

Code No.: 6007

FACULTY OF ENGINEERING AND INFORMATICS B.E. I Year (Common to all Branches) (Supplementary) Examination, Dec. 2009/Jan. 2010 **ENGINEERING MECHANICS**

Time: 3 Hours]	[Max. Marks	: 75
	ver all questions of Part A . ver five questions from Part B .	
	PART – A	25
1. The resultant of two force perpendicular to P then.a) P = Q	ces 'P' and 'Q' is R. If Q is doubled, the new resultant is	2
b) Q = R		
c) $Q = 2R$		
d) None of the above		
 2. Two forces act at angle of perpendicular to smaller a) 20 kg b) 40 kg c) 80 kg d) None of the above 	of 120°. The bigger force is 40 kg and the resultant is one. The smaller force is	2
3. The ratio of moment of in depth is	nertia of a circular plate to that of a square plate for equal	2
a) less than one		20000
b) equal to one		
c) greater than one		
d) none of the above		
(This paper contains 4 pages)	1	

Code No.: 6007

4. The force of 6 kg is just sufficient to move a body and the angle of friction of the body with the surface is 45°, then the weight of body will be

2

- a) $6\sqrt{2}$ kg
- b) $8\sqrt{2}$ kg
- c) 6 kg

A JA

- d) 4.5 kg
- 5. The M.I. of a sphere of radius R and mass M about an axis tangential to it is

2

- a) $\frac{2}{3}$ MR²
- b) $\frac{2}{5}$ MR²
- c) $\frac{7}{5}$ MR²
- d) $\frac{7}{3}$ MR²
- 6. A motor cycle runs at 15 km/hr for 2 hours, 20 km/hr for 3 hours and then finally 30 km/hr for 5 hours. How fast must the motor cycle has to move in the last 5 hrs to attain an average speed of 30 km/hr?

3

7. A body vibrates in SHM with a period of oscillation 6 seconds and an amplitude of 2 cm. Find the velocity and acceleration of the body at the mean position.

3

8. A particle moves path of 40 m radius so that its arc distance from a fixed point on the path is given by $S = 4t^3 - 10t$ where S is in mts and t is in seconds. Compute the total acceleration at the end of 2 sec.

3

9. State laws of friction.

3

10. Determine the CG of a hollow hemi sphere of 4 cm external diameter and 3 cm internal diameter.

50

11. The forces $\vec{F}_1 = -100k$ $\vec{F}_2 = 200k$ and $F_3 = 50k$ in Newtons act at the points (10, 2, 0) (12, 6, 0) and (8, 8, 0) respectively on a plate in X – Y plane. Find the position of $\vec{F}_4 = 100k$ on the plate so that the resultant of all four forces should act at a point (5, 5, 0).

10

12. a) Determine the push necessary to move a body up a plane inclined at 20° to the horizontal if the weight of the body is 200 N and inclination of the push is 10° to the horizontal plane. Take $\mu = 0.2$.

S

b) Determine the C-G of a hemispherical solid of radius 'R'.

5

13. a) Determine M-I of solid sphere of radius R.

6

b) Define parallel axis theorem and perpendicular axis theorem.

4

14. a) Define law of conservation of energy.

3

b) A stone is thrown vertically upward with a velocity of 19.6 m/sec from the top of the tower 24.5 m high. Calculate the following.

7

- 1) The time required for the stone to reach the ground.
- 2) Velocity of the stone, in its downward travel at the point in the same level as the point of projection.
- 3) The maximum height which the stone will rise in its flight. Take $g = 9.8 \text{ m/sec}^2$.

15. a) State D'Alemberts principle.

b) A ball is thrown so that it first clears a 7.5 mts wall 30 mt away. If it left the hand 1.5 m above the ground and at an angle of 60° to the horizontal, what is the initial velocity of the ball?

7

16. a) A car weighing 18 kN rounds a curve of 60 m radius banked at an angle of 30°. Find the friction force acting on the tires when the car is travelling at 96.54 kmph. The co-efficient of friction between tires and road is 0.60.

b) The bullet weighing 0.3 N and moving at 660 m/s penetrates the 45 N body emerges with a velocity 180 m/s as shown in Fig. How far and how long does the body move?

5

$$\mu = 0.4$$

5

17. a) Derive work-energy equation for translation.

~/

b) Explain terms free vibration, forced vibration and damped vibration.

5