

Invigilator's Signature :

CS/B.TECH(EEE)/SEP.SUPPLE/SEM-7/EEE-703/2012 2012 DIGITAL SIGNAL PROCESSING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) Casual signals are
 - a) right sided sequence
 - b) left sight sequence
 - c) both sided sequence
 - d) none of these.
 - ii) If x(n) upon z transform gives X(z) then
 - a) $x(-n) \leftrightarrow X(z)$ b) $x(-n) \leftrightarrow z X(z)$
 - c) $x(-n) \leftrightarrow X(z)/z$ d) $x(-n) \leftrightarrow X(1/z)$.

SS-354

[Turn over

iii) Find the correct alternative :

a)
$$x(t)^* \delta(t - t_0) = x(t - t_0)$$

- b) $x(t)^* \delta (t t_0) = 1$
- c) $X(t)^* \delta(t t_0) = x(t_0)$
- d) $X(t)^* \delta (t t_0) = x (t).$
- iv) The number of multiplications required to compute N-point DFT using radix-2 FFT is
 - a) $N/2 \log_2 N$ b) $N/2 \log_2 (N/2)$
 - c) $N^* \log_2 N$ d) $N^* \log_2 (N/2)$.
- v) Fourier transform of $\cos n\omega_0$ is
 - a) $\pi\delta(\omega + \omega_0) + \pi\delta(\omega \omega_0)$
 - b) $\pi\delta(\omega + \omega_0) \pi\delta(\omega \omega_0)$
 - c) $\pi\delta(\omega + \omega_0) + 2\pi\delta(\omega \omega_0)$
 - d) $2\pi\delta(\omega + \omega_0) + \pi\delta(\omega \omega_0)$.
- vi) The convolution sum is
 - a) $Y(n) = x(n)^* y(n)$
 - b) $Y(n) = k = -\infty \infty x(k)\delta(n-k)$
 - c) $Y(n) = k = -\infty \infty x(k)h(n-k)$
 - d) $Y(n) = k = -\infty \infty x(k)h(k)$.

vii) Direct form – I and direct form – II exists for

- a) FIR system only b) IIR system only
 - c) Both (a) and (b) d) Analog filter.
- viii) The z transform of delta function is
 - a) 1
 - b) 1/(1–z)
 - c) $1/(1-z^{-1})$.

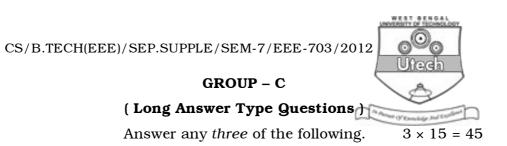
SS-354

CS/B.TECH(EEE)/SEP.SUPPLE/SEM-7 EEE-703/2012

ix) The z transform of unit step function is

- a) 1
- b) 1/(1–z)
- c) $1/(1-z^{-1})$
- x) If $x(n) = \{1, 0, 0, 1\}$, the DFT value x(0) is
 - a) 2 b) 1 + jc) 0 d) 1 - j.
- xi) Which of the following is *not* a property of FIR filter ?
 - a) Always stable
 - b) Physically realizable
 - c) Non-linear phase response
 - d) Linear phase response.

GROUP – B


(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Find the *Z*-transform and explain ROC of the following.
 - (i) $X1[n] = \{ 2, 4, 5, 7, 0, 1 \}$
 - (ii) $X2[n] = \delta [n-k], k > 0.$
- 3. Determine *Z*-transform of $x[n] = \left(\frac{1}{2}\right)^n u[n]$ and explain ROC.
- 4. Find out convolution of two sequences $xl[n] = \{ 1, -2, 1 \}$ and $x2[n] = \{ 1, 1, 1, 1, 1 \}$
- 5. Draw the phase and magnitude spectrum of the periodic sequence : $x[n] = \{ 1, 1, 0, 0 \}$.
- 6. Explain the different types of filters in digital systems.
- 7. Explain the different types of window in digital systems.

SS-354

[Turn over

8. Determine the inverse Z-transform $X(z) = 1/(1 - 1 \cdot 5z^{-1} + 0 \cdot 5z^{-2})$ when ROC : mod (z) > 1 when ROC : mod(z) < 0.5.

- 9. a) Derive the expression for Discrete Fourier Series coefficient [*Ck*] and for real signal.
 - b) Explain the properties of DFT.
- 10. Design low pass FIR filter for N = 5 and $\omega_c = 0.5$ rad, using Hanning window.
- 11. Find X(k) by using decimation in time FFT algorithm of the sequence : $x(n) = \{3, 1, 5, 4, 2, 1, 0, 1\}$.
- 12. Write short notes on any *three* of the following : 3×5
 - a) Properties of *Z*-transform
 - b) Odd and even signals
 - c) DFT and FFT
 - d) Butterworth or Chebyshev filter
 - e) Convolution.

SS-354