

Code No.: 5295/M

FACULTY OF INFORMATICS B.E. 3/4 (IT) II Semester (Main) Examination, May/June 2012 ADVANCED COMPUTER ARCHITECTURE (Elective - I)

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A. Answer five questions

	from Part B.	questions
	PART-A	(25 Marks)
1. Explain	node duplication in static multiprocessor scheduling.	nasiyOr(s mayAf (d ³
2. Define c	computational granularity, control dependence and Bisectic	
3. Give so	me salient features of a super scalar processor.	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4. Define in	nclusion property and coherence property.	::::::::::::::::::::::::::::::::::::::
5. List the I	imitations of Crossbar Networks.	. 10 (1) (1) 3
6. What is	a Vector Reduction Instruction ?	2
7. Explain t	oriefly the synchronous paradigm in synchronous message	e passing. 3
8. What is o	dependence testing?	2
Distingui section.	ish between spin locks and suspended locks for sole acces	ss to a critical
10. Present	a monitor structure.	3
	PART-B	(50 Marks)
11. State Bei Bernsteir	rnstein's conditions. Explain detection of parallelism in a pr n's conditions using a suitable example.	rogram using
12. Present A	Asynchronous and synchronous pipeline models and the coon table.	orresponding
/ 1984 a		

Code No.: 5295/M

- 13. Describe the following techniques to accomplish Latency-Hiding:
 - a) Perfetching
 - b) Coherent caches.
- 14. Explain Wavefronting approach for fine-grain parallelization.
- 15. Explain how object-oriented approach to parallel programming offers a formal basis for decomposing the data structures and threads of control in user program.
- 16. Explain the following:
 - a) Dynamic Networks.
 - b) Hyper cube routing function.
 - c) Parallelism in concurrency as experienced in object oriented programming.
- 17. Write notes on:
 - a) Multitasking Trade-offs.
 - b) Shared variable model for parallel programming.
 - c) Dynamic Network characteristics of Bus System.