	Utech
Name :	
Roll No. :	Contractory Permiting and Contractory
Invigilator's Signature :	

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/2012-13 2012 ANALOG ELECTRONIC CIRCUITS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – **A**

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) An ideal regulated power supply should have regulation which is

a)	maximum	b)	50%
ч,	mannann	D)	00/0

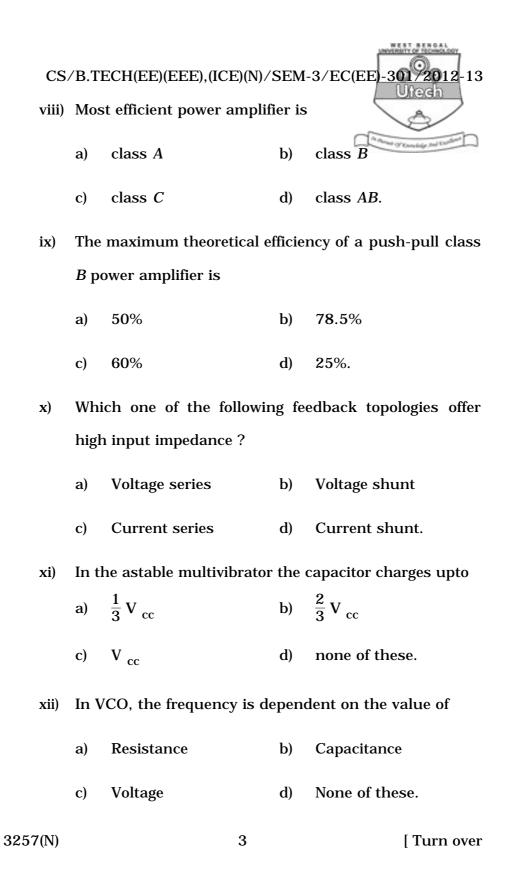
- c) zero d) 75%.
- ii) Thermal Runaway in a transistor is due to
 - a) heating of the transistor
 - b) changes in β which increases with temperature
 - c) increase in reverse collector saturation current due to rise in temperature
 - d) none of these.

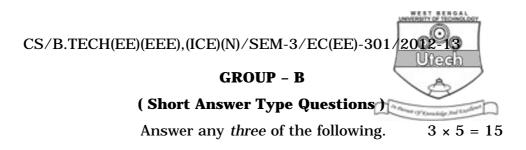
3257(N)

[Turn over

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/20

- In amplifier blocking capacitors are used
- a) to increase the bandwidth
 - b) to match the impedance
 - c) to increase the gain
 - d) to avoid dc mixing with input or output.
- iv) The condition of oscillation is
 - a) $A\beta = 1$

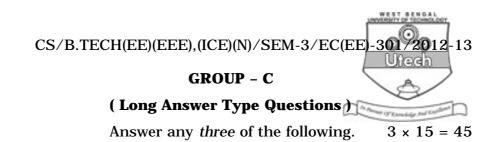

iii)


- b) feedback must be regenerative
- c) phase angle must be zero or integral multiple of 360°
- d) all of these.
- v) The expression of closed loop gain (A_{f}) for negative feedback amplifier is

a)
$$\frac{A}{1 + A\beta}$$

b) $\frac{A}{1 - A\beta}$
c) $\frac{1}{1 + A\beta}$
d) $\frac{1}{1 - A\beta}$

- vi) A Schmitt trigger uses
 - a) Negative feedback
 - b) Positive feedback
 - c) Pull up resistor
 - d) Compensating capacitor.
- vii) Differential amplifier can be used to amplify
 - a) only *a.c.* signal
 - b) only *d.c.* signal
 - c) both *a.c.* and *d.c.* signal
 - d) none of these.


3257(N)

- 2. a) Explain the need of biasing of a transistor.
 - b) Draw any one type of transistor biasing arrangement and determine its stability factor. 2+3
- 3. Draw the *h*-parameter equivalent circuit of low frequency *CE* mode transistor amplifier and hence calculate the current gain in terms of *h*-parameters. 2 + 3
- 4. What is VCO ? What are the basic differences between VCO and fixed frequency oscillator ?2 + 3
- 5. What is cross-over distortion ? How does cross-over distortion arise in class *B* power amplifier ? Suggest one method to avoid cross-over distortion. 1 + 3 + 1
- 6. Draw the electrical equaivalent circuit of a vibrating crystal and state the significance of each component. What are f_s and f_p ? 3+2

3257(N)

- 7. a) Describe the working principle of π -filter with diagram.
 - b) Draw the circuit of a shunt regulator and explain its operation.
 - c) What are the merits of switched mode power supply (SMPS) over regulated power supply? With the help of a neat circuit diagram briefly explain the operation of switched mode power supply. 4 + 5 + (1 + 5)
- 8. a) Why voltage divider bias circuit is known as self bias circuit ? A silicon transistor with $\beta = 50$, $V_{BE} = 0.6$ V, $V_{CC} = 22.5$ V and $R_C = 5.6$ K Ω is used for self biasing circuit. It is desired to establish a Q point at $V_{CE} = 12$ V, $I_C = 1.5$ mA and a stability factor $S \le 3$. Find $R_E = R_1$ and R_2

(The symbols have their usual meanings).

b) Find the upper cut-off frequency of a two stage common-emitter RC coupled amplifier. A two stage common-emitter RC coupled amplifier uses transistor of the type BC 149 C of which the *h*-parameters and the internal capacitances are $h_{fe} = 600$, $h_{ie} = 10 \text{ k}\Omega$, $C_{bc} = 2.5 \text{ pF}$, $C_{be} = 9 \text{ pF}$. If the coupling capacitor is 0.5 µF and the load resistance is 10 KΩ. Find the upper cut-off frequency and its gain. (2 + 5) + (4 + 4)

3257(N)

[Turn over

- a) Give the circuit of colpitt's oscillator and explain its operation. Derive the condition for sustained oscillation and the expression for the frequency of oscillation of it.
 - b) What is the difference between Hartley and colpitt's oscillator.
 - c) An Hartle oscillator is designed with $L1 = 20 \mu$ H, L2 = 2mH and a variable capacitor. Determine the range of capacitance values if the frequency is varied between 950 2050 kHz. (5+5)+2+3
- 10. a) What is power amplifier ? How does it differ from a voltage amplifier ?
 - b) Explain with circuit diagram the operation of a transformer coupled class A power amplifier and calculate its maximum power efficiency.
 - c) Two transistor operate in class B push pull circuit with a collector supply voltage $V_{cc} = 15$ volt. The turns ratio of the output transformer is 3 : 1 and the load resistance is 9 ohm. Determine maximum *dc* power supplied and the maximum output power. Also find out efficiency. 3 + 7 + 5
- 11. a) What are the criteria of a good instrumentation amplifier ? Describe the steps for building an instrumentation amplifier starting from the basic differential amplifier.

3257(N)

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/2012-13

- b) Draw the circuit diagram of an astable multivibrator using 555 timer and derive the expression of its frequency of oscillation.
- c) For an astable multi-vibrator using 555 timer, $R_A = 6.8$ K Ω , $R_B = 3.3$ K Ω and C = 0.1 µF, calculate
 - i) *t*_{HIGH}
 - ii) t_{LOW}
 - iii) free running frequency
 - iv) duty cycle, D. (2+5)+5+3
- 12. Write short notes on any *three* of the following : 3×5
 - a) PLL
 - b) Phase-shift oscillator
 - c) Tuned amplifier
 - d) Current mirror circuit
 - e) Trans-conductance multiplier.

[Turn over