
Unit-3

CS1004 Data Structures 2

Content:

• Searching,Sorting and Hashing
• Linear Search
• Binary search
• Bubble sort
• Selection sort
• Insertion Sort
• Hashing-Hash tables
• Hash functions
• Strategies to avoid and resolve collisions.

Searching

3CS1004 Data Structures

• Search is process of finding a value in a list of values
• In other words, searching is the process of locating given value position in a list of values.

• Types of searching
• Linear search
• Binary Search
• Interpolation Search
• Sublist Search
• Exponential Search
• Jump Search
• Fibonacci Search and etc.

Linear Search

4CS1004 Data Structures

• Linear search algorithm finds a given element in a list of elements with O(n) time
complexity where n is the total number of elements in a list.

• Search process starts comparing search element with the first element in the list.
• If both are matched then result is element found otherwise search element is

compared with the next element in the list.
• Repeat the same until search element is compared with the last element in the list,

if that last element also doesn’t match, then the result is “Element is not found in
the list”.

• That means, the search element is compared with element by element in the list.

Linear Search Algorithm

5CS1004 Data Structures

Linear Search Example

6CS1004 Data Structures

7

#include <stdio.h>

int main() {

 int size, target, i;

 int found = -1; // Flag to indicate if the element is
found (-1 means not found)

 // Reading the size of the array from the user

 printf("Enter the size of the array: ");

 scanf("%d", &size);

 int arr[size]; // Declare the array with the given
size

Program

CS1004 Data Structures

// Reading array elements from the user

 printf("Enter %d elements for the array: \n",
size);

 for (i = 0; i < size; i++) {

 scanf("%d", &arr[i]);

 }

// Linear Search to find the target

 for (i = 0; i < size; i++) {

 if (arr[i] == target) {

 found = i; // Target found at index i

 break;

 } }

 // Output the result of the search

 if (found != -1) {

 printf("Element %d found at index
%d\n", target, found);

 } else {

 printf("Element %d not found in the
array\n", target);

 }

 return 0;

}

8

Output-1

Enter the size of the array: 6

Enter 6 elements for the array:

2 3 4 5 6 7

Enter the element to search: 4

Element 4 found at index 2

Output

CS1004 Data Structures

Output-2

Enter the size of the array: 6

Enter 6 elements for the array:

1 2 3 4 5 6

Enter the element to search: 8

Element 8 not found in the array

9

• Finds given element in a list of elements with O(logn) time complexity where n is the total
number of elements in the list.

• Used with only sorted list of elements.

• Means used only with list of elements that are already arranged in an order.

• Can not be used for list of elements arranged in random order.

• Search process starts comparing the search element with the middle element in the list.

Binary Search

CS1004 Data Structures

10

Binary Search Algorithm

CS1004 Data Structures

11

Example

CS1004 Data Structures

12

#include <stdio.h>

 int main() {

 int size, target, low, high, mid;

 // Reading the size of the array from the user

 printf("Enter the size of the array: ");

 scanf("%d", &size);

 int arr[size]; // Declare the array with the given size

 // Reading array elements from the user

 printf("Enter %d sorted elements for the array (in
ascending order): \n", size);

for (int i = 0; i < size; i++) {

 scanf("%d", &arr[i]);

 }

Program

CS1004 Data Structures

// Reading the target element to search for

 printf("Enter the element to search: ");

 scanf("%d", &target);

 // Binary Search (Iterative)

 low = 0; high = size - 1;

 int found = -1; // Flag to indicate if the
element is found (-1 means not found)

 while (low <= high) {

 mid = (low + high) / 2; // Find the middle
index

while (low <= high) {

 mid = (low + high) / 2; // Find the middle
index

if (arr[mid] == target) {

 found = mid; // Target found at index mid

break;

} else if (arr[mid] < target) {

low = mid + 1; // Target is in the right half

 } else {

 high = mid - 1; // Target is in the left
half

 }

 }

 // Output the result of the search

 if (found != -1) {

 printf("Element %d found at index %d\n",
target, found);

