102 : 1st half-12-(i)JP

9 E/It/sem-III (Rev) 24/5/2012 Duter structure & Algorithms

Con. 3893-12.

GN-5382

10

10

(3 Hours)	[Total Marks	: 1	100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.

1.	(a)	What are linear and non-linear data structures?	5
	(b)	What are Asymptotic notations?	5
	(c)	Why is it necessary to analyze an algorithm?	5
	(d)	What are Expression trees?	5

- (a) Develop an algorithm to delete a node from the given binary search tree. Consider 10 all cases.
 - (b) Explain the method of Huffman Encoding. Apply Huffman Encoding method for 10 the sentence 'STRUCTURE'. Give Huffman code of each symbol.
- (a) What is a Priority Queue ? Explain the Insertion and Deletion operations on 10 Priority Queue if it is implemented using Array.
 - (b) Write any pattern matching algorithm and explain it with suitable example. 10
- (a) Explain selection sort and write a program to implement selection sort. Compare 10
 it with Binary Sort.
 - (b) Write an algorithm and explain with an example RADIX SORT method. 10
- (a) Using Prim's and Kruskal's algorithm find minimum spanning tree for the following 10 graph:

- (b) Give an INFIX expression, write a program to convert it to its 'PREFIX' from.
- 6. (a) Write a program to implement 'QUICK SORT' and comment on its complexity. 10
 - (b) Write a program to implement 'towers of Hanoi' using recursions.

7.	Write de	own short notes on any four :	20
	(a)	Expression and realization of ADT's in Java	
	(b)	Comparison of sorting algorithms	
	(c)	Infix, Prefix and Postfix expressions	
	(d)	Space and time complexity	
	(e)	Recursion.	