Dog No	ı	l		!!!	!		
Reg. No.	i	l .	i				
U	ı		Ι.			1	1

B.E./ B. Tech (Full Time) DEGREE END SEMESTER EXAMINATION, April / May - 2014 THIRD SEMESTER

MA8357 - TRANSFORMS TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS (Regulation: 2012)

COMMON TO AGRI/GEO/CIVIL/PRINT/EEE/ECE/BIO

Time: 3 hours

Maximum: 100 Marks

Answer ALL Questions

Part - A (10×2 = 20 marks)

- 1. Obtain the partial differential equation by eliminating the arbitrary constants a and b from $z = (x^2 + a)(y^2 b)$.
- 2. Find the complete solution of $\sqrt{p} + \sqrt{q} = 1$.
- 3. If $(\pi x)^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$, in $0 < x < 2\pi$, then deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 4. Define the complex form Fourier series of f(x), in (c, c+2l).
- 5. What is meant by steady state?
- 6. What are the possible solutions of the one dimensional heat flow equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$.
- 7. If the Fourier transform of f(x) is F(s), then find the Fourier transform $e^{i a x} f(x)$.
- 8. Solve for f(x) if $\int_{0}^{\infty} f(x) \cos \alpha x \, dx = e^{-\alpha}$.
- 9. Find the Z-transform of n^2 .
- 10. State initial value theorem for Z-transform.

 $Part - B (5 \times 16 = 80 \text{ marks})$

11. i) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & \text{if } |x| < 1 \\ 0, & \text{otherwise} \end{cases}$.

Hence deduce that
$$\int_{0}^{\infty} \left(\frac{\sin s - s \cos s}{s^3} \right) ds = -\frac{\pi}{4}.$$
 (8)

ii) Find the Fourier sine transform of e^{-ax} (a > 0), hence evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + 16)^2}$. (8)

- 12. (a) i) Find the singular solution of $z = px + qy + \sqrt{1 + p^2 + q^2}$. (8)
 - ii) Find the general solution of $(D^2 2DD' + D'^2)z = \cos(x 3y) + e^{-2x}$. (8)
 - (b) i) Find the general solution of $z(x y) = px^2 qy^2$. (8)
 - ii) Find the complete solution of $p^2 + q^2 = x^2 + y^2$. (8)
- 13. (a) i) Find the Fourier series expansion of $f(x) = x^2$ in $(-\pi, \pi)$ of periodicity 2π .

Hence deduce that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - ... to \infty = \frac{\pi^2}{12}$$
. (8)

- ii) Obtain half range Fourier cosine series expansion of $f(x) = (x-1)^2$ in 0 < x < 1. (8)
- (b) i) Obtain the Fourier series expansion of $f(x) = \begin{cases} -\pi, & \text{if } -\pi < x < 0 \\ x, & \text{if } 0 < x < \pi \end{cases}$ (8)
 - ii) Obtain half range Fourier sine series expansion of f(x) = x in 0 < x < l. Hence deduce

that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
. (8)

- 14. (a) If the string of length l is initially at rest in its equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}$, 0 < x < l, determine the transverse displacement y(x,t) at any time at any distance x. (16)
 - (b) An infinitely long plane uniform plate is bounded by two parallel edges x = 0 and x = l, and an end at right angles to them. The breadth of this edge y = 0 is l and is maintained at a temperature 100° and all the other three edges are at temperature zero. Find the steady state temperature at any interior point of the plate. (16)
- 15. (a) i) Find the Z-transform of $\frac{1}{n(n+1)}$, for $n \ge 1$. (8)
 - ii) Find the inverse Z-transform of $\frac{z^2 + z}{(z-1)(z^2+1)}$. (8)
 - (b) i) Using convolution theorem, find the inverse Z-transform of $\frac{z^3}{(z-a)^3}$. (8)
 - ii) Using Z-transforms, solve $u_{n+2} 3u_{n+1} + 2u_n = 0$ given that $u_0 = 0, u_1 = 1$. (8)

* * *