Code No. 9009

FACULTY OF ENGINEERING

B.E. 2/4 I - Semester (Main) Examination, December/January 2014-15

Subject : Mathematics – III (Common to All Except. I.T.)

Time : 3 Hours

Max. Marks: 75

(2)

(5)

(5)

Note: Answer all questions of Part - A and answer any five questions from Part - B. PART – A (25 Marks)

1 Form the partial differential equation from $z = f\left(\frac{xy}{z}\right)$ by eliminating the arbitrary. function f. (2)

2 Solve p + q = pq.

3	Find ' a_o ' in the Fourier series expansion of f(x) = sin x in [- π , π].	(2)
4	Write Dirichlet's conditions.	(2)
5	Solve $3u_x + 2u_y = 0 u(x,0) = 4e^{-x}$.	(2)
6	Show that u = sinx sinhy is a solution of Laplace equation.	(3)
7	Write Newtons forward and backward interpolation formulae for equal intervals.	(3)
8	Explain bisection method to find a root of $f(x)=0$.	(3)
9	State the initial value theorem of Z-transforms.	(3)
10	Show that $Z\{1\} = \frac{z}{z-1}$.	(3)

PART – B (50 Marks)

11	(a) Find the complete integral of $(p^2 + q^2)x = pz$ by Charpit's method.	(5)
	(b) Solve $x^2(y - z)p + y^2(z - x)q = z^2(x - y)$.	(5)
12	(a) Find the Fourier series for $f(x)=e^x$ in $[0, 2\pi]$.	(5)

- (b) Find the Half range Fourier cosine series of f(x)=x in 0 < x < 2.
- 13 An insulated rod of length l has its ends A & B maintained at 0°C & 100°C respectively until steady state condition prevails. If B is suddenly reduced to 0°C and maintained at 0°C, find the temperature at a distance x from A at time t. (10)
- 14 (a) Use Runge-Kutta 4th order method to find y when x = 1.2 in steps of 0.1 given that $\frac{dy}{dx} = x^2 + y^2 \text{ and } y(1)=1.5.$ (b) Find the value of y at x = 7 from the following data.
 (5)

15 (a) Show that
$$Z[\sin n\theta] = \frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$$
.
(b) Solve $y_{n+2} = 3y_{n+4} + 2y_n = 0$, $y_0 = -1$, $y_4 = 2$ using Z-transforms.

(b) Solve
$$y_{n+2} - 3y_{n+1} + 2y_n = 0$$
, $y_0 = -1, y_1 = 2$ using Z-transforms. (5)
16 (a) Find $Z^{-1} \left[\frac{z^2}{(z-1)^2} \right]$ by using Convolution theorem. (5)

(b) Find a real root of the equation
$$x^2 - 4x - 9 = 0$$
 using Newton Raphson method. (5)

17 (a) Solve
$$\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$$
 by method of separation of variables. (5)

(b) Find the half range Fourier sine series for
$$f(x) = \begin{cases} x, & 0 < x < \pi/2 \\ 0, & \pi/2 < x < \pi \end{cases}$$
 (5)