Automata Theory. - S.E. Sem-N (CBGS). I.T. Jane 2014.

QP Code: NP-19812

		(3 Hours)	[Total Marks: 80
N.B.	 (1) (2) (3) (4) 	Question No. 1 is compulsory. Solve any three questions from remaining questions. Draw suitable diagrams wherever necessary. Assume suitable data, if necessary.	
l. (a)		gn a DFA to accept strings over the alphabet $\sum = \{a, b\}$	containing even 5
(b)	Let	berof 'a's. G be the grammar. Find the leftmost derivation, rightmose tree for the expression a*b+a*b	st derivation and 5
		G: $S \rightarrow S + S \mid S * S$ $S \rightarrow a \mid b$	
(c) (d)		formal definition of a Push Down Automata (PDA) and explain closure properties of regular languages.	
2. (a)	Designation (i) (ii)	gn a DFA to accept Binary strings in which every 0 is followed by 11 Strings over the binary alphabet that do not contain the	10 substring 010
(b)		gn a Mealy machine over the alphabet $\{0,1\}$ which outputs rding to the number of 1's encountered as even or odd.	s EVEN,ODD 10
3. (a)		sing pumping lemma prove that the following language is $= \{ ww \mid w \in \{0, 1\}^* \}$	not regular 10
	(b) D	Design a NFA for accepting input strings that contain either the keyword 010 and convert it into an equivalent DFA.	the keyword 000 10
4. (a) (b)		struct a PDA accepting the following language $L = \{a^n b^m a^n a^n a^n a^n a^n a^n a^n a^n a^n a^n$	·

QP Code: NP-19812

2

- (a) Explain algorithm for the conversion of a Context Free Grammar (CFG) to Chomsky Normal Form (CNF) and use it to convert the following CFG to CNF S → bA | aB A → bAA | aS | a B → aBB | bS | b
 (b) Convert the following Context Free Grammar to GNF S → AB | BC
 - $S \rightarrow AB \mid BC$ $A \rightarrow AB \mid a$ $B \rightarrow AA \mid CB \mid b$ $C \rightarrow a \mid b$
- 6. Write short notes on (any two)

20

- (a) Variants of a Turing Machine
- (b) Post Correspondence Problem
- (c) Chomsky Hierarchy
- (d) Recursive and recursively enumerable languages.