(2 x 10)

Registration No :										
Total Number of Pages : 02										B.Tech
										PME5J101
5 th Sei	neste	r Reg	jula	r / B	ack	Exa	amin	atio	n 20	019-20
	OPT	IMIZ	ATI	ON I	N E	NGI	NEE	RIN	G	
		E	BRA	NCH	1 : N	IEC	Н			
			Max	Ma	rks	: 10	0			
			Tin	ne : :	3 Hc	ours	5			
		G).CC	DE	: HF	RB4 ⁻	14			
Answer Question No.1 (Pa	rt-1) w	/hich	is d	com	puls	ory	, an	y El	GHT	from Part-II and any TWO
			fre	om F	Part	-111.				-
The figu	ures in	the	righ	it ha	nd ı	mar	gin i	indi	cate	e marks.

Part- I

Q1 Only Short Answer Type Questions (Answer All-10)

- a) State degenerate basic feasible solution.
- **b)** Write the canonical form of general linear programming problem.
- c) What is pseudo optimal solution?
- d) Write the value of golden ratio.
- e) What is looping in a transportation problem?
- f) State positive definiteness of a matrix.
- **g)** Write the function $f(x, y) = 18xy + 5y^2$, is convex or concave or neither.
- h) What are the limitations of sensitivity analysis?
- i) What is an Integer Programming problem?
- j) What are the different types of queuing discipline?

Part- II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) Develop solution of the following linear programming problem graphically Maximize Z = 2x + y, Subject to $x + 2y \le 10$, $x + y \le 6$, $x - y \le 2$, $x - 2y \le 1$
 - $x, y \ge 0.$

Registration No .

- **b)** Develop the solution of the following problem by using Simplex method: Maximize $Z = 10x_1 + 15x_2 + 20x_3$, Subject to $2x_1 + 4x_2 + 6x_3 \le 24$, $3x_1 + 9x_2 + 6x_3 \le 30$, $x_1, x_2, x_3 \ge 0$.
- c) Write short notes on Hungarian method.
- d) Analyze the solution of the given linear programming problem by Big-M method: Maximize Z = 2x + y, Subject to $x + y \ge 15$, $2x + 3y \ge 24$,
 - $x, y \geq 0.$
- e) Solve the given Integer Programming problem by branch and bound algorithm: Maximize z = 5x + 7y, Subject to $-2x + 3y \le 6, 6x + y \le 30,$ $x, y \ge 0$ and integers.
- f) Explain briefly the various steps involved in Stepping Stone method.
- g) Calculate the relative maximum and relative minimum of the following function $f(x) = x^3 3x + 3$.

(5)

- h) Discuss various steps involved in Fibonacci method.
- i) Evaluate an initial basic feasible solution to the following transportation problem by Vogel's Approximation method, in which the cells contain transportation cost in rupees,

			То			Available
	7	6	4	5	9	40
From	8	5	6	7	8	30
	6	8	9	6	5	20
	5	7	7	8	6	10
Demand	30	30	15	20	5	-

j) Solve the following assignment problem. The matrix entries are processing times in hours.

		Operator							
		1	2	3	4	5			
	1	20	22	35	22	18			
	2	4	26	24	24	7			
	3	23	14	17	19	19			
Job	4	17	15	16	18	15			
	5	16	19	21	19	25			

- **k)** Solve the given nonlinear programming problem by using Lagrange Multiplier Method: Maximize $Z = 4x_1 - 2x_1^2 + 6x_2 - 2x_2^2 - 2x_1x_2$, Subject to $x_1 + 2x_2 = 2$, $x_1, x_2 \ge 0$.
- I) Write short notes on M/M/1 model.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four) Q3 Discuss Revised Simplex method to solve the given problem (16) Minimize $z = x_1 + 2x_2 + 3x_3 - x_4$, Subject to $x_1 + 2x_2 + 3x_3 = 15, 2x_1 + x_2 + 5x_3 = 20, x_1 + 2x_2 + x_3 + x_4 = 10$ $x_1, x_2, x_3, x_4 \ge 0$. Minimize $f(x) = 4x^3 + x^2 - 7x + 14$ within [0,1] using Golden Section Search method Q4 (16) with n = 8. Q5 Discuss various steps involved in order to solve the given nonlinear optimization (16) problem by using Kuhn-Tucker method: Maximize $f(x, y) = -x^2 + 4x + 6y - y^2$,

Subject to $x + y \le 2, 2x + 3y \le 12, x, y \ge 0.$

- Q6 a) Describe the Characteristics of the Queuing system. (5)
 b) In a store with one server, 9 customers arrive on a average of 5 minutes. Service is (6)
 - done for 10 customers in 5 minutes,
 - Find (i) The average number of customers in the system.
 - (ii) The average Queue length.
 - (iii) The average time a customer spends in the store.
 - c) Discuss limitations of Queuing model.