B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)
MECHANICAL ENGINEERING

Paper - IV : Computer Based Numerical Methods

Time : 3 Hours
Maximum Marks : 75

Answer question No. 1 is compulsory
Answer ONE question from each unit

1) a) Explain Regula - Falsi method.
b) Evaluate $\Delta^{2} \cos 2 x$
c) Evaluate $y(1)$ from

$x:$	0	2	3
$y:$	-1	3	5

d) Write down the trapezoidal rule to evaluate $\int_{0}^{6} f(x) d x$ with $h=0.5$.
e) Explain Picard's method.
f) Express $a^{2} u_{x x}=u_{t t}$ in terms of difference quotients.
g) Classify the partial differential equations of second order.

UNIT - I

2) a) Find the square root of 25 given $x_{0}=2.0$ and $x_{1}=7.0$ using bisection method.
b) Find the positive root of $x^{4}-x-10=0$ by iteration method.

OR

c) Use Gauss Seidal method solve the following system of equations.

$$
x+5 y-z=10,4 x+2 y+z=14, x+y+8 z=20
$$

d) Find a real root of the equation $x e^{x}-1=0$ using Newton Raphson method.

UNIT - II

3) a) From the following table of values determine $f(0.23)$ as $f(0.27)$ using Newton's forward and backward formula

x	0.2	0.22	0.24	0.26	0.28	0.30
$f(x)$	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

OR
b) Using Lagranges interpolation formula find $\mathrm{y}(2)$ from the following data :

$x:$	0	1	3	4
$y:$	0	1	81	256

By means of Newton's divided difference formula find $f(8)$.

$x:$	4	5	7	10	11	13
$f(x):$	46	100	290	900	1200	2020

UNIT - III

4) a) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using
i) Trapezoidal rule
ii) Simpson's $\frac{1}{3^{r d}}$ rule and compare the result in each case with its actual solution.

OR

b) Find the first and second derivatives of the function tabulated below at $x=1.2$ and $x=2.2$.

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

5) a) Solve $y^{\prime}=x+y$ given $y(1)=0$. Find $y(1.1)$ and $y(1.2)$ by Taylor's series method and compare the result with analytical solution.

OR
b) Solve the equation $\frac{d y}{d x}=1-y$ given $y(0)=0$ using modified Euler's method and tabulate the solutions at $x=0.1,0.2$ and 0.3 . Compare your results with the exact solutions.

