
1 Unit 3:control flow, functions

UNIT IV

COMPOUND DATA: LISTS, TUPLES, DICTIONARIES

Lists, list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists,

list parameters; Tuples, tuple assignment, tuple as return value; Dictionaries:

operations and methods; advanced list processing - list comprehension, Illustrative

programs: selection sort, insertion sort, merge sort, quick sort.

Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square

brackets[].

 Items in the lists can be of different data types.

Operations on list:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Updating

6. Membership

7. Comparison

operations examples description

create a list >>> a=[2,3,4,5,6,7,8,9,10]

>>> print(a)

[2, 3, 4, 5, 6, 7, 8, 9, 10]

in this way we can create a

list at compile time

Indexing

>>> print(a[0])

2

>>> print(a[8])

10

>>> print(a[-1])

10

Accessing the item in the

position 0

Accessing the item in the

position 8

Accessing a last element

using negative indexing.

Slicing

>>> print(a[0:3])

[2, 3, 4]

>>> print(a[0:])

[2, 3, 4, 5, 6, 7, 8, 9, 10]

Printing a part of the list.

Concatenation

>>>b=[20,30]

>>> print(a+b)

[2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30]

Adding and printing the

items of two lists.

Repetition

>>> print(b*3)

[20, 30, 20, 30, 20, 30]

 Create a multiple copies of

the same list.

www.rejinpaul.comwww.rejinpaul.com

2 Unit 3:control flow, functions

Updating

>>> print(a[2])

4

>>> a[2]=100

>>> print(a)

[2, 3, 100, 5, 6, 7, 8, 9, 10]

Updating the list using

index value.

Membership

>>> a=[2,3,4,5,6,7,8,9,10]

>>> 5 in a

True

>>> 100 in a

False

>>> 2 not in a

False

Returns True if element is

present in list. Otherwise

returns false.

Comparison

>>> a=[2,3,4,5,6,7,8,9,10]

>>>b=[2,3,4]

>>> a==b

False

>>> a!=b

True

Returns True if all elements

in both elements are same.

Otherwise returns false

List slices:

 List slicing is an operation that extracts a subset of elements from an list and

packages them as another list.

Syntax:

Listname[start:stop]

Listname[start:stop:steps]

 default start value is 0

 default stop value is n-1

 [:] this will print the entire list

 [2:2] this will create a empty slice

slices example description

a[0:3]

>>> a=[9,8,7,6,5,4]

>>> a[0:3]

[9, 8, 7]

Printing a part of a list from

0 to 2.

a[:4]

>>> a[:4]

[9, 8, 7, 6]

Default start value is 0. so

prints from 0 to 3

a[1:] >>> a[1:]

[8, 7, 6, 5, 4]

default stop value will be

n-1. so prints from 1 to 5

a[:] >>> a[:]

[9, 8, 7, 6, 5, 4]

Prints the entire list.

www.rejinpaul.comwww.rejinpaul.com

3 Unit 3:control flow, functions

a[2:2]

>>> a[2:2]

[]

print an empty slice

a[0:6:2] >>> a[0:6:2]

[9, 7, 5]

Slicing list values with step

size 2.

a[::-1] >>> a[::-1]

[4, 5, 6, 7, 8, 9]

Returns reverse of given list

values

List methods:

 Methods used in lists are used to manipulate the data quickly.

 These methods work only on lists.

 They do not work on the other sequence types that are not mutable, that is, the

values they contain cannot be changed, added, or deleted.

syntax:

list name.method name(element/index/list)

 syntax example description

1 a.append(element) >>> a=[1,2,3,4,5]

>>> a.append(6)

>>> print(a)

[1, 2, 3, 4, 5, 6]

Add an element to

the end of the list

2 a.insert(index,element) >>> a.insert(0,0)

>>> print(a)

[0, 1, 2, 3, 4, 5, 6]

Insert an item at the

defined index

3 a.extend(b) >>> b=[7,8,9]

>>> a.extend(b)

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8,9]

Add all elements of a

list to the another

list

4 a.index(element) >>> a.index(8)

8

Returns the index of

the first matched

item

5 a.sort() >>> a.sort()

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Sort items in a list in

ascending order

6 a.reverse() >>> a.reverse()

>>> print(a)

[8, 7, 6, 5, 4, 3, 2, 1, 0]

Reverse the order of

items in the list

www.rejinpaul.comwww.rejinpaul.com

4 Unit 3:control flow, functions

7 a.pop() >>> a.pop()

0

Removes and

returns an element

at the last element

8 a.pop(index) >>> a.pop(0)

8

Remove the

particular element

and return it.

9 a.remove(element) >>> a.remove(1)

>>> print(a)

[7, 6, 5, 4, 3, 2]

Removes an item

from the list

10 a.count(element) >>> a.count(6)

1

Returns the count of

number of items

passed as an

argument

11 a.copy() >>> b=a.copy()

>>> print(b)

[7, 6, 5, 4, 3, 2]

Returns a shallow

copy of the list

12 len(list) >>> len(a)

6

return the length of

the length

13 min(list) >>> min(a)

2

return the minimum

element in a list

14 max(list) >>> max(a)

7

return the maximum

element in a list.

15 a.clear() >>> a.clear()

>>> print(a)

[]

Removes all items

from the list.

16 del(a) >>> del(a)

>>> print(a)

Error: name 'a' is not

defined

delete the entire list.

List loops:

1. For loop

2. While loop

3. Infinite loop

List using For Loop:

 The for loop in Python is used to iterate over a sequence (list, tuple, string) or

other iterable objects.

 Iterating over a sequence is called traversal.

 Loop continues until we reach the last item in the sequence.

 The body of for loop is separated from the rest of the code using indentation.

www.rejinpaul.comwww.rejinpaul.com

5 Unit 3:control flow, functions

Syntax:

for val in sequence:

Accessing element output

a=[10,20,30,40,50]

for i in a:

 print(i)

1

2

3

4

5

Accessing index output

a=[10,20,30,40,50]

for i in range(0,len(a),1):

 print(i)

0

1

2

3

4

Accessing element using range: output

a=[10,20,30,40,50]

for i in range(0,len(a),1):

 print(a[i])

10

20

30

40

50

List using While loop

 The while loop in Python is used to iterate over a block of code as long as the test

expression (condition) is true.

 When the condition is tested and the result is false, the loop body will be skipped

and the first statement after the while loop will be executed.

Syntax:

while (condition):

 body of while

Sum of elements in list Output:

a=[1,2,3,4,5]

i=0

sum=0

while i<len(a):

 sum=sum+a[i]

 i=i+1

print(sum)

15

www.rejinpaul.comwww.rejinpaul.com

6 Unit 3:control flow, functions

Infinite Loop

A loop becomes infinite loop if the condition given never becomes false. It keeps on

running. Such loops are called infinite loop.

Example Output:

a=1

while (a==1):

 n=int(input("enter the number"))

 print("you entered:" , n)

Enter the number 10

you entered:10

Enter the number 12

you entered:12

Enter the number 16

you entered:16

Mutability:

 Lists are mutable. (can be changed)

 Mutability is the ability for certain types of data to be changed without entirely

recreating it.

 An item can be changed in a list by accessing it directly as part of the assignment

statement.

 Using the indexing operator (square brackets[]) on the left side of an assignment,

one of the list items can be updated.

Example description

>>> a=[1,2,3,4,5]

>>> a[0]=100

>>> print(a)

[100, 2, 3, 4, 5]

changing single element

>>> a=[1,2,3,4,5]

>>> a[0:3]=[100,100,100]

>>> print(a)

[100, 100, 100, 4, 5]

changing multiple element

>>> a=[1,2,3,4,5]

>>> a[0:3]=[]

>>> print(a)

[4, 5]

The elements from a list can also be

removed by assigning the empty list to

them.

>>> a=[1,2,3,4,5]

>>> a[0:0]=[20,30,45]

>>> print(a)

[20,30,45,1, 2, 3, 4, 5]

The elements can be inserted into a list by

squeezing them into an empty slice at the

desired location.

www.rejinpaul.comwww.rejinpaul.com

7 Unit 3:control flow, functions

Aliasing(copying):

 Creating a copy of a list is called aliasing. When you create a copy both list will be

 having same memory location. changes in one list will affect another list.

 Alaising refers to having different names for same list values.

Example Output:

a= [1, 2, 3 ,4 ,5]

b=a

print (b)

a is b

a[0]=100

print(a)

print(b)

[1, 2, 3, 4, 5]

True

[100,2,3,4,5]

[100,2,3,4,5]

 In this a single list object is created and modified using the subscript operator.

 When the first element of the list named “a” is replaced, the first element of the list

named “b” is also replaced.

 This type of change is what is known as a side effect. This happens because after

the assignment b=a, the variables a and b refer to the exact same list object.

 They are aliases for the same object. This phenomenon is known as aliasing.

 To prevent aliasing, a new object can be created and the contents of the original can

be copied which is called cloning.

Clonning:

 To avoid the disadvantages of copying we are using cloning. creating a copy of a

 same list of elements with two different memory locations is called cloning.

 Changes in one list will not affect locations of aother list.

 Cloning is a process of making a copy of the list without modifying the original
list.

1. Slicing

2. list()method

3. copy() method

www.rejinpaul.comwww.rejinpaul.com

8 Unit 3:control flow, functions

clonning using Slicing
>>>a=[1,2,3,4,5]

>>>b=a[:]

>>>print(b)

[1,2,3,4,5]
>>>a is b
False
clonning using List() method
>>>a=[1,2,3,4,5]
>>>b=list
>>>print(b)
[1,2,3,4,5]
>>>a is b
false
>>>a[0]=100
>>>print(a)
>>>a=[100,2,3,4,5]
>>>print(b)
>>>b=[1,2,3,4,5]
clonning using copy() method

a=[1,2,3,4,5]
>>>b=a.copy()
>>> print(b)
[1, 2, 3, 4, 5]
>>> a is b
False

List as parameters:

 In python, arguments are passed by reference.

 If any changes are done in the parameter which refers within the function, then

the changes also reflects back in the calling function.

 When a list to a function is passed, the function gets a reference to the list.

 Passing a list as an argument actually passes a reference to the list, not a copy of

the list.

 Since lists are mutable, changes made to the elements referenced by the

parameter change the same list that the argument is referencing.

Example 1`: Output

def remove(a):

 a.remove(1)

a=[1,2,3,4,5]

remove(a)

print(a)

[2,3,4,5]

www.rejinpaul.comwww.rejinpaul.com

9 Unit 3:control flow, functions

Example 2: Output
def inside(a):

 for i in range(0,len(a),1):

 a[i]=a[i]+10

 print(“inside”,a)

a=[1,2,3,4,5]

inside(a)

print(“outside”,a)

inside [11, 12, 13, 14, 15]
outside [11, 12, 13, 14, 15]

Example 3 output
def insert(a):
 a.insert(0,30)
a=[1,2,3,4,5]
insert(a)
print(a)

[30, 1, 2, 3, 4, 5]

Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.

 A tuple is an immutable list. i.e. once a tuple has been created, you can't add

elements to a tuple or remove elements from the tuple.

 But tuple can be converted into list and list can be converted in to tuple.

methods example description
list() >>> a=(1,2,3,4,5)

>>> a=list(a)
>>> print(a)
[1, 2, 3, 4, 5]

it convert the given tuple
into list.

tuple() >>> a=[1,2,3,4,5]
>>> a=tuple(a)
>>> print(a)
(1, 2, 3, 4, 5)

it convert the given list into
tuple.

Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

Operations on Tuples:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Membership

6. Comparison

www.rejinpaul.comwww.rejinpaul.com

10 Unit 3:control flow, functions

Operations examples description

Creating a tuple

>>>a=(20,40,60,”apple”,”ball”)

Creating the tuple with

elements of different data

types.

Indexing

>>>print(a[0])

20

>>> a[2]

60

Accessing the item in the

position 0

Accessing the item in the

position 2

Slicing

>>>print(a[1:3])

(40,60)

Displaying items from 1st

till 2nd.

Concatenation >>> b=(2,4)

>>>print(a+b)

>>>(20,40,60,”apple”,”ball”,2,4)

Adding tuple elements at

the end of another tuple

elements

Repetition >>>print(b*2)

>>>(2,4,2,4)

repeating the tuple in n no

of times

Membership

>>> a=(2,3,4,5,6,7,8,9,10)

>>> 5 in a

True

>>> 100 in a

False

>>> 2 not in a

False

Returns True if element is

present in tuple. Otherwise

returns false.

Comparison

>>> a=(2,3,4,5,6,7,8,9,10)

>>>b=(2,3,4)

>>> a==b

False

>>> a!=b

True

Returns True if all elements

in both elements are same.

Otherwise returns false

Tuple methods:

 Tuple is immutable so changes cannot be done on the elements of a tuple once it

is assigned.

methods example description
a.index(tuple) >>> a=(1,2,3,4,5)

>>> a.index(5)
4

Returns the index of the
first matched item.

a.count(tuple) >>>a=(1,2,3,4,5)
>>> a.count(3)
1

Returns the count of the
given element.

len(tuple) >>> len(a)
5

return the length of the

tuple

www.rejinpaul.comwww.rejinpaul.com

11 Unit 3:control flow, functions

min(tuple) >>> min(a)
1

return the minimum

element in a tuple

max(tuple) >>> max(a)
5

return the maximum

element in a tuple

del(tuple) >>> del(a) Delete the entire tuple.

Tuple Assignment:

 Tuple assignment allows, variables on the left of an assignment operator and

values of tuple on the right of the assignment operator.

 Multiple assignment works by creating a tuple of expressions from the right hand

side, and a tuple of targets from the left, and then matching each expression to a

target.

 Because multiple assignments use tuples to work, it is often termed tuple

assignment.

Uses of Tuple assignment:

 It is often useful to swap the values of two variables.

Example:

Swapping using temporary variable: Swapping using tuple assignment:
a=20
b=50
temp = a
a = b
b = temp
print("value after swapping is",a,b)

a=20
b=50
(a,b)=(b,a)
print("value after swapping is",a,b)

Multiple assignments:

Multiple values can be assigned to multiple variables using tuple assignment.

>>>(a,b,c)=(1,2,3)
>>>print(a)
1
>>>print(b)
2
>>>print(c)
3

Tuple as return value:

 A Tuple is a comma separated sequence of items.

 It is created with or without ().

 A function can return one value. if you want to return more than one value from a

function. we can use tuple as return value.

www.rejinpaul.comwww.rejinpaul.com

12 Unit 3:control flow, functions

Example1: Output:
def div(a,b):
 r=a%b
 q=a//b
 return(r,q)
a=eval(input("enter a value:"))
b=eval(input("enter b value:"))
r,q=div(a,b)
print("reminder:",r)
print("quotient:",q)

enter a value:4
enter b value:3
reminder: 1
quotient: 1

Example2: Output:
def min_max(a):
 small=min(a)
 big=max(a)
 return(small,big)
a=[1,2,3,4,6]
small,big=min_max(a)
print("smallest:",small)
print("biggest:",big)

smallest: 1
biggest: 6

Tuple as argument:

 The parameter name that begins with * gathers argument into a tuple.

Example: Output:

def printall(*args):

 print(args)

printall(2,3,'a')

(2, 3, 'a')

Dictionaries:

 Dictionary is an unordered collection of elements. An element in dictionary has a

key: value pair.

 All elements in dictionary are placed inside the curly braces i.e. { }

 Elements in Dictionaries are accessed via keys and not by their position.

 The values of a dictionary can be any data type.

 Keys must be immutable data type (numbers, strings, tuple)

Operations on dictionary:

1. Accessing an element

2. Update

3. Add element

4. Membership

www.rejinpaul.comwww.rejinpaul.com

13 Unit 3:control flow, functions

Operations Example Description

Creating a

dictionary

>>> a={1:"one",2:"two"}

>>> print(a)

{1: 'one', 2: 'two'}

Creating the dictionary with

elements of different data types.

accessing an

element

>>> a[1]

'one'

>>> a[0]

KeyError: 0

Accessing the elements by using

keys.

