SELITIM (Rev.) 2915/2012 Digited logic Design & application

Cam	4469
(.On	лльч

GN-8348

Con. 4469	GN-8348
(3 Hours)	[Total Marks 100
N.B.N. B.: (1) Question NO.1 is compulsory (2) Solve any four out of remaining six questions.	
a. Convert (243) ₅ into equivalent base 8 number and base 7 number.	(4)
b. Perform the following operations –	(6)
1) (F8F) ₁₆ + (D49) ₁₆ 2) (762) _{BCD} + (238) _{BCD} 3) (246) ₁₀ - (435) ₁₀ using 2's complement method.	
c. Convert SR flip flop to JK flipflop.	(5)
d.With the help of suitable example, explain how hamming code is abl and correct single bit error.	e to locate (5)
a. Implement one digit BCD adder using IC 7483. Explain its working design to implement 4 digit BCD adder.	. Expand your (10)
b. Implement 2 bit comparator using active low decoder.	(10)
3. a. Implement 4 bit Asynchronous up counter. Also sketch the timing d	iagrams. (10)
b. Explain bidirectional shift register with the help of neat diagram.	(10)
 a. Design Mod 12 synchronous up counter using JK Flipflops and NAN Design the counter as lock out free counter. 	D gates only. (12)
b. Script VHDL Code for 3:8 decoder	(8)
5. a. Draw the circuit diagram of TTL NAND Gate and explain its working.	(10)
b.Implement full adder using two 4:1 Multiplexers and additional gates	(10)
6. a Using Quine McClusky method of minimization minimize $F = \sum m (8,9,10,11,13,15,16,18,21,24,25,26,27,30,31)$.	(10)
.b Implement BCD to Excess 3 code converter using NOR Gates only.	(10)
7. Write short notes on any two. a. CAD Tools	(20)
 b. Race around condition and its remedy in master slave JK Flip flop. c. Programmable logic devices d.Priority encoders. 	