FACULTY OF ENGINEERING

B.E. 2/4 I - Semester (Main) Examination, December/January 2014-15

Subject : Mathematics - III
 (Common to All Except. I.T.)

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions of Part - A and answer any five questions from Part - B. PART - A (25 Marks)

1 Form the partial differential equation from $\mathbf{z}=f\left(\frac{x y}{z}\right)$ by eliminating the arbitrary. function f . (2)
2 Solve $p+q=p q$.
3 Find ' a_{0} ' in the Fourier series expansion of $f(x)=|\sin x|$ in $[-\pi, \pi]$.
4 Write Dirichlet's conditions.
5 Solve $3 u_{x}+2 u_{y}=0 u(x, 0)=4 e^{-x}$.
6 Show that $u=\sin x$ sinhy is a solution of Laplace equation.
7 Write Newtons forward and backward interpolation formulae for equal intervals.
8 Explain bisection method to find a root of $f(x)=0$.
9 State the initial value theorem of Z-transforms.
10 Show that $Z\{1\}=\frac{z}{z-1}$.

PART - B (50 Marks)

11 (a) Find the complete integral of $\left(p^{2}+q^{2}\right) x=p z$ by Charpit's method.
(b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.

12 (a) Find the Fourier series for $f(x)=e^{x}$ in $[0,2 \pi]$.
(b) Find the Half range Fourier cosine series of $f(x)=x$ in $0<x<2$.

13 An insulated rod of length ℓ has its ends $A \& B$ maintained at $0^{\circ} \mathrm{C} \& 100^{\circ} \mathrm{C}$ respectively until steady state condition prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t .
14 (a) Use Runge-Kutta $4^{\text {th }}$ order method to find y when $x=1.2$ in steps of 0.1 given that

$$
\begin{equation*}
\frac{d y}{d x}=x^{2}+y^{2} \text { and } y(1)=1.5 . \tag{10}
\end{equation*}
$$

(b) Find the value of y at $x=7$ from the following data.

x	5	6	9	11
y	12	13	14	16

15 (a) Show that $Z[\sin n \theta]=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}$.
(b) Solve $y_{n+2}-3 y_{n+1}+2 y_{n}=0, y_{0}=-1, y_{1}=2$ using Z-transforms.

16 (a) Find $Z^{-1}\left[\frac{z^{2}}{\left.(z-1)^{2}\right)}\right]$ by using Convolution theorem.
(b) Find a real root of the equation $x^{2}-4 x-9=0$ using Newton Raphson method.

17 (a) Solve $\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by method of separation of variables.
(b) Find the half range Fourier sine series for $f(x)= \begin{cases}x, & 0<x<\pi / 2 \\ 0, & \pi / 2<x<\pi\end{cases}$