Update >>> a[1]="ONE"

>>> print(a)

{1: 'ONE', 2: 'two'}

Assigning a new value to key. It

replaces the old value by new value.

add element >>> a[3]="three"

>>> print(a)

{1: 'ONE', 2: 'two', 3: 'three'}

Add new element in to the

dictionary with key.

membership a={1: 'ONE', 2: 'two', 3: 'three'}

>>> 1 in a

True

>>> 3 not in a

False

Returns True if the key is present in

dictionary. Otherwise returns false.

Methods in dictionary:

Method Example Description

a.copy() a={1: 'ONE', 2: 'two', 3: 'three'}
>>> b=a.copy()
>>> print(b)
{1: 'ONE', 2: 'two', 3: 'three'}

It returns copy of the
dictionary. here copy of
dictionary ’a’ get stored
in to dictionary ‘b’

a.items() >>> a.items()
dict_items([(1, 'ONE'), (2, 'two'), (3,
'three')])

Return a new view of
the dictionary's items. It
displays a list of
dictionary’s (key, value)
tuple pairs.

a.keys() >>> a.keys()
dict_keys([1, 2, 3])

It displays list of keys in
a dictionary

a.values() >>> a.values()
dict_values(['ONE', 'two', 'three'])

It displays list of values
in dictionary

a.pop(key) >>> a.pop(3)
'three'
>>> print(a)
{1: 'ONE', 2: 'two'}

Remove the element
with key and return its
value from the
dictionary.

www.rejinpaul.comwww.rejinpaul.com

14 Unit 3:control flow, functions

setdefault(key,value) >>> a.setdefault(3,"three")
'three'
>>> print(a)
{1: 'ONE', 2: 'two', 3: 'three'}
>>> a.setdefault(2)
'two'

If key is in the
dictionary, return its
value. If key is not
present, insert key with
a value of dictionary and
return dictionary.

a.update(dictionary) >>> b={4:"four"}
>>> a.update(b)
>>> print(a)
{1: 'ONE', 2: 'two', 3: 'three', 4: 'four'}

It will add the dictionary
with the existing
dictionary

fromkeys() >>> key={"apple","ball"}
>>> value="for kids"
>>> d=dict.fromkeys(key,value)
>>> print(d)
{'apple': 'for kids', 'ball': 'for kids'}

It creates a dictionary
from key and values.

len(a) a={1: 'ONE', 2: 'two', 3: 'three'}
>>>lena(a)
3

It returns the length of
the list.

clear() a={1: 'ONE', 2: 'two', 3: 'three'}
>>>a.clear()
>>>print(a)
>>>{ }

Remove all elements
form the dictionary.

del(a) a={1: 'ONE', 2: 'two', 3: 'three'}
>>> del(a)

It will delete the entire
dictionary.

Difference between List, Tuples and dictionary:

List Tuples Dictionary
A list is mutable A tuple is immutable A dictionary is mutable
Lists are dynamic Tuples are fixed size in nature

In values can be of any
data type and can
repeat, keys must be of
immutable type

List are enclosed in
brackets[] and their
elements and size
can be changed

Tuples are enclosed in parenthesis ()
and cannot be updated

Tuples are enclosed in
curly braces { } and
consist of key:value

Homogenous Heterogeneous Homogenous
Example:
List = [10, 12, 15]

Example:
Words = ("spam", "egss")

Or
Words = "spam", "eggs"

Example:
Dict = {"ram": 26, "abi":
24}

Access:
print(list[0])

Access:
print(words[0])

Access:
print(dict["ram"])

www.rejinpaul.comwww.rejinpaul.com

http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

15 Unit 3:control flow, functions

Can contain duplicate
elements

Can contain duplicate elements.
Faster compared to lists

Cant contain duplicate
keys, but can contain
duplicate values

Slicing can be done Slicing can be done Slicing can't be done
Usage:
 List is used if a
collection of data that
doesnt need random
access.
 List is used when
data can be modified
frequently

Usage:
 Tuple can be used when data
cannot be changed.
 A tuple is used in combination
with a dictionary i.e.a tuple might
represent a key.

Usage:
 Dictionary is used
when a logical
association between
key:value pair.
 When in need of fast
lookup for data, based
on a custom key.
 Dictionary is used
when data is being
constantly modified.

Advanced list processing:

List Comprehension:
 List comprehensions provide a concise way to apply operations on a list.
 It creates a new list in which each element is the result of applying a given

operation in a list.
 It consists of brackets containing an expression followed by a “for” clause, then a

list.
 The list comprehension always returns a result list.

Syntax

 list=[expression for item in list if conditional]

List Comprehension Output

>>>L=[x**2 for x in range(0,5)]
>>>print(L)

[0, 1, 4, 9, 16]

>>>[x for x in range(1,10) if x%2==0] [2, 4, 6, 8]

>>>[x for x in 'Python Programming' if x in ['a','e','i','o','u']] ['o', 'o', 'a', 'i']

>>>mixed=[1,2,"a",3,4.2]
>>> [x**2 for x in mixed if type(x)==int]

[1, 4, 9]

>>>[x+3 for x in [1,2,3]]

[4, 5, 6]

>>> [x*x for x in range(5)]

[0, 1, 4, 9, 16]

>>> num=[-1,2,-3,4,-5,6,-7]
>>> [x for x in num if x>=0]

[2, 4, 6]

>>> str=["this","is","an","example"]
>>> element=[word[0] for word in str]
>>> print(element)

['t', 'i', 'a', 'e']

www.rejinpaul.comwww.rejinpaul.com

16 Unit 3:control flow, functions

Nested list:

 List inside another list is called nested list.

Example:
>>> a=[56,34,5,[34,57]]
>>> a[0]
56
>>> a[3]
[34, 57]
>>> a[3][0]
34
>>> a[3][1]
57

Programs on matrix:

Matrix addition Output
a=[[1,1],[1,1]]
b=[[2,2],[2,2]]
c=[[0,0],[0,0]]
for i in range(len(a)):
 for j in range(len(b)):
 c[i][j]=a[i][j]+b[i][j]
for i in c:
 print(i)

[3, 3]
[3, 3]

Matrix multiplication Output
a=[[1,1],[1,1]]
b=[[2,2],[2,2]]
c=[[0,0],[0,0]]
for i in range(len(a)):
 for j in range(len(b)):
 for k in range(len(b)):
 c[i][j]=a[i][j]+a[i][k]*b[k][j]
for i in c:
 print(i)

[3, 3]
[3, 3]

Matrix transpose Output
a=[[1,3],[1,2]]
c=[[0,0],[0,0]]
for i in range(len(a)):
 for j in range(len(a)):
 c[i][j]=a[j][i]
for i in c:
 print(i)

[1, 1]
[3, 2]

www.rejinpaul.comwww.rejinpaul.com

17 Unit 3:control flow, functions

Illustrative programs:

Selection sort Output

a=input("Enter list:").split()
a=list(map(eval,a))
for i in range(0,len(a)):
 smallest = min(a[i:])
 sindex= a.index(smallest)
 a[i],a[sindex] = a[sindex],a[i]
print (a)

Enter list:23 78 45 8 32 56
[8,2 3, 32, 45,56, 78]

Insertion sort output
a=input("enter a list:").split()
a=list(map(int,a))
for i in a:
 j = a.index(i)
 while j>0:
 if a[j-1] > a[j]:
 a[j-1],a[j] = a[j],a[j-1]
 else:
 break
 j = j-1
print (a)

enter a list: 8 5 7 1 9 3
[1,3,5,7,8,9]

www.rejinpaul.comwww.rejinpaul.com

18 Unit 3:control flow, functions

Merge sort output
def merge(a,b):
 c = []
 while len(a) != 0 and len(b) != 0:
 if a[0] < b[0]:
 c.append(a[0])
 a.remove(a[0])
 else:
 c.append(b[0])
 b.remove(b[0])
 if len(a) == 0:
 c=c+b
 else:
 c=c+a
 return c

def divide(x):
 if len(x) == 0 or len(x) == 1:
 return x
 else:
 middle = len(x)//2
 a = divide(x[:middle])
 b = divide(x[middle:])
 return merge(a,b)

x=[38,27,43,3,9,82,10]
c=divide(x)
print(c)

[3,9,10,27,38,43,82]

www.rejinpaul.comwww.rejinpaul.com

19 Unit 3:control flow, functions

Histogram Output
def histogram(a):
 for i in a:
 sum = ''
 while(i>0):
 sum=sum+'#'
 i=i-1
 print(sum)
a=[4,5,7,8,12]
histogram(a)

Calendar program Output
import calendar

y=int(input("enter year:"))

m=int(input("enter month:"))

print(calendar.month(y,m))

enter year:2017

enter month:11

 November 2017

Mo Tu We Th Fr Sa Su

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

www.rejinpaul.comwww.rejinpaul.com

20 Unit 3:control flow, functions

PART - A
1. What is slicing?
2. How can we distinguish between

tuples and lists?
3. What will be the output of the given

code?
a. List=[‘p’,’r’,’i’,’n’,’t’,]
b. Print list[8:]

4. Give the syntax required to convert an
integer number into string?

5. List is mutable. Justify?
6. Difference between del and remove

methods in List?
7. Difference between pop and remove

in list?
8. How are the values in a tuple

accessed?
9. What is a Dictionary in Python
10. Define list comprehension
11. Write a python program using list

looping
12. What do you meant by mutability

and immutability?
13. Define Histogram
14. Define Tuple and show it is

immutable with an example.
15. state the difference between aliasing

and cloning in list
16. what is list cloning
17. what is deep cloning
18. state the difference between pop

and remove method in list
19. create tuple with single element
20. swap two numbers without using

third variable
21. define properties of key in

dictionary
22. how can you access elements from

the dictionary
23. difference between delete and clear

method in dictionary
24. What is squeezing in list? give an

example
25. How to convert a tuple in to list
26. How to convert a list in to tuple
27. Create a list using list

comprehension
28. Advantage of list comprehension
29. What is the use of map () function.

30. How can you return multiple values
from function?

31. what is sorting and types of sorting
32. Find length of sequence without

using library function.
33. how to pass tuple as argument
34. how to pass a list as argument
35. what is parameter and types of

parameter
36. how can you insert values in to

dictionary
37. what is key value pair
38. mention different data types can be

used in key and value
39. what are the immutable data types

available in python
40. What is the use of fromkeys() in

dictioanary.

PART-B

1. Explain in details about list methods
2. Discuss about operations in list
3. What is cloning? Explain it with

example
4. What is aliasing? Explain with

example
5. How can you pass list into function?

Explain with example.
6. Explain tuples as return values with

examples
7. write a program for matrix

multiplication
8. write a program for matrix addition
9. write a program for matrix

subtraction
10. write a program for matrix

transpose
11. write procedure for selection sort
12. explain merge sort with an example
13. explain insertion with example
14. Explain in detail about dictionaries

and its methods.
15. Explain in detail about advanced list

processing.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 1

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING
 UNIT I

ALGORITHMIC PROBLEM SOLVING

1.PROBLEM SOLVING

Problem solving is the systematic approach to define the problem and creating
number of solutions.
The problem solving process starts with the problem specifications and ends with a
Correct program.

1.1 PROBLEM SOLVING TECHNIQUES
Problem solving technique is a set of techniques that helps in providing logic for solving
a problem.
Problem Solving Techniques:
 Problem solving can be expressed in the form of

1. Algorithms.
2. Flowcharts.
3. Pseudo codes.
4. programs

1.2.ALGORITHM
It is defined as a sequence of instructions that describe a method for solving a

problem. In other words it is a step by step procedure for solving a problem.
Properties of Algorithms
 Should be written in simple English
 Each and every instruction should be precise and unambiguous.
 Instructions in an algorithm should not be repeated infinitely.
 Algorithm should conclude after a finite number of steps.
 Should have an end point
 Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm
The following are the primary factors that are often used to judge the quality of the
algorithms.
Time – To execute a program, the computer system takes some amount of time. The
lesser is the time required, the better is the algorithm.
Memory – To execute a program, computer system takes some amount of memory
space. The lesser is the memory required, the better is the algorithm.
Accuracy – Multiple algorithms may provide suitable or correct solutions to a given
problem, some of these may provide more accurate results than others, and such
algorithms may be suitable.

Algorithms, building blocks of algorithms (statements, state, control flow, functions),

notation (pseudo code, flow chart, programming language), algorithmic problem

solving, simple strategies for developing algorithms (iteration, recursion). Illustrative

problems: find minimum in a list, insert a card in a list of sorted cards, Guess an

integer number in a range, Towers of Hanoi.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 2

Example:
Example
Write an algorithm to print „Good Morning”
Step 1: Start
Step 2: Print “Good Morning”
Step 3: Stop

2.BUILDING BLOCKS OF ALGORITHMS (statements, state, control flow, functions)

Algorithms can be constructed from basic building blocks namely, sequence,
selection and iteration.
2.1.Statements:
Statement is a single action in a computer.

In a computer statements might include some of the following actions
 input data-information given to the program
 process data-perform operation on a given input
 output data-processed result

2.2.State:
Transition from one process to another process under specified condition with in a
time is called state.

2.3.Control flow:
The process of executing the individual statements in a given order is called control
flow.
The control can be executed in three ways

1. sequence
2. selection
3. iteration

Sequence:
All the instructions are executed one after another is called sequence execution.

Example:
Add two numbers:
Step 1: Start
Step 2: get a,b
Step 3: calculate c=a+b
Step 4: Display c
Step 5: Stop

Selection:

A selection statement causes the program control to be transferred to a specific
part of the program based upon the condition.

If the conditional test is true, one part of the program will be executed, otherwise
it will execute the other part of the program.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 3

Example
Write an algorithm to check whether he is eligible to vote?
Step 1: Start
Step 2: Get age
Step 3: if age >= 18 print “Eligible to vote”
Step 4: else print “Not eligible to vote”
Step 6: Stop

Iteration:

In some programs, certain set of statements are executed again and again based
upon conditional test. i.e. executed more than one time. This type of execution is called
looping or iteration.

Example

Write an algorithm to print all natural numbers up to n

Step 1: Start
Step 2: get n value.
Step 3: initialize i=1
Step 4: if (i<=n) go to step 5 else go to step 7
Step 5: Print i value and increment i value by 1
Step 6: go to step 4
Step 7: Stop

2.4.Functions:
 Function is a sub program which consists of block of code(set of instructions)

that performs a particular task.
 For complex problems, the problem is been divided into smaller and simpler

tasks during algorithm design.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 4

Benefits of Using Functions

 Reduction in line of code

 code reuse

 Better readability

 Information hiding

 Easy to debug and test

 Improved maintainability

Example:
Algorithm for addition of two numbers using function
Main function()
Step 1: Start
Step 2: Call the function add()
Step 3: Stop

sub function add()
Step 1: Function start
Step 2: Get a, b Values
Step 3: add c=a+b
Step 4: Print c
Step 5: Return

3.NOTATIONS
3.1.FLOW CHART

Flow chart is defined as graphical representation of the logic for problem solving.
The purpose of flowchart is making the logic of the program clear in a visual
representation.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 5

Rules for drawing a flowchart

1. The flowchart should be clear, neat and easy to follow.
2. The flowchart must have a logical start and finish.
3. Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol. However, two or three flow
lines may leave the decision symbol.

5. Only one flow line is used with a terminal symbol.

6. Within standard symbols, write briefly and precisely.
7. Intersection of flow lines should be avoided.

Advantages of flowchart:

1. Communication: - Flowcharts are better way of communicating the logic of a
system to all concerned.

2. Effective analysis: - With the help of flowchart, problem can be analyzed in more
effective way.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 6

3. Proper documentation: - Program flowcharts serve as a good program
documentation, which is needed for various purposes.

4. Efficient Coding: - The flowcharts act as a guide or blueprint during the systems
analysis and program development phase.

5. Proper Debugging: - The flowchart helps in debugging process.
6. Efficient Program Maintenance: - The maintenance of operating program

becomes easy with the help of flowchart. It helps the programmer to put efforts
more efficiently on that part.

Disadvantages of flow chart:
1. Complex logic: - Sometimes, the program logic is quite complicated. In that case,

flowchart becomes complex and clumsy.
2. Alterations and Modifications: - If alterations are required the flowchart may

require re-drawing completely.
3. Reproduction: - As the flowchart symbols cannot be typed, reproduction of

flowchart becomes a problem.
4. Cost: For large application the time and cost of flowchart drawing becomes

costly.
3.2.PSEUDO CODE:
 Pseudo code consists of short, readable and formally styled English languages

used for explain an algorithm.
 It does not include details like variable declaration, subroutines.
 It is easier to understand for the programmer or non programmer to understand

the general working of the program, because it is not based on any programming
language.

