

Code No.: 5031/S

FACULTY OF ENGINEERING B.E. 3/4 (Civil) I Semester (Suppl.) Examination, June 2012 THEORY OF STRUCTURES – I

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part – A. Answer any five questions from Part – B.

PART - A

(25 Marks)

- 1. The number of simultaneous equations to be solved in slope deflection method is equal to
 - a) The degree of statical indeterminacy
 - b) The degree of kinematic indeterminacy
 - c) The number of joints in the structure
 - d) None of the above

2

2. Define distribution factor.

2

3. Two members are meeting at a joint, if the rotation contribution for one of the members is -0.5, what is the relative stiffness of the other member.

2

4. Write the expression for strain energy of a truss member.

2

5. Define principal axes.

2

6. Write the shear equation for the portal frame shown in fig. 1.

3

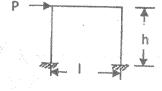


Fig. 1

Code No.: 5031/S

7. A propped cantilever beam of span 5.0 m is subjected to a clock wise moment of 10 kN-m at the propped end. Find the moment at the fixed end. 3 8. Write the advantages and disadvantages of Kani's method. 3 9. State and explain Castigliano's theorem for calculation of deflections. 3 10. What are Knee braced trusses and write the assumptions made in their analysis. 3

PART-B

(50 Marks) 11. Analyse the continuous beam shown in fig. 2, using slope-deflection method and draw the shear force diagram. Assume El is same for all spans.

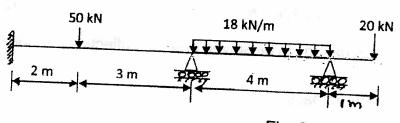


Fig. 2

12. Analyse the frame shown in fig. 3, using moment distribution method and draw the bending moment diagram.

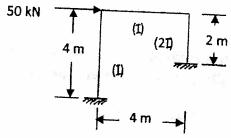
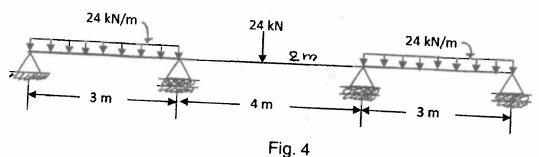



Fig. 3

13. Analyse the continuous beam shown in fig. 4, using Kani's method and draw the

14. For the pin-jointed plane truss shown in fig. 5, find the vertical displacement of the joint D. Assume $AE = 2 \times 10^6 \text{ N}$.

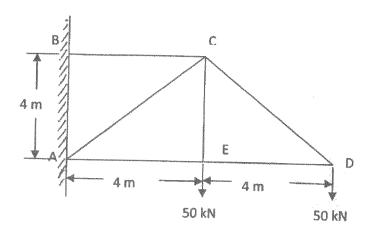


Fig. 5

- 15. A 50 mm \times 50 mm \times 10 mm equal angle is subjected to a sagging bending moment of 500 N-m. Find the maximum stresses induced in the cross section.
- 16. Find the forces in the members of the truss shown in fig. 6.

Fig. 6