V-L-1st-Hf-Ex-12-BB-99

Con. 3568-12.

GN-5393

(3 Hours)

[Total Marks: 100

N.B.:(1) Question No. 1 is compulsory.

- (2) Solve any four out of remaining six questions.
- (3) Answers to subquestions should be answered together.

1. (a) If
$$A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{bmatrix}$$
, find adj A, A^{-1} . Also find B such that $AB = \begin{bmatrix} 3 & 4 & 2 \\ 1 & 6 & 1 \\ 5 & 6 & 4 \end{bmatrix}$. 5

(b) Find L $\left\{\frac{\cosh 2t \sin 3t}{t}\right\}$.

5

(d) Find the Fourier series for $f(x) = 1 - x^2$ in (-1, 1).

A regular function of constant magnitude is cosntant.

5

6

5

- 2. (a) Expand $f(x) = \begin{cases} \pi x & 0 < x < 1 \\ 0 & 1 < x < 2 \end{cases}$ with period 2, into a Fourier series.
 - (b) Find the orthogonal trajectories of the family of curves e^{-x} (x siny y cosy) = c. 7
 - (c) Using convolution theorem, prove that, $L^{-1}\left\{\frac{1}{s}\tan^{-1}a_{s}\right\} = \int_{0}^{t} \frac{1}{u}\sin audu$. 7
- (a) Show that every square matrix A can be uniquely expressed as P + iQ.
 Where P and Q are Hermitian matrices.
 - (b) Using Cauchy's residue theorem, evaluate, $\oint_C \frac{12z-7}{(z-1)^2(2z+3)} dz \text{ where } 7$ C is the circle (i) $|z| = \frac{1}{2}$ (ii) |z+i| = 3.
 - (c) Solve the following equation by using Laplace transform, $\frac{dy}{dt} + 2y + \int_0^t y dt = \sin t$ 7 given that y(0) = 1.

(b) Find Fourier series for
$$f(x) = \sqrt{1 - \cos x}$$
 $0 < x < 2\pi$ and hence show that 7

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$$

(c) Evaluate
$$\int_{0}^{\infty} t \sqrt{1 + \sin t} dt$$
.

[TURN OVER

5. (a) Using Residue theorem, Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5-3\cos\theta}$

6

- (b) Reduce the following matrix to normal form and find its rank.
- 7

- 3
 2
 5
 7
 12

 1
 1
 2
 3
 5

 3
 3
 6
 9
 15
- (c) (i) Express the function as Heaviside's unit step function and find their Laplace transforms.
 - f(t) = 0 0 < t < 1= t^2 1 < t < 3= 0 t > 3.
 - (ii) Find L { f(t) } where f(t) = t 0 < t < 1= 0 1 < t < 2

and f(t) is a periodic function with period 2.

6. (a) Investigate for what values of λ and μ the equations—

6

7

3

- x + 2y + 3z = 4
- x + 3y + 4z = 5
- $x + 3y + \lambda z = \mu$

have (i) no solution (ii) a unique solution (iii) an infinite number of solution.

- (b) Show that the set of functions $\sin(2 n + 1) x$, n = 0, 1, 2, ---- is orthogonal over $[0, \pi/2]$. Hence construct orthogonal set of functions.
- (c) Find all Laurent's expansions of the function $f(z) = \frac{2-z^2}{z(1-z)(2-z)}$.
- 7. (a) Find L { cost cos 2t cos 3t }.

6

- (b) Show that the vectors [1, 0, 2, 1], [3, 1, 2, 1], [4, 6, 2, -4], [-6, 0, -3, -4] are linearly dependent and find the relation between them.
- (c) Obtain half range sine series for f(x) where $f(x) = \begin{cases} x & 0 < x < \frac{\pi}{2} \\ \pi x & \frac{\pi}{2} < x < \pi \end{cases}$ 7

Hence find the sum of $\sum_{2n-1}^{\infty} \frac{1}{n^4}$.

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + - - - -$