

B.E./ B. Tech (Full Time) DEGREE END SEMESTER EXAMINATION, April / May - 2014 THIRD SEMESTER

MA8357-TRANSFORMS TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS

(Regulation: 2012)

COMMON TO AGRI/GEO/CIVIL/PRINT/EEE/ECE/BIO

Time: $\mathbf{3}$ hours
Maximum: 100 Marks

Answer ALL Questions

$$
\text { Part }-\mathbf{A} \quad(10 \times 2=20 \text { marks })
$$

1. Obtain the partial differential equation by eliminating the arbitrary constants a and b from $z=\left(x^{2}+a\right)\left(y^{2}-b\right)$.
2. Find the complete solution of $\sqrt{p}+\sqrt{q}=1$.
3. If $(\pi-x)^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$, in $0<x<2 \pi$, then deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
4. Define the complex form Fourier series of $f(x)$, in $(c, c+2 l)$.
5. What is meant by steady state?
6. What are the possible solutions of the one dimensional heat flow equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
7. If the Fourier transform of $f(x)$ is $F(s)$, then find the Fourier transform $e^{i a x} f(x)$.
8. Solve for $f(x)$ if $\int_{0}^{\infty} f(x) \cos \alpha x d x=e^{-\dot{\alpha}}$.
9. Find the Z-transform of n^{2}.
10. State initial value theorem for Z-transform.

$$
\text { Part - B }(5 \times 16=80 \text { marks })
$$

11. i) Find the Fourier transform of $f(x)=\left(\begin{array}{l}1-x^{2}, \text { if }|x|<1 \\ 0, \text { otherwise }\end{array}\right.$. Hence deduce that $\int_{0}^{\infty}\left(\frac{\sin s-s \cos s}{s^{3}}\right) d s=-\frac{\pi}{4}$.
ii) Find the Fourier sine transform of $e^{-a x}(a>0)$, hence evaluate $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+16\right)^{2}}$.
12. (a) i) Find the singular solution of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.
ii) Find the general solution of $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=\cos (x-3 y)+e^{-2 x}$.
(OR)
(b) i) Find the general solution of $z(x-y)=p x^{2}-q y^{2}$.
ii) Find the complete solution of $p^{2}+q^{2}=x^{2}+y^{2}$.
13. (a) i) Find the Fourier series expansion of $f(x)=x^{2}$ in $(-\pi, \pi)$ of periodicity 2π. Hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-$..to $\infty=\frac{\pi^{2}}{12}$.
ii) Obtain half range Fourier cosine series expansion of $f(x)=(x-1)^{2}$ in $0<x<1$.
(OR)
(b) i) Obtain the Fourier series expansion of $f(x)=\left\{\begin{array}{l}-\pi, \text { if }-\pi<x<0 \\ x, \text { if } 0<x<\pi\end{array}\right.$.
ii) Obtain half range Fourier sine series expansion of $f(x)=x$ in $0<x<l$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
14. (a) If the string of length l is initially at rest in its equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0}=v_{0} \sin ^{3} \frac{\pi x}{l}, 0<x<l$, determine the transverse displacement $y(x, t)$ at any time at any distance x .
(OR)
(b) An infinitely long plane uniform plate is bounded by two parallel edges $x=0$ and $x=l$, and an end at right angles to them. The breadth of this edge $y=0$ is l and is maintained at a temperature 100° and all the other three edges are at temperature zero. Find the steady state temperature at any interior point of the plate.
15. (a) i) Find the Z-transform of $\frac{1}{n(n+1)}$, for $n \geq 1$.
ii) Find the inverse Z-transform of $\frac{z^{2}+z}{(z-1)\left(z^{2}+1\right)}$.
(OR)
(b) i) Using convolution theorem, find the inverse Z-transform of $\frac{z^{3}}{(z-a)^{3}}$.
ii) Using Z-transforms, solve $u_{n+2}-3 u_{n+1}+2 u_{n}=0$ given that $u_{0}=0, u_{1}=1$.
