FACULTY OF INFORMATICS

B.E. 2/4 (IT) I – Semester (Suppl.) Examinations, May 2013

Subject : Discrete Mathematics

Time: 3 hours Max. Marks: 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)		
1.	What are the contrapositive, the opposite of the conditional statement "If the triangle is equiangular, then it is equilateral".	3
2.	Define converse with an example	2
3.	Define Tautology with an example.	2
4.	State Demorgan law ; write truth table for any one law	3
5.	Define the universal quantifier with an example.	2
6.	What is the difference between the quantification $\exists x \forall y \ P(x,y) \ \text{and} \ \forall y \exists x \ P(x,y).$ Where $P(x,y)$ is a predicate?	3
7.	Disprove the statement that "every positive integer is the sum of atmost two squares and a cube of non-negative integers.	3
8.	Explain what is means for a function to be 0(1).	2
9.	Define partially ordered set.	3
10	Define Euler circuit and Euler path.	2
PART – B (50 Marks)		
11	.a) Construct truth table for the following $(P \rightarrow Q) \lor (\sim P \rightarrow R)$.	4
	b) Show that the following statement are logically equivalent without using truth table. $(P \! \to \! R) \wedge (Q \! \to \! R) \Leftrightarrow (P \vee Q) \to \! R.$	6
12	a.a) Explain rules of inference using examples.	6
	b) Use truth table to verify the associative law $(P \lor Q) \lor r = P \lor (q \lor r)$	4
13	(a.a) Prove by the principle of mathematical induction for 'n' a +ve integer $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$	5
	b) Show that $f(x)=x^2 + 2x + 1$ is $O(x^2)$.	5

- 14.a) For each of the following functions, determine whether it is one-to-one and determine its range.
 - i) $f: z \to z$; f(x) = 2x+1
- ii) $f: Q \rightarrow Q$; f(x) 2x+1
- iii) $f: z \rightarrow z$; $f(x) x^3 x$
- iv) $f: R \rightarrow R$; $f(x) = e^x$
- b) Find the number of +ve integers between 1000 and 9999, inclusive are not divisible by 5 or 7?
- 15.a) Solve $a_{n+2} + 49_{n+1} + 3a_n = 5(-2)^n$ with $a_0 = 1$, $a_1 = 0$.

5

6

b) Determine the co-efficient of x^4 and x^5 in $(a+bx+cx^2)^{10}$.

- 5
- 16.a) Show that the relation R on a Set A is symmetric iff R = R⁻¹, where R⁻¹ is the inverse relation.
- 5

5

b) Is the relation given in directed graph shown is a partial order?

17. What do you mean by a spanning tree? Explain BFS method for finding a spanning tree with an example.

10