 It gives us the sketch of the program before actual coding.
 It is not a machine readable
 Pseudo code can’t be compiled and executed.
 There is no standard syntax for pseudo code.

Guidelines for writing pseudo code:
 Write one statement per line
 Capitalize initial keyword
 Indent to hierarchy
 End multiline structure
 Keep statements language independent

Common keywords used in pseudocode
 The following gives common keywords used in pseudocodes.

1. //: This keyword used to represent a comment.
2. BEGIN,END: Begin is the first statement and end is the last statement.
3. INPUT, GET, READ: The keyword is used to inputting data.
4. COMPUTE, CALCULATE: used for calculation of the result of the given expression.
5. ADD, SUBTRACT, INITIALIZE used for addition, subtraction and initialization.
6. OUTPUT, PRINT, DISPLAY: It is used to display the output of the program.
7. IF, ELSE, ENDIF: used to make decision.
8. WHILE, ENDWHILE: used for iterative statements.
9. FOR, ENDFOR: Another iterative incremented/decremented tested automatically.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 7

Syntax for if else: Example: Greates of two numbers
IF (condition)THEN
 statement
 ...
ELSE
 statement
 ...
ENDIF

BEGIN
READ a,b
IF (a>b) THEN
DISPLAY a is greater
ELSE
DISPLAY b is greater
END IF
END

Syntax for For: Example: Print n natural numbers
FOR(start-value to end-value) DO
 statement
 ...
ENDFOR

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO
 PRINT i
 i=i+1
ENDFOR
END

Syntax for While: Example: Print n natural numbers
WHILE (condition) DO
 statement
 ...
ENDWHILE

BEGIN
GET n
INITIALIZE i=1
WHILE(i<=n) DO
 PRINT i
 i=i+1
ENDWHILE
END

Advantages:
 Pseudo is independent of any language; it can be used by most programmers.
 It is easy to translate pseudo code into a programming language.
 It can be easily modified as compared to flowchart.
 Converting a pseudo code to programming language is very easy as compared

with converting a flowchart to programming language.
Disadvantages:

 It does not provide visual representation of the program’s logic.
 There are no accepted standards for writing pseudo codes.
 It cannot be compiled nor executed.
 For a beginner, It is more difficult to follow the logic or write pseudo code as

compared to flowchart.
Example:
Addition of two numbers:
BEGIN
GET a,b
ADD c=a+b
PRINT c
END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 8

Algorithm Flowchart Pseudo code

An algorithm is a sequence

of instructions used to

solve a problem

It is a graphical

representation of algorithm

It is a language

representation of

algorithm.

User needs knowledge to

write algorithm.

not need knowledge of

program to draw or

understand flowchart

Not need knowledge of

program language to

understand or write a

pseudo code.

3.3.PROGRAMMING LANGUAGE
 A programming language is a set of symbols and rules for instructing a computer

to perform specific tasks. The programmers have to follow all the specified rules before

writing program using programming language. The user has to communicate with the

computer using language which it can understand.

Types of programming language

1. Machine language

2. Assembly language

3. High level language

Machine language:

 The computer can understand only machine language which uses 0’s and 1’s. In

machine language the different instructions are formed by taking different

combinations of 0’s and 1’s.

Advantages:

Translation free:

 Machine language is the only language which the computer understands. For

executing any program written in any programming language, the conversion to

machine language is necessary. The program written in machine language can be

executed directly on computer. In this case any conversion process is not required.

High speed

 The machine language program is translation free. Since the conversion time is

saved, the execution of machine language program is extremely fast.

Disadvantage:

 It is hard to find errors in a program written in the machine language.

 Writhing program in machine language is a time consuming process.

Machine dependent: According to architecture used, the computer differs from each

other. So machine language differs from computer to computer. So a program

developed for a particular type of computer may not run on other type of computer.

Assembly language:

 To overcome the issues in programming language and make the programming

process easier, an assembly language is developed which is logically equivalent to

machine language but it is easier for people to read, write and understand.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 9

 Assembly language is symbolic representation of machine language. Assembly

languages are symbolic programming language that uses symbolic notation to

represent machine language instructions. They are called low level language

because they are so closely related to the machines.

 Ex: ADD a, b

Assembler:

 Assembler is the program which translates assembly language instruction in to a

machine language.

Advantage:

 Easy to understand and use.

 It is easy to locate and correct errors.

Disadvantage

Machine dependent

 The assembly language program which can be executed on the machine depends

on the architecture of that computer.

Hard to learn

 It is machine dependent, so the programmer should have the hardware

knowledge to create applications using assembly language.

Less efficient

 Execution time of assembly language program is more than machine language

program.

 Because assembler is needed to convert from assembly language to machine

language.

High level language

High level language contains English words and symbols. The specified rules are

to be followed while writing program in high level language. The interpreter or

compilers are used for converting these programs in to machine readable form.

Translating high level language to machine language

The programs that translate high level language in to machine language are called

interpreter or compiler.

Compiler:

 A compiler is a program which translates the source code written in a high level

language in to object code which is in machine language program. Compiler reads the

whole program written in high level language and translates it to machine language. If

any error is found it display error message on the screen.

Interpreter

 Interpreter translates the high level language program in line by line manner. The

interpreter translates a high level language statement in a source program to a machine

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 10

code and executes it immediately before translating the next statement. When an error

is found the execution of the program is halted and error message is displayed on the

screen.

Advantages

Readability

 High level language is closer to natural language so they are easier to learn and

understand

Machine independent

 High level language program have the advantage of being portable between

machines.

Easy debugging

 Easy to find and correct error in high level language

Disadvantages

Less efficient

The translation process increases the execution time of the program. Programs in

high level language require more memory and take more execution time to execute.

They are divided into following categories:
1. Interpreted programming languages
2. Functional programming languages
3. Compiled programming languages
4. Procedural programming languages
5. Scripting programming language
6. Markup programming language
7. Concurrent programming language
8. Object oriented programming language

Interpreted programming languages:

An interpreted language is a programming language for which most of its
implementation executes instructions directly, without previously compiling a program
into machine language instructions. The interpreter executes the program directly
translating each statement into a sequence of one or more subroutines already
compiled into machine code.
Examples:
Pascal
Python

Functional programming language:

Functional programming language defines every computation as a mathematical
evaluation. They focus on the programming languages are bound to mathematical
calculations
Examples:
Clean
Haskell

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 11

Compiled Programming language:
A compiled programming is a programming language whose implementation are

typically compilers and not interpreters.
It will produce a machine code from source code.
Examples:
C
C++
C#
JAVA

Procedural programming language:

Procedural (imperative) programming implies specifying the steps that the
programs should take to reach to an intended state.
A procedure is a group of statements that can be referred through a procedure call.
Procedures help in the reuse of code. Procedural programming makes the programs
structured and easily traceable for program flow.
Examples:
Hyper talk
MATLAB

Scripting language:

Scripting language are programming languages that control an application.
Scripts can execute independent of any other application. They are mostly embedded in
the application that they control and are used to automate frequently executed tasks
like communicating with external program.

Examples:
Apple script
VB script

Markup languages:

A markup language is an artificial language that uses annotations to text that
define hoe the text is to be displayed.
Examples:
HTML
XML
Concurrent programming language:

Concurrent programming is a computer programming technique that provides
for the execution of operation concurrently, either with in a single computer or across a
number of systems.
Examples:
Joule
Limbo
Object oriented programming language:

Object oriented programming is a programming paradigm based on the concept
of objects which may contain data in the form of procedures often known as methods.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 12

Examples:
Lava
Moto

4.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to

handle.
 A correct algorithm is not one that works most of the time, but one that works

correctly for all legitimate inputs.
Ascertaining the Capabilities of the Computational Device

 If the instructions are executed one after another, it is called sequential

algorithm.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 13

 If the instructions are executed concurrently, it is called parallel algorithm.

Choosing between Exact and Approximate Problem Solving
 The next principal decision is to choose between solving the problem exactly or

solving it approximately.
 Based on this, the algorithms are classified as exact algorithm and approximation

algorithm.
Deciding a data structure:
 Data structure plays a vital role in designing and analysis the algorithms.
 Some of the algorithm design techniques also depend on the structuring data

specifying a problem’s instance
 Algorithm+ Data structure=programs.

Algorithm Design Techniques
 An algorithm design technique (or “strategy” or “paradigm”) is a general

approach to solving problems algorithmically that is applicable to a variety of
problems from different areas of computing.

 Learning these techniques is of utmost importance for the following reasons.
 First, they provide guidance for designing algorithms for new problems,
 Second, algorithms are the cornerstone of computer science

Methods of Specifying an Algorithm
 Pseudocode is a mixture of a natural language and programming language-like

constructs. Pseudocode is usually more precise than natural language, and its
usage often yields more succinct algorithm descriptions.

 In the earlier days of computing, the dominant vehicle for specifying algorithms

was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm’s steps.

 Programming language can be fed into an electronic computer directly. Instead,

it needs to be converted into a computer program written in a particular
computer language. We can look at such a program as yet another way of
specifying the algorithm, although it is preferable to consider it as the algorithm’s
implementation.

Proving an Algorithm’s Correctness
 Once an algorithm has been specified, you have to prove its correctness. That is,

you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time.

 A common technique for proving correctness is to use mathematical induction
because an algorithm’s iterations provide a natural sequence of steps needed for
such proofs.

 It might be worth mentioning that although tracing the algorithm’s performance
for a few specific inputs can be a very worthwhile activity, it cannot prove the
algorithm’s correctness conclusively. But in order to show that an algorithm is
incorrect, you need just one instance of its input for which the algorithm fails.

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 14

Analysing an Algorithm

1. Efficiency.
Time efficiency, indicating how fast the algorithm runs,
Space efficiency, indicating how much extra memory it uses.

2. simplicity.
 An algorithm should be precisely defined and investigated with mathematical

expressions.
 Simpler algorithms are easier to understand and easier to program.
 Simple algorithms usually contain fewer bugs.

Coding an Algorithm
 Most algorithms are destined to be ultimately implemented as computer

programs. Programming an algorithm presents both a peril and an opportunity.
 A working program provides an additional opportunity in allowing an empirical

analysis of the underlying algorithm. Such an analysis is based on timing the
program on several inputs and then analysing the results obtained.

5.SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS:

1. iterations
2. Recursions

5.1.Iterations:
A sequence of statements is executed until a specified condition is true is called
iterations.

1. for loop

2. While loop
Syntax for For: Example: Print n natural numbers

FOR(start-value to end-value) DO
 statement
 ...
ENDFOR

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO
 PRINT i
 i=i+1
ENDFOR
END

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO
 statement
 ...
ENDWHILE

BEGIN
GET n
INITIALIZE i=1
WHILE(i<=n) DO
 PRINT i
 i=i+1
ENDWHILE
END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 15

5.2.Recursions:
 A function that calls itself is known as recursion.
 Recursion is a process by which a function calls itself repeatedly until some

specified condition has been satisfied.

Algorithm for factorial of n numbers using recursion:

Main function:
Step1: Start
Step2: Get n
Step3: call factorial(n)
Step4: print fact
Step5: Stop

Sub function factorial(n):
Step1: if(n==1) then fact=1 return fact
Step2: else fact=n*factorial(n-1) and return fact

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 16

Pseudo code for factorial using recursion:

Main function:

BEGIN
GET n
CALL factorial(n)
PRINT fact
BIN

Sub function factorial(n):

IF(n==1) THEN
 fact=1
 RETURN fact
ELSE
 RETURN fact=n*factorial(n-1)

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 17

More examples:
Write an algorithm to find area of a rectangle

Step 1: Start

Step 2: get l,b values

Step 3: Calculate A=l*b

Step 4: Display A

Step 5: Stop

BEGIN

READ l,b

CALCULATE A=l*b

DISPLAY A

END

Write an algorithm for Calculating area and circumference of circle

Step 1: Start

Step 2: get r value

Step 3: Calculate A=3.14*r*r

Step 4: Calculate C=2.3.14*r

Step 5: Display A,C

Step 6: Stop

BEGIN

READ r

CALCULATE A and C

A=3.14*r*r

C=2*3.14*r

DISPLAY A

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 18

Write an algorithm for Calculating simple interest

Step 1: Start

Step 2: get P, n, r value

Step3:Calculate

SI=(p*n*r)/100

Step 4: Display S

Step 5: Stop

BEGIN

READ P, n, r

CALCULATE S

SI=(p*n*r)/100

DISPLAY SI

END

Write an algorithm for Calculating engineering cutoff

Step 1: Start

Step2: get P,C,M value

Step3:calculate

Cutoff= (P/4+C/4+M/2)

Step 4: Display Cutoff

Step 5: Stop

BEGIN

READ P,C,M

CALCULATE

Cutoff= (P/4+C/4+M/2)

DISPLAY Cutoff

END

To check greatest of two numbers

Step 1: Start

Step 2: get a,b value

Step 3: check if(a>b) print a is greater

Step 4: else b is greater

Step 5: Stop

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 19

BEGIN

READ a,b

IF (a>b) THEN

DISPLAY a is greater

ELSE

DISPLAY b is greater

END IF

END

To check leap year or not

Step 1: Start

Step 2: get y

Step 3: if(y%4==0) print leap year

Step 4: else print not leap year

Step 5: Stop

BEGIN

READ y

IF (y%4==0) THEN

DISPLAY leap year

ELSE

DISPLAY not leap year

END IF

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 20

To check positive or negative number

Step 1: Start

Step 2: get num

Step 3: check if(num>0) print a is positive

Step 4: else num is negative

Step 5: Stop

BEGIN

READ num

IF (num>0) THEN

DISPLAY num is positive

ELSE

DISPLAY num is negative

END IF

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 21

To check odd or even number

Step 1: Start

Step 2: get num

Step 3: check if(num%2==0) print num is even

Step 4: else num is odd

Step 5: Stop

BEGIN

READ num

IF (num%2==0) THEN

DISPLAY num is even

ELSE

DISPLAY num is odd

END IF

END

To check greatest of three numbers

Step1: Start

Step2: Get A, B, C

Step3: if(A>B) goto Step4 else goto step5

Step4: If(A>C) print A else print C

Step5: If(B>C) print B else print C

Step6: Stop

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 22

BEGIN

READ a, b, c

IF (a>b) THEN

 IF(a>c) THEN

 DISPLAY a is greater

 ELSE

 DISPLAY c is greater

 END IF

ELSE

 IF(b>c) THEN

 DISPLAY b is greater

 ELSE

 DISPLAY c is greater

 END IF

END IF

END

Write an algorithm to check whether given number is +ve, -ve or zero.

Step 1: Start

Step 2: Get n value.

