cdot a \cos \theta d \theta
$$

$$
\begin{aligned}
& =10 \mathrm{~b} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a^{4} \sin ^{2} \theta \cos ^{2} \theta \mathrm{~d} \theta \\
& =a^{4} \cdot 10 \cdot 2 \cdot \mathrm{~b} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta \\
& =20 \cdot a^{4} \cdot b \cdot 1 / 2 \cdot 1 / 2 \cdot \pi / 2=\frac{5 \pi a^{4} b}{4}
\end{aligned}
$$

Stoke's Theorem

$>$ It is the relation between line and surface integral.
Statement : If \bar{F} is any continuous differentiable vector function and s is a surface enclosed by curve c, then $\int_{c} \bar{F} \cdot \mathrm{~d} \bar{r}=\int_{c} \operatorname{curl} \bar{F} \cdot \bar{n} \mathrm{~d} s$ where \bar{n} is the outward unit normal vector at any point of s and c is traversed in the positive direction.
Cartesian Form : Let $\bar{F}=F_{1} \overline{\mathrm{i}}+F_{2} \bar{j}+F_{3} \bar{\kappa}$ and $\bar{n}=\overline{\mathrm{i}} \cos \alpha+\bar{j} \cos \beta+\bar{k} \cos \gamma$ where α, β, γ are angles with the positive direction of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis $\cos \alpha, \cos \beta, \cos \gamma$
are directional cosines.

$$
\begin{aligned}
& \text { Let } \bar{r}=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+z \bar{\kappa} \\
& \mathrm{~d} \bar{r}=d x \overline{\mathrm{i}}+d y \overline{\mathrm{j}}+d z \bar{k} \\
& F \cdot d \bar{r}=F_{1} \mathrm{~d} x+F_{2} \mathrm{~d} y+F_{3} \mathrm{~d} z
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Curl} \bar{F} & =\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\overline{\mathrm{i}}\left[\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right]+\bar{j}\left[\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right]+\bar{k}\left[\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right]
\end{aligned}
$$

1.Using Stoke's theorem to evaluate $\oint \bar{A} \cdot d \bar{r}$ where $\bar{A}=2 y^{2} \bar{i}+3 x^{2} \bar{j}-$ $(2 x+z) \bar{k}$ and c is the boundary of the triangle whose vertices are $(0,0,2),(2,0,0),(2,2,0)$?

Sol : By Stoke's Theorem $\bar{A}=2 y^{2} \bar{i}+3 x^{2} \bar{j}-(2 x+z) \bar{k}$

$$
\begin{aligned}
\operatorname{curl} \bar{A} & =\nabla \times \bar{A}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 y^{2} & 3 x^{2} & -(2 x+z)
\end{array}\right| \\
& =\bar{i}(0-0)-\bar{j}(-2-0)+\bar{k}(6 x-4 y) \\
& =2 \bar{j}+\bar{k}(6 x-4 y) \\
\int_{C} \bar{A} \cdot \mathrm{~d} \bar{r} & =\int_{S}(\operatorname{curl} \bar{A} \cdot \bar{n}) \mathrm{d} s
\end{aligned}
$$

Since the surface is bounded by triangle with z-axis is 0 . So surface lies in xy-plane.
$\therefore \bar{n}=\bar{\kappa}$

$$
\begin{aligned}
& \iint_{S}(\operatorname{curl} \bar{A} \cdot \bar{n}) d s=\iint_{S}(6 x-4 y) d x d y \\
& =\int_{x=0}^{2} \int_{y=0}^{x}(6 x-4 y) d x d y \\
& =\int_{x=0}^{2}\left[6 x y-2 y^{2}\right]_{0}^{x} \mathrm{dx} \\
& =\int_{x=0}^{2} 4 x^{2} \mathrm{dx}=\frac{4}{3}\left[x^{3}\right]_{0}^{2}=32 / 3
\end{aligned}
$$

