Name :

Invigilator's Signature : \qquad

BIO-MATHEMATICS - II

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) In Lagrange's mean value theorem $f(x)$ should be continuous in
a) closed interval
b) open interval
c) semi-open interval
d) none of these.
ii) Rank of $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 0\end{array}\right)$ is
a) 0
b) 1
c) 2
d) 3 .
iii) Degree of the differential equation

$$
x \cos x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+y^{3}(x \sin x+\cos x)=x^{9} \text { is }
$$

a) 3
b) 1
c) 2
d) 0 .
iv) The singularities of the integral $\int_{-1}^{2} \frac{\mathrm{~d} x}{x(x-1)}$ are
a) 0,1
b) 1,2
c) $-1,2$
d) 0,2 .
v) If for a mapping we have distinct images of distinct objects, then the mapping is
a) injective
b) surjective
c) into
d) invertible.
vi) If l, m, n are the direction cosines of a straight line in 3D then $l^{2}+m^{2}+n^{2}$ is equal to
a) 0
b) 1
c) 2
d) 3 .
vii) The value of $\Gamma\left(\frac{7}{2}\right)$ is
a) $\frac{15}{8} \sqrt{\pi}$
b) $\frac{3}{4} \sqrt{\pi}$
c) $\sqrt{\pi}$
d) none of these.

viii) The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is
a) convergent
b) divergent
c) oscillatory
d) none of these.
ix) The eigenvalues of the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ are
a) $1,-1$
b) $i,-i$
c) 0,0
d) 1,1 .
x) The sequence $\left\{u_{n}\right\}$, where $u_{n}=\frac{2 n-1}{n+1}, \quad n \in N$ is bounded by
a) 2
b) 3
c) 0.5
d) none of these.
xi) If the straight lines $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z+3}{2}$ and $\frac{x-3}{2}=\frac{y-4}{\lambda}=\frac{z-2}{2}$ are perpendicular then the value of λ is
a) 3
b) $\quad-3$
c) 2
d) 1 .
xii) If $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}, \quad \vec{b}=2 \hat{i}-4 \hat{j}-3 \hat{k}$ and then $|\vec{a}+\vec{b}+\vec{c}|$ is
a) $4 \sqrt{2}$
b) $2 \sqrt{2}$
c) $5 \sqrt{2}$
d) $3 \sqrt{2}$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Find the point where line $\frac{x-2}{1}=\frac{y+3}{-1}=\frac{z-1}{6}$ meets the plane $3 x+y+z=7$.
3. Define semigroup. Let $G=\{1,-1, i .-i\}$. Prove that this set forms a group with respect to usual multiplication.
4. Find the rank of the given matrix, $\left(\begin{array}{cccc}2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5\end{array}\right)$.
5. Show that the given mapping is neither injective nor subjective : $f(x)=|x|$, where x is a real number.
6. Show that any square matrix A and its transpose A^{T} have same eigenvalues.

Answer any three of the following. $\quad 3 \times 15=45$
7. a) Let (G, o) be a group. A non-empty subset H of G forms a subgroup of (G, o) iff $a \in H, b \in H \Rightarrow a o b^{-1} \in H$.
b) In a group G, if every element is its own inverse, then show that the group G is commutative.
c) The binary operation o is defined on the sets of integers Z as $a o b=a+b-2$, for all a, b belong to Z. Show that (Z, o) is a group.
8. a) State Rolle's theorem. Verify the theorem for the following function :
$f(x)=|x|+|x-1|, x \in[-1,2]$
b) State Cauchy's Mean Value Theorem. Then calculate c for the following :
$f(x)=\sin x$ and $g(x)=\cos x$ on $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$.
c) Let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be two convergent sequences that converge to $u \& v$ respectively. Then show that $\lim \left(u_{n} \pm v_{n}\right)=u \pm v$.
9. a) Show that the straight lines $\frac{x-1}{2}=\frac{y+2}{2} \frac{2-6}{5}$ and $2 x+y-3 z-2=0$
$3 x+2 y+5 z+7=0$ are perpendicular.
b) Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are co-planar.
c) Find the equation of the straight line passing through the point $(3,1,-6)$ and parallel to the planes $x+y+2 z-4=0,2 x-3 y+z+5=0$.
10. a) Verify that the limit of the sequence $\left\{x_{n}\right\}$, where $x_{n}=\frac{2 n+1}{n-1}, n \in N$ is 2.
b) Test the convergence of the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$.
c) Determine the interval of convergence of the power series $\sum a_{n} x^{n}$, where $a_{n}=\frac{1}{\log (n+1)}$.
11. a) Evaluate $\int_{0}^{\infty} e^{-4 x} x^{\frac{3}{2}} \mathrm{~d} x$

b) Solve any two :
i) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=2 x+3$
ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=2 e^{3 x}$
iii) $\quad x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=x$