Step 3: if (n ==0) print “Given number is Zero” Else goto step4

Step 4: if (n > 0) then Print “Given number is +ve”

Step 5: else Print “Given number is -ve”

Step 6: Stop

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 23

BEGIN

GET n

IF(n==0) THEN

 DISPLAY “ n is zero”

ELSE

 IF(n>0) THEN

 DISPLAY “n is positive”

 ELSE

 DISPLAY “n is positive”

 END IF

END IF

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 24

Write an algorithm to print all natural numbers up to n

Step 1: Start
Step 2: get n value.
Step 3: initialize i=1
Step 4: if (i<=n) go to step 5 else go to step 8
Step 5: Print i value
step 6 : increment i value by 1
Step 7: go to step 4
Step 8: Stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

 PRINT i

 i=i+1

ENDWHILE

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 25

Write an algorithm to print n odd numbers

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check if(i<=n) goto step 5 else goto step 8

step 5: print i value

step 6: increment i value by 2

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

 PRINT i

 i=i+2

ENDWHILE

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 26

Write an algorithm to print n even numbers

Step 1: start

step 2: get n value

step 3: set initial value i=2

step 4: check if(i<=n) goto step 5 else goto step8

step 5: print i value

step 6: increment i value by 2

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=2

WHILE(i<=n) DO

 PRINT i

 i=i+2

ENDWHILE

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 27

Write an algorithm to print squares of a number

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

 PRINT i*i

 i=i+2

ENDWHILE

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 28

Write an algorithm to print to print cubes of a number

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i *i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

 PRINT i*i*i

 i=i+2

ENDWHILE

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 29

Write an algorithm to find sum of a given number

Step 1: start

step 2: get n value

step 3: set initial value i=1, sum=0

Step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: calculate sum=sum+i

step 6: increment i value by 1

step 7: goto step 4

step 8: print sum value

step 9: stop

BEGIN

GET n

INITIALIZE i=1,sum=0

WHILE(i<=n) DO

 sum=sum+i

 i=i+1

ENDWHILE

PRINT sum

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 30

Write an algorithm to find factorial of a given number

Step 1: start

step 2: get n value

step 3: set initial value i=1, fact=1

Step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: calculate fact=fact*i

step 6: increment i value by 1

step 7: goto step 4

step 8: print fact value

step 9: stop

BEGIN

GET n

INITIALIZE i=1,fact=1

WHILE(i<=n) DO

 fact=fact*i

 i=i+1

ENDWHILE

PRINT fact

END

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 31

 Basic python programs:

Addition of two numbers Output

a=eval(input(“enter first no”))

b=eval(input(“enter second no”))

c=a+b

print(“the sum is “,c)

enter first no

5

enter second no

6

the sum is 11

Area of rectangle Output

l=eval(input(“enter the length of rectangle”))

b=eval(input(“enter the breath of rectangle”))

a=l*b

print(a)

enter the length of rectangle 5

enter the breath of rectangle 6

30

Area & circumference of circle output

r=eval(input(“enter the radius of circle”))

a=3.14*r*r

c=2*3.14*r

print(“the area of circle”,a)

print(“the circumference of circle”,c)

enter the radius of circle4

the area of circle 50.24

the circumference of circle

25.12

Calculate simple interest Output

p=eval(input(“enter principle amount”))

n=eval(input(“enter no of years”))

r=eval(input(“enter rate of interest”))

si=p*n*r/100

print(“simple interest is”,si)

enter principle amount 5000

enter no of years 4

enter rate of interest6

simple interest is 1200.0

Calculate engineering cutoff Output

p=eval(input(“enter physics marks”))

c=eval(input(“enter chemistry marks”))

m=eval(input(“enter maths marks”))

cutoff=(p/4+c/4+m/2)

print(“cutoff =”,cutoff)

enter physics marks 100

enter chemistry marks 99

enter maths marks 96

cutoff = 97.75

Check voting eligibility output

age=eval(input(“enter ur age”))

If(age>=18):

 print(“eligible for voting”)

else:

 print(“not eligible for voting”)

Enter ur age

19

Eligible for voting

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 32

Find greatest of three numbers output

a=eval(input(“enter the value of a”))

b=eval(input(“enter the value of b”))

c=eval(input(“enter the value of c”))

if(a>b):

 if(a>c):

 print(“the greatest no is”,a)

 else:

 print(“the greatest no is”,c)

else:

 if(b>c):

 print(“the greatest no is”,b)

 else:

 print(“the greatest no is”,c)

enter the value of a 9

enter the value of a 1

enter the value of a 8

the greatest no is 9

Programs on for loop

Print n natural numbers Output

for i in range(1,5,1):

 print(i)

1 2 3 4

Print n odd numbers Output
for i in range(1,10,2):

 print(i)

1 3 5 7 9

Print n even numbers Output

for i in range(2,10,2):

 print(i)

2 4 6 8

Print squares of numbers Output

for i in range(1,5,1):

 print(i*i)

1 4 9 16

Print squares of numbers Output

for i in range(1,5,1):

 print(i*i*i)

1 8 27 64

Programs on while loop

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 33

Print n natural numbers Output

i=1

while(i<=5):

 print(i)

 i=i+1

1

2

3

4

5

Print n odd numbers Output

i=2

while(i<=10):

 print(i)

 i=i+2

2

4

6

8

10

Print n even numbers Output

i=1

while(i<=10):

 print(i)

 i=i+2

1

3

5

7

9

Print n squares of numbers Output

i=1

while(i<=5):

 print(i*i)

 i=i+1

1

4

9

16

25

Print n cubes numbers Output

i=1

while(i<=3):

 print(i*i*i)

 i=i+1

1

8

27

find sum of n numbers Output

i=1

sum=0

while(i<=10):

 sum=sum+i

 i=i+1

print(sum)

55

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 34

factorial of n numbers/product of n numbers Output

i=1

product=1

while(i<=10):

 product=product*i

 i=i+1

print(product)

3628800

sum of n numbers Output

def add():

 a=eval(input(“enter a value”))

 b=eval(input(“enter b value”))

 c=a+b

 print(“the sum is”,c)

add()

enter a value

6

enter b value

4

the sum is 10

area of rectangle using function Output

def area():

 l=eval(input(“enter the length of rectangle”))

 b=eval(input(“enter the breath of rectangle”))

 a=l*b

 print(“the area of rectangle is”,a)

area()

enter the length of

rectangle 20

enter the breath of

rectangle 5

the area of rectangle is

100

swap two values of variables Output

def swap():

 a=eval(input("enter a value"))

 b=eval(input("enter b value"))

 c=a

 a=b

 b=c

 print("a=",a,"b=",b)

swap()

enter a value3

enter b value5

a= 5 b= 3

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 35

check the no divisible by 5 or not Output

def div():

 n=eval(input("enter n value"))

 if(n%5==0):

 print("the number is divisible by 5")

 else:

 print("the number not divisible by 5")

div()

enter n value10

the number is divisible by

5

find reminder and quotient of given no Output

def reminder():

 a=eval(input("enter a"))

 b=eval(input("enter b"))

 R=a%b

 print("the reminder is",R)

def quotient():

 a=eval(input("enter a"))

 b=eval(input("enter b"))

 Q=a/b

 print("the reminder is",Q)

reminder()

quotient()

enter a 6

enter b 3

the reminder is 0

enter a 8

enter b 4

the reminder is 2.0

convert the temperature Output

def ctof():

 c=eval(input("enter temperature in centigrade"))

 f=(1.8*c)+32

 print("the temperature in Fahrenheit is",f)

def ftoc():

 f=eval(input("enter temp in Fahrenheit"))

 c=(f-32)/1.8

 print("the temperature in centigrade is",c)

ctof()

ftoc()

enter temperature in

centigrade 37

the temperature in

Fahrenheit is 98.6

enter temp in Fahrenheit

100

the temperature in

centigrade is 37.77

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 36

program for basic calculator Output

def add():

 a=eval(input("enter a value"))

 b=eval(input("enter b value"))

 c=a+b

 print("the sum is",c)

def sub():

 a=eval(input("enter a value"))

 b=eval(input("enter b value"))

 c=a-b

 print("the diff is",c)

def mul():

 a=eval(input("enter a value"))

 b=eval(input("enter b value"))

 c=a*b

 print("the mul is",c)

def div():

 a=eval(input("enter a value"))

 b=eval(input("enter b value"))

 c=a/b

 print("the div is",c)

add()

sub()

mul()

div()

enter a value 10

enter b value 10

the sum is 20

enter a value 10

enter b value 10

the diff is 0

enter a value 10

enter b value 10

the mul is 100

enter a value 10

enter b value 10

the div is 1

www.rejinpaul.comwww.rejinpaul.com

Unit 1: Algorithmic problem solving 37

Part A:

1. What is mean by problem solving?

2. List down the problem solving techniques?

3. Define algorithm?

4. What are the properties of algorithm?

5. List down the equalities of good algorithm?

6. Define statements?

7. Define state?

8. What is called control flow?

9. What is called sequence execution?

10. Define iteration?

11. What is mean by flow chart?

12. List down the basic symbols for drawing flowchart?

13. List down the rules for drawing the flowchart?

14. What are the advantages of flowchart?

15. What are the disadvantages of flowchart?

16. Define pseudo code?

17. List down the keywords used in writing pseudo code?

18. Mention the advantages of using pseudo code?

19. Mention the disadvantages of using pseudo code?

20. What are the ways available to represent algorithm?

21. Differentiate flowchart and pseudo code?

22. Differentiate algorithm and pseudo code?

23. What is programming language?

24. Mention the types of programming language?

25. What is mean by machine level language?

26. What are the advantages and disadvantages of machine level language?

27. What is high level programming language and mention its advantages?

28. What are the steps in algorithmic problem solving?

29. Write the algorithm for any example?

30. Draw the flow chart for any example?

31. Write pseudo code for any example?

Part B:

1. Explain in detail about problem solving techniques?

2. Explain in detail about building blocks of algorithm?

3. Discuss the symbols and rules for drawing flowchart with the example?

4. Explain in detail about programming language?

5. Discuss briefly about algorithmic problem solving?

6. Write algorithm, pseudo code and flow chart for any example?

7. Explain in detail about simple strategies for developing algorithms?

www.rejinpaul.comwww.rejinpaul.com

1 Unit 2: Data ,expressions, Statements

UNIT II
DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string,
and list; variables, expressions, statements, tuple assignment, precedence of operators,
comments; Modules and functions, function definition and use, flow of execution,
parameters and arguments; Illustrative programs: exchange the values of two
variables, circulate the values of n variables, distance between two points.

1. INTRODUCTION TO PYTHON:
Python is a general-purpose interpreted, interactive, object-oriented, and high-
level programming language.
It was created by Guido van Rossum during 1985- 1990.
Python got its name from “Monty Python’s flying circus”. Python was released in the
year 2000.
 Python is interpreted: Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it.
 Python is Interactive: You can actually sit at a Python prompt and interact with

the interpreter directly to write your programs.
 Python is Object-Oriented: Python supports Object-Oriented style or technique

of programming that encapsulates code within objects.
 Python is a Beginner's Language: Python is a great language for the beginner-

level programmers and supports the development of a wide range of
applications.

1.1. Python Features:
 Easy-to-learn: Python is clearly defined and easily readable. The structure

of the program is very simple. It uses few keywords.
 Easy-to-maintain: Python's source code is fairly easy-to-maintain.
 Portable: Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.
 Interpreted: Python is processed at runtime by the interpreter. So, there is no

need to compile a program before executing it. You can simply run the program.
 Extensible: Programmers can embed python within their C,C++,Java script

,ActiveX, etc.
 Free and Open Source: Anyone can freely distribute it, read the source code, and

edit it.
 High Level Language: When writing programs, programmers concentrate on

solutions of the current problem, no need to worry about the low level details.
 Scalable: Python provides a better structure and support for large programs

than shell scripting.
1.2. Applications:

 Bit Torrent file sharing
 Google search engine, Youtube
 Intel, Cisco, HP, IBM
 i–Robot
 NASA

www.rejinpaul.comwww.rejinpaul.com

2 Unit 2: Data ,expressions, Statements

 Facebook, Drop box

1.3. Python interpreter:
Interpreter: To execute a program in a high-level language by translating it one line at
a time.
Compiler: To translate a program written in a high-level language into a low-level
language all at once, in preparation for later execution.

Compiler Interpreter

Compiler Takes Entire program as input
Interpreter Takes Single instruction as
input

Intermediate Object Code is Generated
No Intermediate Object Code
is Generated

Conditional Control Statements are
Executes faster

Conditional Control Statements are
Executes slower

Memory Requirement is More(Since Object
Code is Generated)

Memory Requirement is Less

Program need not be compiled every time
Every time higher level program is
converted into lower level program

Errors are displayed after entire
program is checked

Errors are displayed for every
instruction interpreted (if any)

Example : C Compiler Example : PYTHON

1.4 MODES OF PYTHON INTERPRETER:
Python Interpreter is a program that reads and executes Python code. It uses 2 modes
of Execution.

1. Interactive mode
2. Script mode

Interactive mode:
 Interactive Mode, as the name suggests, allows us to interact with OS.
 When we type Python statement, interpreter displays the result(s)

immediately.
Advantages:

 Python, in interactive mode, is good enough to learn, experiment or explore.
 Working in interactive mode is convenient for beginners and for testing small

pieces of code.
Drawback:

 We cannot save the statements and have to retype all the statements once again to
re-run them.

In interactive mode, you type Python programs and the interpreter displays the result:
>>> 1 + 1
2
The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you
to enter code. If you type 1 + 1, the interpreter replies 2.
>>> print ('Hello, World!')
Hello, World!

www.rejinpaul.comwww.rejinpaul.com

3 Unit 2: Data ,expressions, Statements

This is an example of a print statement. It displays a result on the screen. In this case,
the result is the words.

Script mode:
 In script mode, we type python program in a file and then use interpreter to

execute the content of the file.
 Scripts can be saved to disk for future use. Python scripts have the

extension .py, meaning that the filename ends with .py
 Save the code with filename.py and run the interpreter in script mode to execute

the script.

Interactive mode Script mode
A way of using the Python interpreter by
typing commands and expressions at the
prompt.

A way of using the Python interpreter to
read and execute statements in a script.

Cant save and edit the code Can save and edit the code
If we want to experiment with the code,
we can use interactive mode.

If we are very clear about the code, we can
use script mode.

we cannot save the statements for further
use and we have to retype
all the statements to re-run them.

we can save the statements for further use
and we no need to retype
all the statements to re-run them.

We can see the results immediately. We cant see the code immediately.

Integrated Development Learning Environment (IDLE):

 Is a graphical user interface which is completely written in Python.
 It is bundled with the default implementation of the python language and also

comes with optional part of the Python packaging.
Features of IDLE:
 Multi-window text editor with syntax highlighting.

www.rejinpaul.comwww.rejinpaul.com

https://en.wikipedia.org/wiki/Syntax_highlighting

4 Unit 2: Data ,expressions, Statements

 Auto completion with smart indentation.
 Python shell to display output with syntax highlighting.

2.VALUES AND DATA TYPES

Value:

Value can be any letter ,number or string.
Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different
datatypes.)

Data type:
Every value in Python has a data type.
It is a set of values, and the allowable operations on those values.

Python has four standard data types:

2.1Numbers:
 Number data type stores Numerical Values.
 This data type is immutable [i.e. values/items cannot be changed].
 Python supports integers, floating point numbers and complex numbers. They

are defined as,

 2.2 Sequence:
 A sequence is an ordered collection of items, indexed by positive integers.
 It is a combination of mutable (value can be changed) and immutable (values

cannot be changed) data types.

www.rejinpaul.comwww.rejinpaul.com

5 Unit 2: Data ,expressions, Statements

 There are three types of sequence data type available in Python, they are
1. Strings
2. Lists
3. Tuples

2.2.1 Strings:
 A String in Python consists of a series or sequence of characters - letters,

numbers, and special characters.
 Strings are marked by quotes:

 single quotes (' ') Eg, 'This a string in single quotes'
 double quotes (" ") Eg, "'This a string in double quotes'"
 triple quotes(""" """) Eg, This is a paragraph. It is made up of

multiple lines and sentences."""
 Individual character in a string is accessed using a subscript (index).
 Characters can be accessed using indexing and slicing operations
Strings are immutable i.e. the contents of the string cannot be changed after it is

created.
Indexing:

 Positive indexing helps in accessing the string from the beginning
 Negative subscript helps in accessing the string from the end.
 Subscript 0 or –ve n(where n is length of the string) displays the first element.

 Example: A[0] or A[-5] will display “H”
 Subscript 1 or –ve (n-1) displays the second element.

 Example: A[1] or A[-4] will display “E”
Operations on string:

i. Indexing
ii. Slicing

iii. Concatenation
iv. Repetitions
v. Member ship

Creating a string >>> s="good morning" Creating the list with elements of
different data types.

Indexing >>> print(s[2])
o
>>> print(s[6])
O

 Accessing the item in the
position 0

 Accessing the item in the
position 2

Slicing(ending
position -1)

>>> print(s[2:])
od morning

- Displaying items from 2nd till
last.

www.rejinpaul.comwww.rejinpaul.com

6 Unit 2: Data ,expressions, Statements

Slice operator is
used to extract
part of a data
type

>>> print(s[:4])
Good

- Displaying items from 1st
position till 3rd .

Concatenation >>>print(s+"friends")
good morningfriends

-Adding and printing the
characters of two strings.

