Roll No.
Total No. of Questions : 07

BCA (Sem.-4th)

MATHEMATICS II (COMPUTER ORIENTED MATHEMATICS)

Subject Code : BC-301
 Paper ID : [B0227]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY.
2. Attempt any FOUR questions from SECTION-B.

$$
\text { SECTION-A } \quad(10 \times 2=20 \text { Marks })
$$

1. Write short notes on :
(a) Give merits and demerits of median.
(b) A cyclist pedals from his house to his college at a speed of at $15 \mathrm{~km} / \mathrm{hr}$. Find the average harmonic mean speed.
(c) Define diagonal and scaler matrices. Also give difference between these matrices.
(d) Prove that $f(x)=|x|$ is not differentiable at origin.
(e) Differentiate $\left(x^{4}-3\right)\left(x^{2}+2 x+1\right)$, w.r.t x.
(f) Find $\int x \sin x^{2} \mathrm{~d} x$.
(g) Find $\frac{d y}{d x}$, where $y=\tan (\cos x)$.

$$
\int 2
$$

(i) Evaluate $\int^{\pi / 2} 2 \sin ^{2} x d x$.
(j) Define Simpson's $\frac{3}{8}$ rule.

SECTION-B $\quad(4 \times 10=40$ Marks $)$

2. (a) Given that $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 7 & 1\end{array}\right]$, then show that $(A B)^{T}=B^{T} A^{T}$.
(b) Find the inverse of the matrix $\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 5 & 2 & 1\end{array}\right]$.
3. (a) Solve by Gauss Jordon method : $y+z=4, x+z=5, x+y=6$.
(b) Find the maximum and minimum value of $2 x^{3}-15 x^{2}+36 x+10$.
4. (a) Calculate the mode from the following data :

$X:$	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
$f:$	5	8	7	12	28	20	10	10

ge and mean deviation.
5. Find the derivative of \quad (i) $x^{x^{2}}$ (ii) $\sin \sqrt{\left(1-x^{2}\right)}$.
6. Evaluate
(i) $\int \frac{\tan x}{\sec x+\tan x} d x$
(ii) $\int \frac{1}{\left(x^{2}-3 x+2\right)} d x$.
7. Evaluate $\mathrm{I}=\int_{0}^{1} \sqrt{\left(1-x^{2}\right)} d x$ by (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule.
(Take $h=0.25$)

