(DEE 311)

B.Tech DEGREE EXAMINATION, MAY - 2015

(Examination at the end of Third Year)

ELECTRICALS AND ELECTRONICS

Paper - I : Linear Control Systems

Time : 3 Hours

Maximum Marks : 75

Answer question No.1 compulsory	(15)
---------------------------------	------

<u>Answer ONE question from each unit</u> $(4 \times 15 = 60)$

- 1) a) Define closed loop control system.
 - b) What is the importance of feed back?
 - c) Write the applications of closed loop system.
 - d) Define sensitivity.

e) Calculate number of poles and zeros for a given transfer function $\frac{2(S+1)}{S(S+2)(S+3)}$.

- f) The closed loop transfer function is $\frac{4}{S^2 + 5S + 16}$. Calculate open loop transfer function.
- g) What is the importance of Mason's gain formula?
- h) Draw the step and ramp signals.
- i) Define steady state error.
- j) Consider a system with the transfer function $\frac{S+6}{KS^2+S+6}$. Its damping ratio will be 0.5. Calculate the K value.

- k) Calculate the number of roots in left half of the S-plane for a given characteristic equation $S^3 + 5S^2 + 7S + 3 = 0$.
- 1) The root locus of the system $G(s)H(s) = \frac{K}{S(S+2)(S+3)}$. Calculate the break-away point.
- m) Define Gain margin and Phase margin.
- n) What is the importance of Compensator?
- o) Define state transition matrix.

<u>UNIT – I</u>

2) a) Find the transfer function of the following system shown in figure.

b) Explain the open loop & closed loop system.

OR

3) a) Obtain the transfer function using mason gain formula for the given signal flow graph.

b) Explain the basic elements of control systems.

<u>UNIT - II</u>

- 4) a) Find all the time domain specifications of a unity feedback control system whose open loop is given by $G(s) = \frac{25}{S(S+1)(S+2)}$.
 - b) Explain RH stability criterion with difficulties.

- 5) Define the following systems and sketch their output wave from for an unit step input
 - a) Under damped system
 - b) Over damped system

<u>UNIT - III</u>

6) a) Consider the sixth-order system with characteristic equation. $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16 S + 16 = 0$. Comment on the stability.

b) Sketch the root locus for the unity feedback system whose open loop transfer function is

$$G(s)H(s) = \frac{K(S+2)}{S(S+1)(S^2+6S+25)}.$$

OR

7) Draw the Bode plot for the system having the following transfer function :

$$G(s) = \frac{20}{s(1+3s)(1+4s)}.$$

<u>UNIT - IV</u>

- 8) Write short notes on the following:
 - a) Lead Compensator
 - b) Lag Compensator

OR

9) a) Derive the expression for the transfer function from the state model. X = Ax + Bu and y = Cx + Du.

b) Find the state transition matrix for a given system matrix $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$.

**