$\square$
B.E / B.Tech( Full Time) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY 2014 ELECTRICAL AND ELECTRONICS ENGINEERING

Second Semester

## EE8201-Electric Circuit Analysis

(Regulation 2012)
Time: 3 Hours
Answer ALL Questions
Max. Marks 100

## PART-A (10 $\times 2$ = 20 Marks)

1. If $i_{x}=3 A$ and the 18 V voltage source supplies 8 A current, find the value of $R_{A}$ in Fig.1.
2. Obtain the Thevenin's equivalent of Fig.2.


Fig. 1


Fig. 2
3. Determine the resonant frequency of the $R L C$ circuit with $R=10 \Omega, L=0.5 \mathrm{mH}$ and $C=$ 10 FF .
4. Two inductively coupled coils have self-inductances $L_{1}=50 \mathrm{mH}$ and $L_{2}=200 \mathrm{mH}$. If the coefficient of coupling is 0.5 . Find the value of mutual inductances between the coils.
5. The power input to a $3 \varphi$ induction motor is measured using two wattmeters. The readings are 1 kW and 0.35 kW respectively. Calculate the power factor of the motor.
6. A balanced star connected load of $(4+j 3) \Omega /$ phase is connected to a balanced $3 \varphi, 400 \mathrm{~V}$ supply. The phase current is 12 A . Find the total active power.
7. A $50 \mu \mathrm{~F}$ capacitor is discharged through a $100 \mathrm{k} \Omega$ resistor. if the capacitor was initially charged to 400 V . Determine $i(t)$.
8. Draw the pole zero plot for the transfer function $H(s)=\frac{K s(s-4)}{(\mathbf{s}+6)\left(\mathbf{s}^{2}+6 \mathbf{s}+25\right)}$
9. Determine $Z$ parameters if the $Y$ parameters are $Y=\left[\begin{array}{ll}\frac{2}{15} & \frac{-1}{5} \\ \frac{-1}{10} & \frac{2}{5}\end{array}\right]$
10. Calculate the value of $Z$ parameters if $A=2, B=-1, C=3$ and $D=-2$.

## Part-B ( $5 \times 16=80$ marks $)$

11. (i). Find the current through $12 \Omega$ resistor using Norton's equivalent circuit in Fig. 3a.
(ii). Using Superposition Theorem, find the current $\mathrm{i}_{3}$ in Fig 3b.


Fig.3a


Fig.3b
12. a) i) In Fig. $4 a, L_{1}=0.4 \mathrm{H}, \mathrm{L}_{2}=2.5 \mathrm{H}, \mathrm{k}=0.6$ and $\mathrm{i}_{1}=4 \mathrm{i}_{2}=20 \cos \left(500 \mathrm{t}-20^{\circ}\right) \mathrm{mA}$. Evaluate the following quantities ait=01) $i_{2} 2$ ) $\vee_{1} 3$ ) total energy stored in the system.
(10)
ii) In a coupled circuit, $L_{2}=16 L_{1}$ and coupling coefficient $k=0.6$, When both inductance are connected in series opposing, the equivalent inductances is 73.2 mH . Find $L_{1}, L_{2}$ and $M$.
(OR)
b) Find the value of $L$ at which the circuit resonates at a frequency of $1000 \mathrm{rad} / \mathrm{sec}$ in the circuit shown in Fig. 4b


Fig. 4a.


Fig. 4b
13. a) (i) A three phase balanced delta connected load of (4+j8) $\Omega$ is connected across a $400 \mathrm{~V}, 3 \varphi$ balanced supply. Determine the phase currents and line currents. Assume the phase sequence as RYB and also calculate the power drawn by the load.
(ii) A balanced star load of parallel connected RLC in each phase is connected to a three phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ balanced supply. The values of $R, L$ and $C$ in each phase are $10 \Omega, 1 \mathrm{H}$ and $100 \mu \mathrm{~F}$ respectively. Calculate the line current, the power and the power factor.
b) (i) A three phase balanced star connected load of ( $15+j 20$ ) $\Omega$ per phase is connected. across a $440 \mathrm{~V}, 3 \varphi, 50 \mathrm{~Hz}$ supply. Determine the line currents and power drawn by the load. Assume the phase sequence as RYB.
(8)
(ii) Three equal inductors connected in star take 5 kW at 0.7 PF when connected to a $400 \mathrm{~V}, 50 \mathrm{~Hz}$ three phase, three wire supply Calculate the line currents (i) if one of the inductor is disconnected and (ii) if one of the inductor is short circuited.
14. a) Determine the complete solution for the current when the switch is closed at $t=0$ to the applied voltage $v(t)=400 \operatorname{Cos}(500 t+\pi / 4)$ with resistance $=15 \Omega$, inductance $\mathrm{L}=0.2 \mathrm{H}$ and capacitance $\mathrm{C}=3 \mu \mathrm{~F}$.
(OR)
b) A coil having resistance of $10 \Omega$ and inductance of 14 H is connected across a DC voltage of 140 V . Calculate (i) the value of current at 0.4 seconds after switching on the supply, (ii) with the current having reached the final value, the time it would take for the current to reach a value of 8 A after switching off the supply.
15. a) Find $I_{1}, I_{2}$ in the circuit given in Fig. 5a
(OR)
b) Determine the $Z$ and ABCD parameters for the given network shown in Fig. 5b


Fig.5a


Fig.5b

