Name :	
Roll No. :	A Deser (Y Example prod Expland
Invigilator's Signature :	

CS/B.TECH(CSE)(N)/SEM-5/CS-501/2012-13

2012

DESIGN AND ANALYSIS OF ALGORITHM

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1 = 10$ The Big Ο Notation of i) the expression $f(n) = n \log_2 n + n^2 + e^{\log_2^n}$ is b) $O(n^2)$ $O(n \log_2 n)$ a) $O(e^{\log_2 n}).$ c) O(n)d) Traveling Salesman Problem is ii) NP Hard NP a) b) NP Complete d) none of these. c) o(g(n)) is [Read as small oh of g(n)] is iii) asymptotically loose b) asymptotically tight a) same as Big Oh d) None of these. c) Complexity the recurrence relation $T(n) = 8T\left(\frac{n}{2}\right) + n^2$ is iv) b) $O(n^2)$ O(n)a) d) $O(n^3)$. $O(\log_2 n)$ c)

5002(N)

[Turn over

CS/B.TECH(CSE)(N)/SEM-5/CS-501/2012-13

- v) Kruskal's Algorithm is an example of
 - a) Dynamic Programming
 - b) Greedy Method
 - c) Both (a) and (b)
 - d) None of these.

c)

vi) Complexity of Tower of Hanoi problem is

- a) O(n) b) $O(n^2)$
 - $O(2^n)$ d) None of these.
- vii) Binary Search algorithm can't be applied to
 - a) Sorted linked lists b) Sorted binary trees
 - c) Sorted linear array d) Sorted integer array.
- viii) The technique of Pruning is used in
 - a) Branch and Bound
 - b) Backtracking
 - c) Divide and Conquer
 - d) Dynamic Programming.
- ix) The tight bound for building a max heap is
 - a) O(n) b) $O(\log_2 n)$
 - c) $O(n \cdot \log_2 n)$ d) None of these.
- x) The worst case running time of a quick sort algorithm is
 - a) $O(n^2)$ b) $O(n \cdot \log_2 n)$
 - c) O(n) d) $O(\log_2 n)$.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Find the best and worst case time complexity of quick sort.
- 3. State Master's theorem and find out the time complexity for the recurrence T(n) = T(2n/3) + 1.

5002(N)

4. Find the optimal solution using greedy criteria for a knapsack having capacity 100 kg for the following list of items having values and weights as shown in the table.

Item	Value	Weight
I ₁	10	15
I ₂	20	25
I ₃	30	35
I ₄	40	45
I ₅	50	55

- 5. Compare and contrast BFS vs DFS.
- 6. Use the recursion tree to give an asymptotically tight solution to the recursion T(n) = T(n a) + T(a) + cn where a > = 1 and c > 0 are constant.

GROUP – C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. Suppose we have a recurrence relation $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, show that the following are true.

- a) If $af\left(\frac{n}{b}\right) = kf(n)$ for some constant k < 1., then T(n) = 0(f(n)). 5
- b) If $af\left(\frac{n}{b}\right) = kf(n)$ for some constant k > 1, then

$$T(n) = O(n \log_{b}^{a}).$$
 5

c) If
$$af\left(\frac{n}{b}\right) = kf(n)$$
 for some constant $k = 1$, the $T(n) = O(n \log_{b}^{a})$.

8. a) Discuss the Bellman-Ford's algorithm for single-source shortest path problem. 7

- b) Prove that the time-complexity of the algorithm is Θ (*VE*). 3
- c) What is union-find algorithm ? Explain with an example. 5

5002(N)

[Turn over

CS/]	B.TEC	CH(CSE)(N)/SEM-5/CS-501/2012-13
9.	a)	What are the characteristics of greedy algorithm? 3
	b)	Discuss the activity selection problem for job sequencing with an example. Prove that the time complexity of the algorithm is $O(n \log n)$. $5 + 3$
	c)	Differentiate between greedy method and dynamic programming.
10.	a)	Explain the max-flow min-cut theorem with an example.
		6
	b)	Compare and contrast BFS ans DFS. State the $0/1$ knapsack problem. $3 + 2$
	c)	Describe the Clique Decision Problem (CDP). Prove that the CDP is NP complete. $2 + 2$
11.	Writ	the short notes on any <i>three</i> of the following : 3×5
	a)	Asymptotic Notations
	b)	Strassen's Matrix Multiplication
	c)	Approximation Algorithms
	d)	Knuth-Morris-Pratt Algorithm

e) Recursion Trees.