2.Evaluate $\oint\left(e^{x} d x+2 y d y-d z\right)$ where c is the curve $x^{2}+y^{2}=$ 9 and $z=2$?
Sol By Stoke's theorem

$$
\oint(\nabla \times \bar{F}) \cdot \bar{n} d s=\oint \bar{F} \cdot d \bar{r}
$$

$$
\bar{F}=\mathrm{e}^{x} \bar{i}+2 y \bar{j}-\bar{k}
$$

$$
\begin{aligned}
\nabla \times \bar{F} & =\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x} & 2 y & -1
\end{array}\right| \\
& =\bar{i}(0-0)-\bar{j}(0-0)+\bar{k}(0-0)=\bar{O} \\
& \therefore \oint \bar{F} \cdot d \bar{r}=0 \\
& \mathrm{c}
\end{aligned}
$$

3. Verify stokes theorem for $\bar{F}=-y^{3} \bar{i}+x^{3} \bar{j}$ where s is the circular disc $x^{2}+y^{2} \leq 1, z=0$?
Sol Given $\bar{F}=-y^{3} \bar{i}+x^{3} \bar{j}$ the boundary c of s is a circle in xy -plane. $x^{2}+y^{2}=1, \mathrm{z}=0$ use the parametric coordinates $\mathrm{x}=\cos \theta, y=\sin \theta$, $\mathrm{z}=0,0 \leq \theta \leq 2 \pi, \mathrm{dx}=-\sin \theta \mathrm{d} \theta, d y=\cos \theta \mathrm{d} \theta$
$\therefore \underset{\mathrm{c}}{ } \underset{F}{ } \bar{F} \cdot d r=\int_{C} F_{1} \mathrm{~d} x+F_{2} \mathrm{~d} y+F_{3} \mathrm{~d} z=\int_{c}-y^{3} \mathrm{~d} x+x^{3} \mathrm{~d} y$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(-\sin ^{3} \theta(-\sin \theta)+\cos ^{3} \theta \cos \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(\cos ^{4} \theta+\sin ^{4} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right) \mathrm{d} \theta \\
& =\int_{0}^{2 \pi} d \theta-1 / 2\left(\int_{0}^{2 \pi}(2 \sin \theta \cos \theta)^{2} d \theta\right. \\
& =\int_{0}^{2 \pi} d \theta-1 / 2\left(\int_{0}^{2 \pi} \sin ^{2} 2 \theta d \theta\right. \\
& =(2 \pi-0)-1 / 4\left(\int_{0}^{2 \pi}(1-\cos 4 \theta) d \theta\right. \\
& =2 \pi+\left[-\frac{1}{4} \theta+\frac{1}{16} \sin 4 \theta\right]_{0}^{2 \pi}
\end{aligned}
$$

$=2 \pi-2 \pi / 4=6 \frac{\pi}{4}=3 \frac{\pi}{2}$
$\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{3} & x^{3} & 0\end{array}\right|$

$$
=\bar{k}\left(3 x^{2}+3 y^{2}\right)
$$

$\therefore \int_{\mathrm{S}}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \int_{s}\left(x^{2}+y^{2}\right) \bar{k} \cdot \bar{n} \mathrm{~d} s$
$(\bar{k} \cdot \bar{n}) d s=d x d y$ and R is the region on $x y$-plane.
$\therefore \iint_{S}(\nabla \times \bar{F}) \cdot \bar{n} \mathrm{~d} s=3 \iint_{R}\left(x^{2}+y^{2}\right) \mathrm{dxdy}$
Put $\mathrm{x}=\mathrm{r} \cos \phi, \mathrm{y}=\mathrm{r} \sin \phi$
$\therefore \mathrm{dxdy}=\mathrm{rdrd} \phi$ where r is varying from 0 to $1,0 \leq \theta \leq 2 \pi$.
$\therefore \int(\nabla \times \bar{F}) \cdot \bar{n}$ ds $=3 \int_{\emptyset=0}^{2 \pi} \int_{r=0}^{1} r^{2} \cdot r d r d \phi=3 \frac{\pi}{2}$

L.H.S = R.H.S

Hence theorem is verified.