Repetition >>>print(s*2)
good morninggood
morning

 Creates new strings,
concatenating multiple copies of
the same string

in, not in
(membership
operator)

>>> s="good morning"
 >>>"m" in s
True
>>> "a" not in s
True

Using membership operators to
check a particular character is in
string or not. Returns true if
present.

2.2.2 Lists
 List is an ordered sequence of items. Values in the list are called elements / items.
 It can be written as a list of comma-separated items (values) between square

brackets[].
 Items in the lists can be of different data types.

Operations on list:

Indexing
Slicing
Concatenation
Repetitions
Updation, Insertion, Deletion

Creating a list >>>list1=["python", 7.79, 101,
"hello”]
>>>list2=["god",6.78,9]

Creating the list with
elements of different data
types.

Indexing >>>print(list1[0])
python
>>> list1[2]
101

 Accessing the item in

the position 0

 Accessing the item in

the position 2

Slicing(ending
position -1)
Slice operator is
used to extract
part of a string, or
some part of a list
Python

>>> print(list1[1:3])
[7.79, 101]
>>>print(list1[1:])
[7.79, 101, 'hello']

- Displaying items from 1st
till 2nd.
- Displaying items from 1st
position till last.

Concatenation >>>print(list1+list2)
['python', 7.79, 101, 'hello', 'god',

-Adding and printing the
items of two lists.

www.rejinpaul.comwww.rejinpaul.com

7 Unit 2: Data ,expressions, Statements

6.78, 9]
Repetition >>> list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',
6.78, 9]

 Creates new strings,
concatenating multiple
copies of the same string

Updating the list >>> list1[2]=45
>>>print(list1)
[‘python’, 7.79, 45, ‘hello’]

Updating the list using index
value

Inserting an
element

>>> list1.insert(2,"program")
>>> print(list1)
['python', 7.79, 'program', 45,
'hello']

Inserting an element in 2nd
position

Removing an
element

>>> list1.remove(45)
>>> print(list1)
['python', 7.79, 'program', 'hello']

Removing an element by
giving the element directly

2.2.4Tuple:
 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.
 A tuple is an immutable list. i.e. once a tuple has been created, you can't add

elements to a tuple or remove elements from the tuple.
 Benefit of Tuple:
 Tuples are faster than lists.
 If the user wants to protect the data from accidental changes, tuple can be used.
 Tuples can be used as keys in dictionaries, while lists can't.

Basic Operations:

Creating a tuple >>>t=("python", 7.79, 101,

"hello”)

Creating the tuple with elements

of different data types.

Indexing >>>print(t[0])

python

>>> t[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)

>>>print(t[1:3])

(7.79, 101)

 Displaying items from 1st

till 2nd.

Concatenation >>> t+("ram", 67)

('python', 7.79, 101, 'hello', 'ram',

67)

 Adding tuple elements at

the end of another tuple

elements

Repetition >>>print(t*2)

('python', 7.79, 101, 'hello',

'python', 7.79, 101, 'hello')

 Creates new strings,

concatenating multiple copies of

the same string

Altering the tuple data type leads to error. Following error occurs when user tries to
do.

www.rejinpaul.comwww.rejinpaul.com

8 Unit 2: Data ,expressions, Statements

>>> t[0]="a"
Trace back (most recent call last):
 File "<stdin>", line 1, in <module>
Type Error: 'tuple' object does not support item assignment

2.3 Mapping

-This data type is unordered and mutable.
-Dictionaries fall under Mappings.

2.3.1Dictionaries:
 Lists are ordered sets of objects, whereas dictionaries are unordered sets.
 Dictionary is created by using curly brackets. i,e. {}
 Dictionaries are accessed via keys and not via their position.
 A dictionary is an associative array (also known as hashes). Any key of the

dictionary is associated (or mapped) to a value.
 The values of a dictionary can be any Python data type. So dictionaries are

unordered key-value-pairs(The association of a key and a value is called a key-
value pair)

Dictionaries don't support the sequence operation of the sequence data types like
strings, tuples and lists.

Creating a
dictionary

>>> food = {"ham":"yes", "egg" :
"yes", "rate":450 }
>>>print(food)
{'rate': 450, 'egg': 'yes', 'ham':
'yes'}

Creating the dictionary with
elements of different data
types.

Indexing >>>> print(food["rate"])
450

Accessing the item with keys.

Slicing(ending
position -1)

>>>print(t[1:3])
(7.79, 101)

Displaying items from 1st till
2nd.

If you try to access a key which doesn't exist, you will get an error message:

>>> words = {"house" : "Haus", "cat":"Katze"}
>>> words["car"]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'car'

Data type Compile time Run time
int a=10 a=int(input(“enter a”))
float a=10.5 a=float(input(“enter a”))
string a=”panimalar” a=input(“enter a string”)
list a=[20,30,40,50] a=list(input(“enter a list”))
tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

www.rejinpaul.comwww.rejinpaul.com

9 Unit 2: Data ,expressions, Statements

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And
Indentation, Quotation In Python, Tuple Assignment:

3.1VARIABLES:

 A variable allows us to store a value by assigning it to a name, which can be used
later.

 Named memory locations to store values.
 Programmers generally choose names for their variables that are meaningful.
 It can be of any length. No space is allowed.
 We don't need to declare a variable before using it. In Python, we simply assign a

value to a variable and it will exist.

Assigning value to variable:
Value should be given on the right side of assignment operator(=) and variable on left
side.

>>>counter =45
print(counter)

Assigning a single value to several variables simultaneously:

 >>> a=b=c=100
Assigning multiple values to multiple variables:

>>> a,b,c=2,4,"ram"

3.2KEYWORDS:

 Keywords are the reserved words in Python.
 We cannot use a keyword as variable name, function name or any other

identifier.
 They are used to define the syntax and structure of the Python language.
 Keywords are case sensitive.

3.3IDENTIFIERS:

 Identifier is the name given to entities like class, functions, variables etc. in
Python.
 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to

Z) or digits (0 to 9) or an underscore (_).

www.rejinpaul.comwww.rejinpaul.com

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function

10 Unit 2: Data ,expressions, Statements

 all are valid example.
 An identifier cannot start with a digit.
 Keywords cannot be used as identifiers.
 Cannot use special symbols like !, @, #, $, % etc. in our identifier.
 Identifier can be of any length.

Example:
Names like myClass, var_1, and this_is_a_long_variable

Valid declarations Invalid declarations
Num
Num
Num1
_NUM
NUM_temp2
IF
Else

Number 1
num 1
addition of program
1Num
Num.no
if
else

3.4 STATEMENTS AND EXPRESSIONS:

3.4.1 Statements:
 -Instructions that a Python interpreter can executes are called statements.
 -A statement is a unit of code like creating a variable or displaying a value.

>>> n = 17
>>> print(n)

 Here, The first line is an assignment statement that gives a value to n.
 The second line is a print statement that displays the value of n.
3.4.2Expressions:
 -An expression is a combination of values, variables, and operators.
 - A value all by itself is considered an expression, and also a variable.
 - So the following are all legal expressions:

>>> 42
42
>>> a=2
>>> a+3+2
7
>>> z=("hi"+"friend")
>>> print(z)
hifriend

3.5 INPUT AND OUTPUT

INPUT: Input is data entered by user (end user) in the program.
In python, input () function is available for input.

Syntax for input() is:
variable = input (“data”)

www.rejinpaul.comwww.rejinpaul.com

11 Unit 2: Data ,expressions, Statements

Example:

>>> x=input("enter the name:")
enter the name: george

>>>y=int(input("enter the number"))
enter the number 3

#python accepts string as default data type. conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

Syntax:
print (expression/constant/variable)

Example:

>>> print ("Hello")
Hello

3.6 COMMENTS:

 A hash sign (#) is the beginning of a comment.
 Anything written after # in a line is ignored by interpreter.

 Eg:percentage = (minute * 100) / 60 # calculating percentage of an hour
 Python does not have multiple-line commenting feature. You have to

comment each line individually as follows :
Example:
 # This is a comment.

This is a comment, too.
I said that already.

3.7 DOCSTRING:
 Docstring is short for documentation string.
 It is a string that occurs as the first statement in a module, function, class, or

method definition. We must write what a function/class does in the docstring.
 Triple quotes are used while writing docstrings.

Syntax:
functionname__doc.__

Example:

def double(num):
 """Function to double the value"""
 return 2*num
>>> print(double.__doc__)
Function to double the value

3.8 LINES AND INDENTATION:

 Most of the programming languages like C, C++, Java use braces { } to define a
block of code. But, python uses indentation.

 Blocks of code are denoted by line indentation.
 It is a space given to the block of codes for class and function definitions or flow

control.

www.rejinpaul.comwww.rejinpaul.com

12 Unit 2: Data ,expressions, Statements

Example:

a=3
b=1
if a>b:
 print("a is greater")
else:
 print("b is greater")

3.9 QUOTATION IN PYTHON:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals.
Anything that is represented using quotations are considered as string.

 single quotes (' ') Eg, 'This a string in single quotes'
 double quotes (" ") Eg, "'This a string in double quotes'"
 triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines

and sentences."""

3.10 TUPLE ASSIGNMENT

 An assignment to all of the elements in a tuple using a single assignment
statement.

 Python has a very powerful tuple assignment feature that allows a tuple of
variables on the left of an assignment to be assigned values from a tuple on the
right of the assignment.

 The left side is a tuple of variables; the right side is a tuple of values.
 Each value is assigned to its respective variable.
 All the expressions on the right side are evaluated before any of the assignments.

This feature makes tuple assignment quite versatile.
 Naturally, the number of variables on the left and the number of values on the

right have to be the same.
>>> (a, b, c, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

Example:
-It is useful to swap the values of two variables. With conventional assignment
statements, we have to use a temporary variable. For example, to swap a and b:

Swap two numbers Output:
a=2;b=3
print(a,b)
temp = a
a = b
b = temp
print(a,b)

 (2, 3)
(3, 2)
>>>

www.rejinpaul.comwww.rejinpaul.com

13 Unit 2: Data ,expressions, Statements

-Tuple assignment solves this problem neatly:

(a, b) = (b, a)

-One way to think of tuple assignment is as tuple packing/unpacking.
In tuple packing, the values on the left are ‘packed’ together in a tuple:

>>> b = ("George", 25, "20000") # tuple packing

-In tuple unpacking, the values in a tuple on the right are ‘unpacked’ into the
variables/names on the right:

>>> b = ("George", 25, "20000") # tuple packing
>>> (name, age, salary) = b # tuple unpacking
>>> name
'George'
>>> age
25
>>> salary
'20000'

-The right side can be any kind of sequence (string,list,tuple)
Example:
-To split an email address in to user name and a domain

>>> mailid='god@abc.org'
>>> name,domain=mailid.split('@')
>>> print name
god
>>> print (domain)
abc.org

4.OPERATORS:

 Operators are the constructs which can manipulate the value of operands.
 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is

called operator
 Types of Operators:

 -Python language supports the following types of operators
 Arithmetic Operators
 Comparison (Relational) Operators
 Assignment Operators
 Logical Operators
 Bitwise Operators
 Membership Operators
 Identity Operators

www.rejinpaul.comwww.rejinpaul.com

14 Unit 2: Data ,expressions, Statements

4.1 Arithmetic operators:
 They are used to perform mathematical operations like addition, subtraction,
multiplication etc. Assume, a=10 and b=5

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand
operand.

a – b = -10

*
Multiplication

Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand
and returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on
operators

a**b =10 to the
power 20

// Floor Division - The division of operands where the
result is the quotient in which the digits after the
decimal point are removed

5//2=2

Examples
a=10
b=5
print("a+b=",a+b)
print("a-b=",a-b)
print("a*b=",a*b)
print("a/b=",a/b)
print("a%b=",a%b)
print("a//b=",a//b)
print("a**b=",a**b)

Output:
a+b= 15
a-b= 5
a*b= 50
a/b= 2.0
a%b= 0
a//b= 2
a**b= 100000

4.2 Comparison (Relational) Operators:
 Comparison operators are used to compare values.
 It either returns True or False according to the condition. Assume, a=10 and b=5

Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

www.rejinpaul.comwww.rejinpaul.com

15 Unit 2: Data ,expressions, Statements

becomes true. not true.

!= If values of two operands are not equal, then condition
becomes true.

(a!=b) is
true

> If the value of left operand is greater than the value of right
operand, then condition becomes true.

(a > b) is
not true.

< If the value of left operand is less than the value of right
operand, then condition becomes true.

(a < b) is
true.

>= If the value of left operand is greater than or equal to the
value of right operand, then condition becomes true.

(a >= b) is
not true.

<= If the value of left operand is less than or equal to the value
of right operand, then condition becomes true.

(a <= b) is
true.

Example
a=10
b=5
print("a>b=>",a>b)
print("a>b=>",a<b)
print("a==b=>",a==b)
print("a!=b=>",a!=b)
print("a>=b=>",a<=b)
print("a>=b=>",a>=b)

Output:
a>b=> True
a>b=> False
a==b=> False
a!=b=> True
a>=b=> False
a>=b=> True

4.3 Assignment Operators:
 -Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left side
operand

c = a + b
assigns
value of a +
b into c

+= Add AND It adds right operand to the left operand and assign
the result to left operand

c += a is
equivalent
to c = c + a

-= Subtract
AND

It subtracts right operand from the left operand and
assign the result to left operand

c -= a is
equivalent
to c = c - a

www.rejinpaul.comwww.rejinpaul.com

16 Unit 2: Data ,expressions, Statements

*= Multiply
AND

It multiplies right operand with the left operand and
assign the result to left operand

c *= a is
equivalent
to c = c * a

/= Divide
AND

It divides left operand with the right operand and
assign the result to left operand

c /= a is
equivalent
to c = c / ac
/= a is
equivalent
to c = c / a

%= Modulus
AND

It takes modulus using two operands and assign the
result to left operand

c %= a is
equivalent
to c = c % a

**= Exponent
AND

Performs exponential (power) calculation on
operators and assign value to the left operand

c **= a is
equivalent
to c = c ** a

//= Floor
Division

It performs floor division on operators and assign
value to the left operand

c //= a is
equivalent
to c = c // a

Example
a = 21
b = 10
c = 0
c = a + b
print("Line 1 - Value of c is ", c)
c += a
print("Line 2 - Value of c is ", c)
c *= a
print("Line 3 - Value of c is ", c)
c /= a
print("Line 4 - Value of c is ", c)
c = 2
c %= a
print("Line 5 - Value of c is ", c)
c **= a
print("Line 6 - Value of c is ", c)
c //= a
print("Line 7 - Value of c is ", c)

Output
Line 1 - Value of c is 31
Line 2 - Value of c is 52
Line 3 - Value of c is 1092
Line 4 - Value of c is 52.0
Line 5 - Value of c is 2
Line 6 - Value of c is 2097152
Line 7 - Value of c is 99864

www.rejinpaul.comwww.rejinpaul.com

17 Unit 2: Data ,expressions, Statements

4.4 Logical Operators:
 -Logical operators are the and, or, not operators.

Example
a = True
b = False
print('a and b is',a and b)
print('a or b is',a or b)
print('not a is',not a)

Output
x and y is False
x or y is True
not x is False

4.5 Bitwise Operators:
 A bitwise operation operates on one or more bit patterns at the level of individual

bits
Example: Let x = 10 (0000 1010 in binary) and
 y = 4 (0000 0100 in binary)

Example
a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101
c = 0
c = a & b; # 12 = 0000 1100
print "Line 1 - Value of c is ", c
c = a | b; # 61 = 0011 1101
print "Line 2 - Value of c is ", c
c = a ^ b; # 49 = 0011 0001
print "Line 3 - Value of c is ", c
c = ~a; # -61 = 1100 0011

Output
Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15

www.rejinpaul.comwww.rejinpaul.com

18 Unit 2: Data ,expressions, Statements

print "Line 4 - Value of c is ", c
c = a << 2; # 240 = 1111 0000
print "Line 5 - Value of c is ", c
c = a >> 2; # 15 = 0000 1111
print "Line 6 - Value of c is ", c

4.6 Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list,
tuple, dictionary or not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators
are used.

Example:
x=[5,3,6,4,1]
>>> 5 in x
True
>>> 5 not in x
False

4.7 Identity Operators:
 They are used to check if two values (or variables) are located on the same part of

the
memory.

