Total No. of Pages : 02

Roll No.

Total No. of Questions : 07

BCA (Sem.-4th) MATHEMATICS II (COMPUTER ORIENTED MATHEMATICS) Subject Code : BC-301 Paper ID : [B0227]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY.
- 2. Attempt any FOUR questions from SECTION-B.

SECTION-A $(10 \times 2 = 20 \text{ Marks})$

- l. Write short notes on :
 - (a) Give merits and demerits of median.

(b) A cyclist pedals from his house to his college at a speed of at 15 km/hr. Find the average harmonic

mean speed.

- (c) Define diagonal and scaler matrices. Also give difference between these matrices.
- (d) Prove that f(x) = |x| is not differentiable at origin.
- (e) Differentiate $(x^4 3)(x^2 + 2x + 1)$, w.r.t *x*.
- (f) Find $\int x \sin x^2 dx$.

(g) Find
$$\frac{dy}{dx}$$
, where $y = \tan(\cos x)$.

(i) Evaluate
$$\int_{1}^{\pi/2} 2\sin^2 x dx.$$

(j) Define Simpson's
$$\frac{3}{8}$$
 rule.

[A-12]-155

SECTION-B $(4 \times 10 = 40 \text{ Marks})$

2. (a) Given that $A = \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 7 & 1 \end{bmatrix}$, then show that $(AB)^T = B^T A^T$.

(b) Find the inverse of the matrix
$$\begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 5 & 2 & 1 \end{bmatrix}$$
.

3. (a) Solve by Gauss Jordon method : y + z = 4, x + z = 5, x + y = 6.
(b) Find the maximum and minimum value of 2x³ -15x² + 36x + 10.

4. (a) Calculate the mode from the following data :

X :	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
f :	5	8	7	12	28	20	10	10

ge and mean deviation.

5. Find the derivative of (i)
$$x^{x^2}$$
 (ii) $\sin \sqrt{(1-x^2)}$.

6. Evaluate (i)
$$\int \frac{\tan x}{\sec x + \tan x} dx$$
 (ii) $\int \frac{1}{(x^2 - 3x + 2)} dx$

7. Evaluate I =
$$\int_{0}^{1} \sqrt{(1-x^2)} dx$$
 by (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule.
(Take $h = 0.25$)