WASAVI LIBRARY

Code No. 3059

FACULTY OF INFORMATICS B.E. 3/4 (IT) First Semester (Suppl.) Examination, June/July 2011

DIGITAL SIGNAL PROCESSING

Tir	me : Three Hours] [Maximum Marks :	75
	Note :- Answer ALL questions from Part A. Answer any FIVE questions from Part B.	
	PART—A (Marks: 25)	
1.	Define and give the different types of filters with waveforms.	3
2.	Find the impulse response x(n) of the system	
	y(n) = 0.5 y(n-1) + 6 y(n-2) + x(n).	2
3.	Describe the bit-reversal order in DIF FFT and DIT FFT.	3
4.	What is zero padding? How do you convert a linear convolution to circular convolution	1?
5.	What is aliasing effect due to impulse invariant transform?	-2
6.	Draw the structure of H(z) = $\frac{(0.5 + 2z^{-1})(1 + 0.6z^{-1})}{(z^{-1} + 2)(4 + z^{-1})}$ using Cascade method.	3
7.	Mention the basic principle of FIR digital filters.	3
8.	Distinguish between different types of windows.	2
9.	What are voiced sounds? Explain.	2
10.	How is speech signal generated ?	2
	PART—B (Marks: 50)	
11.	A second order discrete time system is characterized by the difference equation. Find the impulse response, magnitude and phase response of the given second order system	he
	y(n) - 0.1 y(n-1) - 0.02 y(n-2) = 2 x(n) - x(n-1).	
	Determine $y(n) \ge 0$ when $x(n) = u(n)$ and the initial conditions are $y(-1) = -10$ are	nd 0
HVS	—840 I (Conto	1.)

- 12. (a) Determine the response of discrete LTI system if $x(n) = \{1, 2, 3, 4\}$ and $h(n) = \{1, 2, 1, 2\}$, using DFT approach.
 - (b) Prove that Parseval's relation for the DFT given by :

$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{K=0}^{N-1} |X(K)|^2.$$

- 13. (a) Explain the relation between analog and digital filter poles on impulse invariant transform.
 - (b) Convert the following analog filter with transfer function Ha(s) using bilinear transform.

 Draw the structure of IIR filter:

$$Ha(s) = \frac{0.2}{(s+0.2)^2 + 16}.$$

14. Design a 5th order band pass linear phase filter for the following specifications. Draw the filter structure :

Lower-cut-off frequency = 0.4π rad/sec.

Upper-cut-off frequency = 0.6π rad/sec.

- 15. (a) Write a brief note on channel vocoder.
 - (b) Explain the digital model of speech production with a block diagram.
- 16. (a) Perform the linear convolution of the sequences:

$$x(n) = \{-1, 1, 2, -1, 1, 2, -1, 1\}$$
 and $h(n) = \{2, 3, -2\}$ using overlap-Add method.

- (b) Define causal, linear and time-variant systems.
- 17. (a) Draw the butterfly structure of 8-point DFT using Radix-2 DIF FFT algorithm.
 - (b) Write a design note on linear face FIR filter using windows.

10

5