Example
x = 5
y = 5
x2 = 'Hello'
y2 = 'Hello'
print(x1 is not y1)
print(x2 is y2)

Output
False
True

www.rejinpaul.comwww.rejinpaul.com

19 Unit 2: Data ,expressions, Statements

5.OPERATOR PRECEDENCE:

When an expression contains more than one operator, the order of evaluation
depends on the order of operations.

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method
names for the last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

-For mathematical operators, Python follows mathematical convention.
-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division,
Addition, Subtraction) is a useful way to remember the rules:
 Parentheses have the highest precedence and can be used to force an expression

to evaluate in the order you want. Since expressions in parentheses are evaluated
first, 2 * (3-1)is 4, and (1+1)**(5-2) is 8.

 You can also use parentheses to make an expression easier to read, as in (minute
* 100) / 60, even if it doesn’t change the result.

 Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and 2
*3**2 is 18, not 36.

 Multiplication and Division have higher precedence than Addition and
Subtraction. So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

 Operators with the same precedence are evaluated from left to right (except
exponentiation).

www.rejinpaul.comwww.rejinpaul.com

20 Unit 2: Data ,expressions, Statements

Example:
a=9-12/3+3*2-1
a=?
a=9-4+3*2-1
a=9-4+6-1
a=5+6-1
a=11-1
a=10

A=2*3+4%5-3/2+6
A=6+4%5-3/2+6
A=6+4-3/2+6
A=6+4-1+6
A=10-1+6
A=9+6
A=15

find m=?
m=-43||8&&0||-2
m=-43||0||-2
m=1||-2
m=1

a=2,b=12,c=1
d=ac
d=2<12>1
d=1>1
d=0

a=2,b=12,c=1
d=ac-1
d=2<12>1-1
d=2<12>0
d=1>0
d=1

a=2*3+4%5-3//2+6
a=6+4-1+6
a=10-1+6
a=15

6.Functions, Function Definition And Use, Function call, Flow Of Execution,
Function Prototypes, Parameters And Arguments, Return statement,
Argumentstypes,Modules

6.1 FUNCTIONS:

 Function is a sub program which consists of set of instructions used to
perform a specific task. A large program is divided into basic building
blocks called function.

Need For Function:
 When the program is too complex and large they are divided into parts. Each part

is separately coded and combined into single program. Each subprogram is called
as function.

 Debugging, Testing and maintenance becomes easy when the program is divided
into subprograms.

 Functions are used to avoid rewriting same code again and again in a program.
 Function provides code re-usability
 The length of the program is reduced.

Types of function:
 Functions can be classified into two categories:

i) user defined function
ii) Built in function

i) Built in functions
 Built in functions are the functions that are already created and stored in python.
 These built in functions are always available for usage and accessed by a

programmer. It cannot be modified.
Built in function Description

www.rejinpaul.comwww.rejinpaul.com

21 Unit 2: Data ,expressions, Statements

>>>max(3,4)
4

returns largest element

>>>min(3,4)
3

returns smallest element

>>>len("hello")
5

#returns length of an object

>>>range(2,8,1)
[2, 3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8)
8.0

#returns rounded integer of the given number

>>>chr(5)
\x05'

#returns a character (a string) from an integer

>>>float(5)
5.0

#returns float number from string or integer

>>>int(5.0)
5

returns integer from string or float

>>>pow(3,5)
243

#returns power of given number

>>>type(5.6)
<type 'float'>

#returns data type of object to which it belongs

>>>t=tuple([4,6.0,7])
(4, 6.0, 7)

to create tuple of items from list

>>>print("good morning")
Good morning

displays the given object

>>>input("enter name: ")
enter name : George

reads and returns the given string

ii)User Defined Functions:
 User defined functions are the functions that programmers create for their

requirement and use.
 These functions can then be combined to form module which can be used in

other programs by importing them.
 Advantages of user defined functions:

 Programmers working on large project can divide the workload by making
different functions.

 If repeated code occurs in a program, function can be used to include those
codes and execute when needed by calling that function.

6.2 Function definition: (Sub program)

 def keyword is used to define a function.
 Give the function name after def keyword followed by parentheses in which

arguments are given.
 End with colon (:)
 Inside the function add the program statements to be executed
 End with or without return statement

www.rejinpaul.comwww.rejinpaul.com

22 Unit 2: Data ,expressions, Statements

Syntax:
def fun_name(Parameter1,Parameter2…Parameter n):
 statement1
 statement2…
 statement n
 return[expression]
Example:
def my_add(a,b):
 c=a+b
 return c

6.3Function Calling: (Main Function)

 Once we have defined a function, we can call it from another function, program or
even the Python prompt.

 To call a function we simply type the function name with appropriate
arguments.

Example:

x=5
y=4
my_add(x,y)

6.4 Flow of Execution:

 The order in which statements are executed is called the flow of execution
 Execution always begins at the first statement of the program.
 Statements are executed one at a time, in order, from top to bottom.
 Function definitions do not alter the flow of execution of the program, but

remember that statements inside the function are not executed until the function
is called.

 Function calls are like a bypass in the flow of execution. Instead of going to the
next statement, the flow jumps to the first line of the called function, executes all
the statements there, and then comes back to pick up where it left off.

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow
of execution. This means that you will read the def statements as you are scanning from
top to bottom, but you should skip the statements of the function definition until you
reach a point where that function is called.

6.5 Function Prototypes:

i. Function without arguments and without return type

ii. Function with arguments and without return type
iii. Function without arguments and with return type
iv. Function with arguments and with return type

www.rejinpaul.comwww.rejinpaul.com

23 Unit 2: Data ,expressions, Statements

i) Function without arguments and without return type

o In this type no argument is passed through the function call and no output
is return to main function

o The sub function will read the input values perform the operation and print
the result in the same block

ii) Function with arguments and without return type
o Arguments are passed through the function call but output is not return to

the main function
iii) Function without arguments and with return type

o In this type no argument is passed through the function call but output is
return to the main function.

iv) Function with arguments and with return type
o In this type arguments are passed through the function call and output is

return to the main function
 Without Return Type

Without argument With argument

def add():
 a=int(input("enter a"))
 b=int(input("enter b"))
 c=a+b
 print(c)
add()

def add(a,b):
 c=a+b
 print(c)
a=int(input("enter a"))
b=int(input("enter b"))
add(a,b)

OUTPUT:
enter a 5
enter b 10
15

OUTPUT:
enter a 5
enter b 10
15

 With return type
Without argument With argument

def add():
 a=int(input("enter a"))
 b=int(input("enter b"))
 c=a+b
 return c
c=add()
print(c)

def add(a,b):
 c=a+b
 return c
a=int(input("enter a"))
b=int(input("enter b"))
c=add(a,b)
print(c)

OUTPUT:
enter a 5
enter b 10
15

OUTPUT:
enter a 5
enter b 10
15

www.rejinpaul.comwww.rejinpaul.com

24 Unit 2: Data ,expressions, Statements

6.6 Parameters And Arguments:

Parameters:
 Parameters are the value(s) provided in the parenthesis when we write function

header.
 These are the values required by function to work.
 If there is more than one value required, all of them will be listed in parameter

list separated by comma.
 Example: def my_add(a,b):

Arguments :
 Arguments are the value(s) provided in function call/invoke statement.
 List of arguments should be supplied in same way as parameters are listed.
 Bounding of parameters to arguments is done 1:1, and so there should be same

number and type of arguments as mentioned in parameter list.
 Example: my_add(x,y)

6.7 RETURN STATEMENT:

 The return statement is used to exit a function and go back to the place from
where it was called.

 If the return statement has no arguments, then it will not return any values. But
exits from function.

Syntax:
return[expression]

Example:
def my_add(a,b):
 c=a+b
 return c
x=5
y=4
print(my_add(x,y))
 Output:
 9

6.8 ARGUMENTS TYPES:
1. Required Arguments
2. Keyword Arguments
3. Default Arguments
4. Variable length Arguments

 Required Arguments: The number of arguments in the function call should
match exactly with the function definition.

def my_details(name, age):
 print("Name: ", name)
 print("Age ", age)
 return
my_details("george",56)

www.rejinpaul.comwww.rejinpaul.com

25 Unit 2: Data ,expressions, Statements

 Output:

Name: george
Age 56

 Keyword Arguments:
Python interpreter is able to use the keywords provided to match the values with
parameters even though if they are arranged in out of order.

 def my_details(name, age):
 print("Name: ", name)
 print("Age ", age)
 return
my_details(age=56,name="george")

 Output:

Name: george
Age 56

 Default Arguments:
Assumes a default value if a value is not provided in the function call for that argument.

def my_details(name, age=40):
 print("Name: ", name)
 print("Age ", age)
 return
my_details(name="george")

 Output:

Name: george
Age 40

 Variable length Arguments
If we want to specify more arguments than specified while defining the function,
variable length arguments are used. It is denoted by * symbol before parameter.

def my_details(*name):
 print(*name)
my_details("rajan","rahul","micheal",
ärjun")

Output:

rajan rahul micheal ärjun

6.9 MODULES:
 A module is a file containing Python definitions ,functions, statements and

instructions.
 Standard library of Python is extended as modules.
 To use these modules in a program, programmer needs to import the

module.

www.rejinpaul.comwww.rejinpaul.com

26 Unit 2: Data ,expressions, Statements

 Once we import a module, we can reference or use to any of its functions or
variables in our code.

o There is large number of standard modules also available in python.
o Standard modules can be imported the same way as we import our user-
defined modules.
o Every module contains many function.
o To access one of the function , you have to specify the name of the module and
the name of the function separated by dot . This format is called dot
notation.

Syntax:

import module_name
module_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:
import math
x=math.sqrt(25)
print(x)

import cal
x=cal.add(5,4)
print(x)

Built-in python modules are,
1.math – mathematical functions:
some of the functions in math module is,

 math.ceil(x) - Return the ceiling of x, the smallest integer greater

www.rejinpaul.comwww.rejinpaul.com

27 Unit 2: Data ,expressions, Statements

than or equal to x
 math.floor(x) - Return the floor of x, the largest integer less than or
equal to x.

 math.factorial(x) -Return x factorial. math.gcd(x,y)- Return the
greatest common divisor of the integers a and b

 math.sqrt(x)- Return the square root of x
 math.log(x)- return the natural logarithm of x
 math.log10(x) – returns the base-10 logarithms
 math.log2(x) - Return the base-2 logarithm of x.
 math.sin(x) – returns sin of x radians
 math.cos(x)- returns cosine of x radians
 math.tan(x)-returns tangent of x radians
 math.pi - The mathematical constant π = 3.141592
 math.e – returns The mathematical constant e = 2.718281

 2 .random-Generate pseudo-random numbers
 random.randrange(stop)
 random.randrange(start, stop[, step])
 random.uniform(a, b)
 -Return a random floating point number

ILLUSTRATIVE PROGRAMS
Program for SWAPPING(Exchanging)of
values

Output

a = int(input("Enter a value "))
b = int(input("Enter b value "))
c = a
a = b
b = c
print("a=",a,"b=",b,)

Enter a value 5
Enter b value 8
a=8
b=5

Program to find distance between two
points

Output

import math
x1=int(input("enter x1"))
y1=int(input("enter y1"))
x2=int(input("enter x2"))
y2=int(input("enter y2"))
distance =math.sqrt((x2-x1)**2)+((y2-
y1)**2)
print(distance)

enter x1 7
enter y1 6
enter x2 5
enter y2 7
2.5

Program to circulate n numbers Output:
a=list(input("enter the list")) enter the list '1234'

www.rejinpaul.comwww.rejinpaul.com

https://docs.python.org/3/library/random.html#module-random

28 Unit 2: Data ,expressions, Statements

print(a)
for i in range(1,len(a),1):
 print(a[i:]+a[:i])

['1', '2', '3', '4']
['2', '3', '4', '1']
['3', '4', '1', '2']
['4', '1', '2', '3']

Part A:
1. What is interpreter?
2. What are the two modes of python?
3. List the features of python.
4. List the applications of python
5. List the difference between interactive and script mode
6. What is value in python?
7. What is identifier? and list the rules to name identifier.
8. What is keyword?
9. How to get data types in compile time and runtime?
10. What is indexing and types of indexing?
11. List out the operations on strings.
12. Explain slicing?
13. Explain below operations with the example

(i)Concatenation (ii)Repetition
14. Give the difference between list and tuple
15. Differentiate Membership and Identity operators.
16. Compose the importance of indentation in python.
17. Evaluate the expression and find the result

 (a+b)*c/d
 a+b*c/d

18. Write a python program to print ‘n’ numbers.
19. Define function and its uses
20. Give the various data types in Python
21. Assess a program to assign and access variables.
22. Select and assign how an input operation was done in python.
23. Discover the difference between logical and bitwise operator.
24. Give the reserved words in Python.
25. Give the operator precedence in python.
26. Define the scope and lifetime of a variable in python.
27. Point out the uses of default arguments in python
28. Generalize the uses of python module.
29. Demonstrate how a function calls another function. Justify your answer.
30. List the syntax for function call with and without arguments.
31. Define recursive function.
32. What are the two parts of function definition? give the syntax.
33. Point out the difference between recursive and iterative technique.
34. Give the syntax for variable length arguments.

www.rejinpaul.comwww.rejinpaul.com

29 Unit 2: Data ,expressions, Statements

Part B
1. Explain in detail about various data types in Python with an example?
2. Explain the different types of operators in python with an example.
3. Discuss the need and importance of function in python.
4. Explain in details about function prototypes in python.
5. Discuss about the various type of arguments in python.
6. Explain the flow of execution in user defined function with example.
7. Illustrate a program to display different data types using variables and literal

constants.
8. Show how an input and output function is performed in python with an example.
9. Explain in detail about the various operators in python with suitable examples.
10. Discuss the difference between tuples and list
11. Discuss the various operation that can be performed on a tuple and Lists

(minimum 5)with an example program
12. What is membership and identity operators.
13. Write a program to perform addition, subtraction, multiplication, integer

division, floor division and modulo division on two integer and float.
14. Write a program to convert degree Fahrenheit to Celsius
15. Discuss the need and importance of function in python.
16. Illustrate a program to exchange the value of two variables with temporary

variables
17. Briefly discuss in detail about function prototyping in python. With suitable

example program
18. Analyze the difference between local and global variables.
19. Explain with an example program to circulate the values of n variables
20. Analyze with a program to find out the distance between two points using

python.
21. Do the Case study and perform the following operation in tuples i) Maxima

minima iii)sum of two tuples iv) duplicate a tuple v)slicing operator vi)
obtaining a list from a tuple vii) Compare two tuples viii)printing two tuples of
different data types

22. Write a program to find out the square root of two numbers.

www.rejinpaul.comwww.rejinpaul.com

1 Unit 3:control flow, functions

UNIT III

CONTROL FLOW, FUNCTIONS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else),
chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass;
Fruitful functions: return values, parameters, scope: local and global, composition,
recursion; Strings: string slices, immutability, string functions and methods, string
module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum the
array of numbers, linear search, binary search.

BOOLEAN VALUES:

Boolean:
 Boolean data type have two values. They are 0 and 1.
 0 represents False
 1 represents True
 True and False are keyword.

Example:
>>> 3==5
False
>>> 6==6
True
>>> True+True
2
>>> False+True
1
>>> False*True
0

OPERATORS:
 Operators are the constructs which can manipulate the value of operands.
 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is

called operator.

Types of Operators:

1. Arithmetic Operators
2. Comparison (Relational) Operators
3. Assignment Operators
4. Logical Operators
5. Bitwise Operators
6. Membership Operators
7. Identity Operators

www.rejinpaul.comwww.rejinpaul.com

2 Unit 3:control flow, functions

Arithmetic operators:
 They are used to perform mathematical operations like addition, subtraction,
multiplication etc.

Operator Description Example
a=10,b=20

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and
returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on
operators

a**b =10 to the
power 20

// Floor Division - The division of operands where the
result is the quotient in which the digits after the
decimal point are removed

5//2=2

Comparison (Relational) Operators:
 Comparison operators are used to compare values.
 It either returns True or False according to the condition.

Operator Description Example
a=10,b=20

== If the values of two operands are equal, then the condition
becomes true.

