

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Casual signals are
a) right sided sequence
b) left sight sequence
c) both sided sequence
d) none of these.
ii) If $x(n)$ upon z transform gives $X(z)$ then
a) $\quad x(-n) \leftrightarrow X(z)$
b) $\quad x(-n) \leftrightarrow z X(z)$
c) $\quad x(-n) \leftrightarrow X(z) / z$
d) $\quad x(-n) \leftrightarrow X(1 / z)$.
a) $\quad x(t)^{*} \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$
b) $x(t)^{*} \delta\left(t-t_{0}\right)=1$
c) $\quad X(t)^{*} \delta\left(t-t_{0}\right)=x\left(t_{0}\right)$
d) $\quad X(t)^{*} \delta\left(t-t_{0}\right)=x(t)$.
iv) The number of multiplications required to compute N -point DFT using radix-2 FFT is
a) $\quad \mathrm{N} / 2{ }^{*} \log _{2} \mathrm{~N}$
b) $\quad \mathrm{N} / 2{ }^{*} \log _{2}(\mathrm{~N} / 2)$
c) $\quad \mathrm{N}^{*} \log _{2} \mathrm{~N}$
d) $\quad \mathrm{N}^{*} \log _{2}(\mathrm{~N} / 2)$.
v) Fourier transform of $\cos n \omega_{0}$ is
a) $\quad \pi \delta\left(\omega+\omega_{0}\right)+\pi \delta\left(\omega-\omega_{0}\right)$
b) $\quad \pi \delta\left(\omega+\omega_{0}\right)-\pi \delta\left(\omega-\omega_{0}\right)$
c) $\quad \pi \delta\left(\omega+\omega_{0}\right)+2 \pi \delta\left(\omega-\omega_{0}\right)$
d) $2 \pi \delta\left(\omega+\omega_{0}\right)+\pi \delta\left(\omega-\omega_{0}\right)$.
vi) The convolution sum is
a) $\quad Y(n)=x(n)^{*} y(n)$
b) $\quad Y(n)=k=-\infty \infty x(k) \delta(n-k)$
c) $\quad Y(n)=k=-\infty \infty x(k) h(n-k)$
d) $\quad Y(n)=k=-\infty \infty x(k) h(k)$.
vii) Direct form - I and direct form - II exists for
a) FIR system only
b) IIR system only
c) Both (a) and (b)
d) Analog filter.
viii) The z transform of delta function is
a) 1
b) $1 /(1-z)$
c) $\quad 1 /\left(1-z^{-1}\right)$.

a) 1
b) $1 /(1-z)$
c) $\quad 1 /\left(1-z^{-1}\right)$
x) If $x(n)=\{1,0,0,1\}$, the DFT value $x(0)$ is
a) 2
b) $1+\mathrm{j}$
c) 0
d) $1-\mathrm{j}$.
xi) Which of the following is not a property of FIR filter ?
a) Always stable
b) Physically realizable
c) Non-linear phase response
d) Linear phase response.

GROUP - B

(Short Answer Type Guestions)
Answer any three of the following. $3 \times 5=15$
2. Find the Z-transform and explain ROC of the following.
(i) $\quad X 1[n]=\{2,4,5,7,0,1\}$
(ii) $\quad X 2[n]=\delta[n-k], k>0$.
3. Determine Z-transform of $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$ and explain ROC.
4. Find out convolution of two sequences $x 1[n]=\{1,-2,1\}$ and $x 2[n]=\{1,1,1,1,1\}$
5. Draw the phase and magnitude spectrum of the periodic sequence : $x[n]=\{1,1,0,0\}$.
6. Explain the different types of filters in digital systems.
7. Explain the different types of window in digital systems.

CS/B.TECH(EEE)/SEP.SUPPLE/SEM-7/EEE-703/2012
8. Determine the inverse Z-transform $X(z)=1 /\left(1-1 \cdot 5 z^{-1}+0 \cdot 5 z^{-2}\right)$
when ROC $: \bmod (z)>1$
when $\mathrm{ROC}: \bmod (z)<0.5$.
9. a) Derive the expression for Discrete Fourier Series coefficient [Ck] and for real signal.
b) Explain the properties of DFT.
10. Design low pass FIR filter for $N=5$ and $\omega_{c}=0.5$ rad, using Hanning window.
11. Find $X(k)$ by using decimation in time FFT algorithm of the sequence : $x(n)=\{3,1,5,4,2,1,0,1\}$.
12. Write short notes on any three of the following :
a) Properties of Z-transform
b) Odd and even signals
c) DFT and FFT
d) Butterworth or Chebyshev filter
e) Convolution.

