Roll No. \square
Total No. of Questions: 07

BCA(2009 to 2010 Batch) (Sem.-1)
 MATHEMATICS (BRIDGE COURSE)
 Subject Code : BC-102
 Paper ID : [B0202]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.
3. Use of Non-Programmable Scientific calculator is allowed.

SECTION-A

1. Write short notes on :
(a) Write the set $\mathrm{A}=\{5,10,15,20,25\}$ in the set builder form.
(b) If $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{4,5\}$, then show that $\mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$.
(c) If X and Y are any two non-empty sets determine $\mathrm{X} \cap\left(\mathrm{X}^{\mathrm{C}} \cap \mathrm{Y}^{\mathrm{C}}\right)$ where X^{C}, Y^{C} are complements of X and Y respectively.
(d) Define a Radian.
(e) If $R \cos \theta=\sqrt{3}$ and $R \sin \theta=1$, find R and θ.
(f) Find the number of terms in the Binomial expansion of the expression $\left(1+2 x+x^{2}\right)^{20}$.
(g) Find x, y, z and w if

$$
3\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{rr}
x & 6 \\
-1 & 2 w
\end{array}\right]+\left[\begin{array}{cc}
4 & x+y \\
z+w & 3
\end{array}\right]
$$

(h) Define a skew-symmetric matrix.
(i) Find the mean of the following distribution :
$\begin{array}{llllllll}\text { Marks (X) : } & 20 & 21 & 22 & 23 & 24 & 25 & 26\end{array}$
Frequency (Y): 1
2
4
7
5
3
(j) Marks obtained by students awarded out of 100 are as follows : Form a frequency table with class interval 10.
$15,22,37,37,40,42,50,51,56,60,61,63,70,75,78,81,90$

SECTION-B

2. Prove that $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$ for any three sets.
3. Draw a Venn diagram of the sets A, B and C where
(a) A and C are dijoint but $\mathrm{A} \subseteq \mathrm{B}, \mathrm{B} \cap \mathrm{C} \neq \phi$
(b) Where $\mathrm{A} \subseteq \mathrm{B}, \mathrm{B} \cap \mathrm{C} \neq \phi$ but $\mathrm{A}^{\mathrm{C}} \cap \mathrm{C}^{\mathrm{C}} \neq \phi, \mathrm{A} \cap \mathrm{C} \neq \phi$
4. Prove that:
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
5. Find the term independent of x in the expansion of $\left(2 x+\frac{1}{x}\right)^{10}$ by Binomial Theorem.
6. If $\mathrm{A}=\left[\begin{array}{rrr}71 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2\end{array}\right\rfloor$ and $\mathrm{B}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right]$
from the products AB and BA and show that $\mathrm{AB} \neq \mathrm{BA}$.
7. The (numbers $(\mathcal{B},-63) 8 \mathrm{amdd}(5 \mathrm{Ha}$ Had frequencies respectively. If the arithmetic mean is 5 , find the value of x.