(a == b) is not
true.

!= If values of two operands are not equal, then condition becomes
true.

(a!=b) is true

> If the value of left operand is greater than the value of right
operand, then condition becomes true.

(a > b) is not
true.

< If the value of left operand is less than the value of right
operand, then condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value
of right operand, then condition becomes true.

(a >= b) is not
true.

<= If the value of left operand is less than or equal to the value of
right operand, then condition becomes true.

(a <= b) is
true.

Assignment Operators:
 Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left
side operand

c = a + b assigns
value of a + b into c

+= Add AND It adds right operand to the left operand and
assign the result to left operand

c += a is equivalent
to c = c + a

-= Subtract AND It subtracts right operand from the left operand
and assign the result to left operand

c -= a is equivalent
to c = c - a

www.rejinpaul.comwww.rejinpaul.com

3 Unit 3:control flow, functions

*= Multiply AND It multiplies right operand with the left operand
and assign the result to left operand

c *= a is equivalent
to c = c * a

/= Divide AND It divides left operand with the right operand and
assign the result to left operand

c /= a is equivalent
to c = c / ac /= a is
equivalent to c = c
/ a

%= Modulus AND It takes modulus using two operands and assign
the result to left operand

c %= a is
equivalent to c = c
% a

**= Exponent AND Performs exponential (power) calculation on
operators and assign value to the left operand

c **= a is
equivalent to c = c
** a

//= Floor Division It performs floor division on operators and
assign value to the left operand

c //= a is
equivalent to c = c
// a

Logical Operators:
 Logical operators are and, or, not operators.

Bitwise Operators:
 Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string,
list, tuple, dictionary or not.

 To check particular element is available in the list or not.
 Operators are in and not in.

www.rejinpaul.comwww.rejinpaul.com

4 Unit 3:control flow, functions

Example:
 x=[5,3,6,4,1]
 >>> 5 in x
 True
 >>> 5 not in x
 False
Identity Operators:
 They are used to check if two values (or variables) are located on the same part of
the memory.

Example
x = 5
y = 5
a = 'Hello'
b = 'Hello'
print(x is not y) // False
print(a is b)//True
CONDITIONALS

 Conditional if
 Alternative if… else
 Chained if…elif…else
 Nested if….else

Conditional (if):

 conditional (if) is used to test a condition, if the condition is true the statements

inside if will be executed.

syntax:

Flowchart:

www.rejinpaul.comwww.rejinpaul.com

5 Unit 3:control flow, functions

Example:

1. Program to provide flat rs 500, if the purchase amount is greater than 2000.

2. Program to provide bonus mark if the category is sports.

Program to provide flat rs 500, if the purchase amount
is greater than 2000.

output

purchase=eval(input(“enter your purchase amount”))
if(purchase>=2000):
 purchase=purchase-500
print(“amount to pay”,purchase)

enter your purchase
amount
2500
amount to pay
2000

Program to provide bonus mark if the category is
sports

output

m=eval(input(“enter ur mark out of 100”))
c=input(“enter ur categery G/S”)
if(c==”S”):
 m=m+5
print(“mark is”,m)

enter ur mark out of 100
85
enter ur categery G/S
S
mark is 90

alternative (if-else)

 In the alternative the condition must be true or false. In this else statement can
be combined with if statement. The else statement contains the block of code that
executes when the condition is false. If the condition is true statements inside the if get
executed otherwise else part gets executed. The alternatives are called branches,
because they are branches in the flow of execution.
syntax:

Flowchart:

Examples:

1. odd or even number

2. positive or negative number

3. leap year or not

www.rejinpaul.comwww.rejinpaul.com

6 Unit 3:control flow, functions

4. greatest of two numbers

5. eligibility for voting

Odd or even number Output

n=eval(input("enter a number"))
if(n%2==0):
 print("even number")
else:
 print("odd number")

enter a number4
even number

positive or negative number Output

n=eval(input("enter a number"))
if(n>=0):
 print("positive number")
else:
 print("negative number")

enter a number8
positive number

leap year or not Output

y=eval(input("enter a yaer"))
if(y%4==0):
 print("leap year")
else:
 print("not leap year")

enter a yaer2000
leap year

greatest of two numbers Output

a=eval(input("enter a value:"))
b=eval(input("enter b value:"))
if(a>b):
 print("greatest:",a)
else:
 print("greatest:",b)

enter a value:4
enter b value:7
greatest: 7

eligibility for voting Output

age=eval(input("enter ur age:"))
if(age>=18):
 print("you are eligible for vote")
else:
 print("you are eligible for vote")

enter ur age:78
you are eligible for vote

Chained conditionals(if-elif-else)

 The elif is short for else if.

 This is used to check more than one condition.

 If the condition1 is False, it checks the condition2 of the elif block. If all the

conditions are False, then the else part is executed.

 Among the several if...elif...else part, only one part is executed according to

the condition.

www.rejinpaul.comwww.rejinpaul.com

7 Unit 3:control flow, functions

 The if block can have only one else block. But it can have

multiple elif blocks.

 The way to express a computation like that is a chained conditional.

syntax:

Flowchart:

Example:

1. student mark system
2. traffic light system
3. compare two numbers
4. roots of quadratic equation

www.rejinpaul.comwww.rejinpaul.com

8 Unit 3:control flow, functions

student mark system Output

mark=eval(input("enter ur mark:"))
if(mark>=90):
 print("grade:S")
elif(mark>=80):
 print("grade:A")
elif(mark>=70):
 print("grade:B")
elif(mark>=50):
 print("grade:C")
else:
 print("fail")

enter ur mark:78
grade:B

traffic light system Output

colour=input("enter colour of light:")
if(colour=="green"):
 print("GO")
elif(colour=="yellow"):
 print("GET READY")
else:
 print("STOP")

enter colour of light:green
GO

compare two numbers Output

x=eval(input("enter x value:"))
y=eval(input("enter y value:"))
if(x == y):
 print("x and y are equal")
elif(x < y):
 print("x is less than y")
else:
 print("x is greater than y")

enter x value:5
enter y value:7
x is less than y

Roots of quadratic equation output

a=eval(input("enter a value:"))
b=eval(input("enter b value:"))
c=eval(input("enter c value:"))
d=(b*b-4*a*c)
if(d==0):
 print("same and real roots")
elif(d>0):
 print("diffrent real roots")
else:
 print("imaginagry roots")

enter a value:1
enter b value:0
enter c value:0
same and real roots

Nested conditionals

One conditional can also be nested within another. Any number of condition can

be nested inside one another. In this, if the condition is true it checks another if

condition1. If both the conditions are true statement1 get executed otherwise

statement2 get execute. if the condition is false statement3 gets executed

www.rejinpaul.comwww.rejinpaul.com

9 Unit 3:control flow, functions

Syntax:

Flowchart:

Example:

1. greatest of three numbers

2. positive negative or zero

greatest of three numbers output

a=eval(input(“enter the value of a”))

b=eval(input(“enter the value of b”))

c=eval(input(“enter the value of c”))

if(a>b):

 if(a>c):

 print(“the greatest no is”,a)

 else:

 print(“the greatest no is”,c)

enter the value of a 9

enter the value of a 1

enter the value of a 8
the greatest no is 9

www.rejinpaul.comwww.rejinpaul.com

10 Unit 3:control flow, functions

else:

 if(b>c):

 print(“the greatest no is”,b)

 else:
 print(“the greatest no is”,c)
positive negative or zero output

n=eval(input("enter the value of n:"))
if(n==0):
 print("the number is zero")
else:
 if(n>0):
 print("the number is positive")
 else:
 print("the number is negative")

enter the value of n:-9
the number is negative

ITERATION/CONTROL STATEMENTS:

 state
 while
 for
 break
 continue
 pass

State:

Transition from one process to another process under specified condition with in

a time is called state.

While loop:

 While loop statement in Python is used to repeatedly executes set of

statement as long as a given condition is true.

 In while loop, test expression is checked first. The body of the loop is

entered only if the test_expression is True. After one iteration, the test

expression is checked again. This process continues until

the test_expression evaluates to False.

 In Python, the body of the while loop is determined through indentation.

 The statements inside the while starts with indentation and the first

unindented line marks the end.

Syntax:

www.rejinpaul.comwww.rejinpaul.com

11 Unit 3:control flow, functions

Flowchart:

Examples:

1. program to find sum of n numbers:

2. program to find factorial of a number

3. program to find sum of digits of a number:

4. Program to Reverse the given number:

5. Program to find number is Armstrong number or not

6. Program to check the number is palindrome or not

Sum of n numbers: output

n=eval(input("enter n"))
i=1
sum=0
while(i<=n):
 sum=sum+i
 i=i+1
print(sum)

enter n
10
55

Factorial of a numbers: output

n=eval(input("enter n"))
i=1
fact=1
while(i<=n):
 fact=fact*i
 i=i+1
print(fact)

enter n
5
120

Sum of digits of a number: output

n=eval(input("enter a number"))
sum=0
while(n>0):
 a=n%10

enter a number
123
6

www.rejinpaul.comwww.rejinpaul.com

12 Unit 3:control flow, functions

 sum=sum+a
 n=n//10
print(sum)

Reverse the given number: output

n=eval(input("enter a number"))
sum=0
while(n>0):
 a=n%10
 sum=sum*10+a
 n=n//10
print(sum)

enter a number
123
321

Armstrong number or not output

n=eval(input("enter a number"))
org=n
sum=0
while(n>0):
 a=n%10
 sum=sum+a*a*a
 n=n//10
if(sum==org):
 print("The given number is Armstrong
number")
else:
 print("The given number is not
Armstrong number")

enter a number153
The given number is Armstrong number

Palindrome or not output

n=eval(input("enter a number"))
org=n
sum=0
while(n>0):
 a=n%10
 sum=sum*10+a
 n=n//10
if(sum==org):
 print("The given no is palindrome")
else:
 print("The given no is not palindrome")

enter a number121
The given no is palindrome

www.rejinpaul.comwww.rejinpaul.com

13 Unit 3:control flow, functions

For loop:

 for in range:

 We can generate a sequence of numbers using range() function.
 range(10) will generate numbers from 0 to 9 (10 numbers).

 In range function have to define the start, stop and step size
as range(start,stop,step size). step size defaults to 1 if not provided.

syntax

Flowchart:

For in sequence

 The for loop in Python is used to iterate over a sequence (list, tuple, string).

Iterating over a sequence is called traversal. Loop continues until we reach the

last element in the sequence.

 The body of for loop is separated from the rest of the code using indentation.

Sequence can be a list, strings or tuples

s.no sequences example output

1.

For loop in string

for i in "Ramu":

 print(i)

R

A

M

U

www.rejinpaul.comwww.rejinpaul.com

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

14 Unit 3:control flow, functions

2.

For loop in list

for i in [2,3,5,6,9]:

 print(i)

2

3

5

6

9

3.

For loop in tuple

for i in (2,3,1):

print(i)

2

3

1

Examples:

1. print nos divisible by 5 not by 10:

2. Program to print fibonacci series.

3. Program to find factors of a given number

4. check the given number is perfect number or not

5. check the no is prime or not

6. Print first n prime numbers

7. Program to print prime numbers in range

print nos divisible by 5 not by 10 output

n=eval(input("enter a"))
for i in range(1,n,1):
 if(i%5==0 and i%10!=0):
 print(i)

enter a:30
5
15
25

Fibonacci series output

a=0
b=1
n=eval(input("Enter the number of terms: "))
print("Fibonacci Series: ")
print(a,b)
for i in range(1,n,1):
 c=a+b
 print(c)
 a=b
 b=c

Enter the number of terms: 6
Fibonacci Series:
0 1
1
2
3
5
8

find factors of a number Output

n=eval(input("enter a number:"))
for i in range(1,n+1,1):
 if(n%i==0):
 print(i)

enter a number:10
1
2
5
10

www.rejinpaul.comwww.rejinpaul.com

15 Unit 3:control flow, functions

check the no is prime or not output

n=eval(input("enter a number"))
for i in range(2,n):
 if(n%i==0):
 print("The num is not a prime")
 break
else:
 print("The num is a prime number.")

enter a no:7
The num is a prime number.

check a number is perfect number or not Output

n=eval(input("enter a number:"))
sum=0
for i in range(1,n,1):
 if(n%i==0):
 sum=sum+i
if(sum==n):
 print("the number is perfect number")
else:
 print("the number is not perfect number")

enter a number:6
the number is perfect number

Program to print first n prime numbers Output

number=int(input("enter no of prime
numbers to be displayed:"))
count=1
n=2
while(count<=number):
 for i in range(2,n):
 if(n%i==0):
 break
 else:
 print(n)
 count=count+1
 n=n+1

enter no of prime numbers to be
displayed:5
2
3
5
7
11

Program to print prime numbers in range output:

lower=eval(input("enter a lower range"))
upper=eval(input("enter a upper range"))
for n in range(lower,upper + 1):
 if n > 1:
 for i in range(2,n):
 if (n % i) == 0:
 break
 else:
 print(n)

enter a lower range50
enter a upper range100
53
59
61
67
71
73
79
83
89
97

www.rejinpaul.comwww.rejinpaul.com

16 Unit 3:control flow, functions

Loop Control Structures

BREAK

 Break statements can alter the flow of a loop.

 It terminates the current

 loop and executes the remaining statement outside the loop.

 If the loop has else statement, that will also gets terminated and come out of the

loop completely.

Syntax:

 break

Flowchart

example Output

for i in "welcome":
 if(i=="c"):
 break
 print(i)

w
e
l

www.rejinpaul.comwww.rejinpaul.com

17 Unit 3:control flow, functions

CONTINUE

 It terminates the current iteration and transfer the control to the next iteration in

the loop.

Syntax: Continue

Flowchart

Example: Output

for i in "welcome":
 if(i=="c"):
 continue
 print(i)

w
e
l
o
m
e

PASS

 It is used when a statement is required syntactically but you don’t want any code

to execute.

 It is a null statement, nothing happens when it is executed.

www.rejinpaul.comwww.rejinpaul.com

18 Unit 3:control flow, functions

Syntax:

 pass

break

Example Output

for i in “welcome”:
 if (i == “c”):
 pass
 print(i)

w
e
l
c
o
m
e

Difference between break and continue

break continue

It terminates the current loop and

executes the remaining statement outside

the loop.

It terminates the current iteration and

transfer the control to the next iteration in

the loop.

syntax:

break

syntax:

continue

for i in "welcome":

 if(i=="c"):

 break

 print(i)

for i in "welcome":

 if(i=="c"):

 continue

 print(i)

w

e

l

w

e

l

o

m

e

else statement in loops:

else in for loop:

 If else statement is used in for loop, the else statement is executed when the loop

has reached the limit.

 The statements inside for loop and statements inside else will also execute.

example output

for i in range(1,6):

 print(i)

else:

 print("the number greater than 6")

1

2

3

4

5 the number greater than 6

www.rejinpaul.comwww.rejinpaul.com

19 Unit 3:control flow, functions

else in while loop:

 If else statement is used within while loop , the else part will be executed when

the condition become false.

 The statements inside for loop and statements inside else will also execute.

Program output

i=1

while(i<=5):

 print(i)

 i=i+1

else:

 print("the number greater than 5")

1

2

3

4

5

the number greater than 5

Fruitful Function

 Fruitful function
 Void function
 Return values
 Parameters
 Local and global scope
 Function composition
 Recursion

Fruitful function:

A function that returns a value is called fruitful function.

Example:

 Root=sqrt(25)

Example:

def add():

 a=10

 b=20

 c=a+b

 return c

c=add()

print(c)

Void Function

 A function that perform action but don’t return any value.

Example:

 print(“Hello”)

Example:

def add():

 a=10

 b=20

www.rejinpaul.comwww.rejinpaul.com

20 Unit 3:control flow, functions

 c=a+b

 print(c)

add()

Return values:

return keywords are used to return the values from the function.

example:

return a – return 1 variable

return a,b– return 2 variables

return a,b,c– return 3 variables

return a+b– return expression

return 8– return value

PARAMETERS / ARGUMENTS:

 Parameters are the variables which used in the function definition. Parameters

are inputs to functions. Parameter receives the input from the function call.

 It is possible to define more than one parameter in the function definition.

Types of parameters/Arguments:

1. Required/Positional parameters

2. Keyword parameters

3. Default parameters

4. Variable length parameters

Required/ Positional Parameter:

The number of parameter in the function definition should match exactly with

number of arguments in the function call.

Example Output:

def student(name, roll):

 print(name,roll)

student(“George”,98)

George 98

Keyword parameter:

 When we call a function with some values, these values get assigned to the parameter

according to their position. When we call functions in keyword parameter, the order of the

arguments can be changed.

Example Output:

def student(name,roll,mark):

 print(name,roll,mark)

student(90,102,"bala")

90 102 bala

www.rejinpaul.comwww.rejinpaul.com

21 Unit 3:control flow, functions

Default parameter:

Python allows function parameter to have default values; if the function is called

without the argument, the argument gets its default value in function definition.

Example Output:

def student(name, age=17):

 print (name, age)

student(“kumar”):

student(“ajay”):

Kumar 17

Ajay 17

Variable length parameter

 Sometimes, we do not know in advance the number of arguments that will
be passed into a function.

 Python allows us to handle this kind of situation through function calls
with number of arguments.

 In the function definition we use an asterisk (*) before the parameter name
to denote this is variable length of parameter.

Example Output:

def student(name,*mark):

 print(name,mark)

student (“bala”,102,90)

bala (102 ,90)

Local and Global Scope

Global Scope

 The scope of a variable refers to the places that you can see or access a variable.

 A variable with global scope can be used anywhere in the program.

 It can be created by defining a variable outside the function.

Example output

a=50
def add():

 b=20
 c=a+b
 print©
def sub():
 b=30
 c=a-b
 print©
print(a)

70

20

50

Global Variable

Local Variable

www.rejinpaul.comwww.rejinpaul.com

22 Unit 3:control flow, functions

Local Scope A variable with local scope can be used only within the function .

Example output

def add():

 b=20
 c=a+b
 print©
def sub():
 b=30
 c=a-b
 print©
print(a)
print(b)

70

20

error
error

Function Composition:

 Function Composition is the ability to call one function from within another

function

 It is a way of combining functions such that the result of each function is passed

as the argument of the next function.

 In other words the output of one function is given as the input of another function

is known as function composition.

Example: Output:

math.sqrt(math.log(10))
def add(a,b):
 c=a+b
 return c
def mul(c,d):
 e=c*d
 return e
c=add(10,20)
e=mul(c,30)
print(e)

900

find sum and average using function
composition

output

def sum(a,b):
 sum=a+b
 return sum
def avg(sum):
 avg=sum/2
 return avg
a=eval(input("enter a:"))
b=eval(input("enter b:"))
sum=sum(a,b)
avg=avg(sum)

enter a:4
enter b:8
the avg is 6.0

Local Variable

Local Variable

www.rejinpaul.comwww.rejinpaul.com

23 Unit 3:control flow, functions

print("the avg is",avg)
Recursion

 A function calling itself till it reaches the base value - stop point of function call.

Example: factorial of a given number using recursion

Factorial of n Output

def fact(n):
 if(n==1):
 return 1
 else:
 return n*fact(n-1)

n=eval(input("enter no. to find
fact:"))
fact=fact(n)
print("Fact is",fact)

enter no. to find fact:5
Fact is 120

Explanation

Examples:

1. sum of n numbers using recursion

2. exponential of a number using recursion

Sum of n numbers Output

def sum(n):
 if(n==1):
 return 1
 else:
 return n*sum(n-1)

n=eval(input("enter no. to find
sum:"))
sum=sum(n)
print("Fact is",sum)

enter no. to find sum:10
Fact is 55

www.rejinpaul.comwww.rejinpaul.com

24 Unit 3:control flow, functions

Strings:

 Strings
 String slices
 Immutability
 String functions and methods
 String module

Strings:

 String is defined as sequence of characters represented in quotation marks

(either single quotes (‘) or double quotes (“).

 An individual character in a string is accessed using a index.

 The index should always be an integer (positive or negative).

 A index starts from 0 to n-1.

 Strings are immutable i.e. the contents of the string cannot be changed after it is

created.

 Python will get the input at run time by default as a string.

 Python does not support character data type. A string of size 1 can be treated as

characters.

1. single quotes (' ')

2. double quotes (" ")

3. triple quotes(“”” “”””)

Operations on string:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Member ship

indexing
>>>a=”HELLO”

>>>print(a[0])

>>>H

>>>print(a[-1])

>>>O

 Positive indexing helps in accessing

the string from the beginning

 Negative subscript helps in accessing

the string from the end.

www.rejinpaul.comwww.rejinpaul.com

25 Unit 3:control flow, functions

Slicing:

Print[0:4] – HELL

Print[:3] – HEL

Print[0:]- HELLO

The Slice[start : stop] operator extracts

sub string from the strings.

A segment of a string is called a slice.

Concatenation

a=”save”

b=”earth”

>>>print(a+b)

saveearth

The + operator joins the text on both

sides of the operator.

Repetitions:

a=”panimalar ”

>>>print(3*a)

panimalarpanimalar

panimalar

The * operator repeats the string on the

left hand side times the value on right

hand side.

Membership:

>>> s="good morning"

 >>>"m" in s

True

>>> "a" not in s

True

Using membership operators to check a

particular character is in string or not.

Returns true if present

String slices:

 A part of a string is called string slices.

 The process of extracting a sub string from a string is called slicing.

Slicing:

a=”HELLO”

Print[0:4] – HELL

Print[:3] – HEL

Print[0:]- HELLO

The Slice[n : m] operator extracts sub

string from the strings.

A segment of a string is called a slice.

Immutability:

 Python strings are “immutable” as they cannot be changed after they are created.

 Therefore [] operator cannot be used on the left side of an assignment.

operations Example output

element assignment

a="PYTHON"
a[0]='x'

TypeError: 'str' object does
not support element
assignment

element deletion

a=”PYTHON”
del a[0]

TypeError: 'str' object
doesn't support element
deletion

delete a string a=”PYTHON”
del a

NameError: name 'my_string'
is not defined

www.rejinpaul.comwww.rejinpaul.com

26 Unit 3:control flow, functions

print(a)
string built in functions and methods:

 A method is a function that “belongs to” an object.

Syntax to access the method

 Stringname.method()

a=”happy birthday”

here, a is the string name.
 syntax example description

1 a.capitalize() >>> a.capitalize()
' Happy birthday’

capitalize only the first letter
in a string

2 a.upper() >>> a.upper()
'HAPPY BIRTHDAY’

change string to upper case

3 a.lower() >>> a.lower()
' happy birthday’

change string to lower case

4 a.title() >>> a.title()
' Happy Birthday '

change string to title case i.e.
first characters of all the
words are capitalized.

5 a.swapcase() >>> a.swapcase()
'HAPPY BIRTHDAY'

change lowercase characters
to uppercase and vice versa

6 a.split() >>> a.split()
['happy', 'birthday']

returns a list of words
separated by space

7 a.center(width,”fillchar
”)

>>>a.center(19,”*”)
'***happy birthday***'

pads the string with the
specified “fillchar” till the
length is equal to “width”

8 a.count(substring) >>> a.count('happy')
1

returns the number of
occurences of substring

9 a.replace(old,new) >>>a.replace('happy',
'wishyou happy')
'wishyou happy
birthday'

replace all old substrings
with new substrings

10 a.join(b) >>> b="happy"
>>> a="-"
>>> a.join(b)
'h-a-p-p-y'

returns a string concatenated
with the elements of an
iterable. (Here “a” is the
iterable)

11 a.isupper() >>> a.isupper()
False

checks whether all the case-
based characters (letters) of
the string are uppercase.

12 a.islower() >>> a.islower()
True

checks whether all the case-
based characters (letters) of
the string are lowercase.

13 a.isalpha() >>> a.isalpha()
False

checks whether the string
consists of alphabetic
characters only.

www.rejinpaul.comwww.rejinpaul.com

27 Unit 3:control flow, functions

14 a.isalnum() >>> a.isalnum()
False

checks whether the string
consists of alphanumeric
characters.

15 a.isdigit() >>> a.isdigit()
False

checks whether the string
consists of digits only.

16 a.isspace() >>> a.isspace()
False

 checks whether the string
consists of whitespace only.

17 a.istitle() >>> a.istitle()
False

checks whether string is title
cased.

18 a.startswith(substring) >>> a.startswith("h")
True

checks whether string starts
with substring

19 a.endswith(substring) >>> a.endswith("y")
True

checks whether the string
ends with the substring

20 a.find(substring) >>> a.find("happy")
0

returns index of substring, if
it is found. Otherwise -1 is
returned.

21 len(a) >>>len(a)
>>>14

Return the length of the
string

22 min(a) >>>min(a)
>>>’ ‘

Return the minimum
character in the string

23 max(a) max(a)
>>>’y’

Return the maximum
character in the string

String modules:

 A module is a file containing Python definitions, functions, statements.

 Standard library of Python is extended as modules.

 To use these modules in a program, programmer needs to import the module.

 Once we import a module, we can reference or use to any of its functions or

variables in our code.

 There is large number of standard modules also available in python.

 Standard modules can be imported the same way as we import our user-defined

modules.

Syntax:

import module_name

Example output

import string
print(string.punctuation)
print(string.digits)
print(string.printable)
print(string.capwords("happ
y birthday"))
print(string.hexdigits)
print(string.octdigits)

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
0123456789
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
KLMNOPQRSTUVWXYZ!"#$%&'()*+,-
./:;<=>?@[\]^_`{|}~
Happy Birthday
0123456789abcdefABCDEF
01234567

www.rejinpaul.comwww.rejinpaul.com

28 Unit 3:control flow, functions

Escape sequences in string

Escape
 Sequence

Description example

\n new line >>> print("hai \nhello")
hai
hello

\\ prints Backslash (\) >>> print("hai\\hello")
hai\hello

\' prints Single quote (') >>> print("'")
'

\" prints Double quote
(")

>>>print("\"")
"

\t prints tab sapace >>>print(“hai\thello”)
hai hello

\a ASCII Bell (BEL) >>>print(“\a”)

List as array:

Array:

 Array is a collection of similar elements. Elements in the array can be accessed by
index. Index starts with 0. Array can be handled in python by module named array.

To create array have to import array module in the program.
Syntax :
 import array
Syntax to create array:

Array_name = module_name.function_name(‘datatype’,[elements])
example:
 a=array.array(‘i’,[1,2,3,4])

a- array name
array- module name
i- integer datatype

Example
Program to find sum of

array elements

Output

import array
sum=0
a=array.array('i',[1,2,3,4])
for i in a:
 sum=sum+i
print(sum)

10

www.rejinpaul.comwww.rejinpaul.com

29 Unit 3:control flow, functions

Convert list into array:
fromlist() function is used to append list to array. Here the list is act like a array.

Syntax:
arrayname.fromlist(list_name)
Example
program to convert list

into array

Output

import array
sum=0
l=[6,7,8,9,5]
a=array.array('i',[])
a.fromlist(l)
for i in a:
 sum=sum+i
print(sum)

35

Methods in array

a=[2,3,4,5]

 Syntax example Description

1 array(data type,

value list)

array(‘i’,[2,3,4,5]) This function is used to create

an array with data type and

value list specified in its

arguments.

2 append()

>>>a.append(6)
[2,3,4,5,6]

This method is used to add the

at the end of the array.

3 insert(index,element

)

>>>a.insert(2,10)

[2,3,10,5,6]

This method is used to add the

value at the position specified in

its argument.

4 pop(index)

>>>a.pop(1)

[2,10,5,6]

This function removes the

element at the position

mentioned in its argument, and

returns it.

5 index(element) >>>a.index(2)

0

This function returns the index

of value

6 reverse() >>>a.reverse()

[6,5,10,2]

This function reverses the

array.

7 count() a.count() This is used to count number of

www.rejinpaul.comwww.rejinpaul.com

30 Unit 3:control flow, functions

4 elements in an array

ILLUSTRATIVE PROGRAMS:

Square root using newtons method: Output:

def newtonsqrt(n):
 root=n/2
 for i in range(10):
 root=(root+n/root)/2
 print(root)
n=eval(input("enter number to find Sqrt: "))
newtonsqrt(n)

enter number to find Sqrt: 9
3.0

GCD of two numbers output

n1=int(input("Enter a number1:"))
n2=int(input("Enter a number2:"))
for i in range(1,n1+1):
 if(n1%i==0 and n2%i==0):
 gcd=i
print(gcd)

Enter a number1:8
Enter a number2:24
8

Exponent of number Output:

def power(base,exp):
 if(exp==1):
 return(base)
 else:
 return(base*power(base,exp-1))
base=int(input("Enter base: "))
exp=int(input("Enter exponential value:"))
result=power(base,exp)
print("Result:",result)

Enter base: 2
Enter exponential value:3
Result: 8

sum of array elements: output:

a=[2,3,4,5,6,7,8]
sum=0
for i in a:
 sum=sum+i
print("the sum is",sum)

the sum is 35

Linear search output

a=[20,30,40,50,60,70,89]
print(a)
search=eval(input("enter a element to search:"))
for i in range(0,len(a),1):
 if(search==a[i]):
 print("element found at",i+1)
 break
else:
 print("not found")

[20, 30, 40, 50, 60, 70, 89]
enter a element to search:30
element found at 2

www.rejinpaul.comwww.rejinpaul.com

31 Unit 3:control flow, functions

Binary search output

a=[20, 30, 40, 50, 60, 70, 89]
print(a)
search=eval(input("enter a element to search:"))
start=0
stop=len(a)-1
while(start<=stop):
 mid=(start+stop)//2
 if(search==a[mid]):
 print("elemrnt found at",mid+1)
 break
 elif(search<a[mid]):
 stop=mid-1
 else:
 start=mid+1
else:
 print("not found")

[20, 30, 40, 50, 60, 70, 89]
enter a element to search:30
element found at 2

Part A:

1. What are Boolean values?

2. Define operator and operand?

3. Write the syntax for if with example?

4. Write the syntax and flowchart for if else.

5. Write the syntax and flowchart for chained if.

6. define state

7. Write the syntax for while loop with flowchart.

8. Write the syntax for for loopwith flowchart.

9. Differentiate break and continue.

10. mention the use of pass

11. what is fruitful function

12. what is void function

13. mention the different ways of writing return statement

14. What is parameter and list down its type?

15. What is local and global scope?

16. Differentiate local and global variable?

17. What is function composition, give an example?

18. Define recursion.

19. Differentiate iteration and recursion.

20. Define string. How to get a string at run time.

www.rejinpaul.comwww.rejinpaul.com

32 Unit 3:control flow, functions

21. What is slicing? Give an example.

22. What is immutability of string?

23. List out some string built in function with example?

24. Define string module?

25. How can list act as array?

26. write a program to check the number is odd or even.

27. write a program to check the number positive or negative

28. write a program to check the year is leap year or not

29. write a program to find greatest of two numbers

30. write a program for checking eligibility for vote

31. write a program to find sum of n numbers

32. write a program to find factorial of given numbers

33. write a program to find sum of digits of a number

34. Write a program to reverse the given number.

35. Write a program to check the given number is palindrome or not.

36. write a program to check the given number is Armstrong or not

37. how can you use for loop in sequence.

38. how can you use else statement if loops.

39. What is the use of map() function?

Part B:

1. Explain conditional statements in detail with example(if, if..else, if..elif..else)

2. explain in detail about operators in detail

3. Explain in detail about iterations with example.(for, while)

4. Explain the usage of else statements in loops

5. Explain in detail about using for loop in sequence.

6. Explain in detail about string built in function with suitable examples?

7. Explain about loop control statement(break, continue, pass)

8. Breifly discuss about fruitful function.

9. Discuss with an example about local and global variable

10. Discuss with an example about function composition

11. Explain in detail about recursion with example.

12. Explain in detail about strings and its operations(slicing,immutablity)

13. Program to find square root of a given number using newtons method

14. program to find gcd of given nnumber

15. program to find exponentiation of given number using recursion

16. program to find sum of array elements.

17. program to search an element using linear search.

18. program to search an element using binary element.

19. program to find factorial of a given number using recursion

www.rejinpaul.comwww.rejinpaul.com