 } else {

 printf("Element %d not found in the
array\n", target);

 }

 return 0;

}

13

Output:
Enter the size of the array: 5
Enter 5 sorted elements for the
array (in ascending order):
1 2 3 4 5
Enter the element to search: 5
Element 5 found at index 4

Output

CS1004 Data Structures

Output:
Enter the size of the array: 6
Enter 6 sorted elements for the array (in ascending order):
1 2 3 4 5 6
Enter the element to search: 7
Element 7 not found in the array

14

•Arrange of data in a preferred order.
•By sorting a data, it is easier to search through it quickly and easily.
• Simplex example of sorting is dictionary.

Sorting

CS1004 Data Structures

15

•

Bubble Sort

CS1004 Data Structures

16

•We assume list is an array of n elements. We further assume that swap
function swaps the values of the given array elements.

Begin BubbleSort(list)
for all elements of list

if list[i]>list[i+1]
swap(list[i], list[i+1])

end if
end for
return list

End BubbleSort

Bubble Sort Algorithm

CS1004 Data Structures

17

Bubble Sort Example

CS1004 Data Structures

18

Bubble Sort Example cont…

CS1004 Data Structures

19

•

Selection Sort

CS1004 Data Structures

20

• Step1-Set MIN to location 0
• Step2-Search the minimum element in the list
• Step3-Swap with value at location MIN
• Step4-Increment MIN to point to next element.
• Step5-Repeat until list is sorted

Selection Sort Algorithm

CS1004 Data Structures

21

Example

CS1004 Data Structures

22

•

Insertion Sort

CS1004 Data Structures

23

• To sort an array of size n in descending order:
• Iterate from arr[1] to arr[n] over the array
• Compare the current element (key) do its predecessors.
• If the key element is smaller than its predecessors, compare it to the elements

before. Move the greater elements one position up to mark space for the
swapped element.

Insertion Sort Algorithm

CS1004 Data Structures

24

Example:

CS1004 Data Structures

25

Example:2

CS1004 Data Structures

26

• Hashing in data structures is a technique used to map data (like keys) to a specific
location (index) in a hash table using a hash function.
• The hash function computes an index, and the data is stored at that index, making

data retrieval fast and efficient.
• In simple terms: Hashing turns a key into a unique index where the value is stored in

a table.
• It allows for quick access to data, ideally in constant time, O(1).
• Implementation of hash table is frequently called hashing.
• Its technique used for performing insertions, deletions and finds in constant average

time.
• Tree operations that require any ordering information among the elements that are

not supported.
• Thus, operations such as find_min, find_max, and the printing of the entire table in

sorted order in linear time are not cupported

Hashing –Hash Tables

CS1004 Data Structures

27

• Hashing is process of indexing and retrieving element(data) in a data
structure to provide faster way of finding the element using a hash key or
hash value generated using hash functions.

• Converting a given key into another value. Hash function is used generate
the new value according to a mathematical algorithm. The result of hash
function is known as hash value or simply hash.

Cont…

CS1004 Data Structures

CS1004 Data Structures 28

29

• Here, the central data structure is hash table. We will see
• Several methods of implementing hash table
• Compare these methods analytically
• Show numerous applications of hashing
• Compare hash table with binary search trees

• The ideal hash table data structure is merely an array of some fixed size, containing the keys.
• Typically, a key is string with an associated value(for example, salary information)
• We will refer to the table size as H_SIZE, with the understanding that this is a part of a hash data

structure and not merely some variable floating around globally.
• The common convention is to have the table run from 0 to H_SIZE -1.
• Each key is mapped into some number in the range 0 to H_SIZE -1 and placed in the appropriate cell
• The mapping is called a hash function, which ideally should be simple to compute and should

ensure that any two distinct keys get different cells.
• Since there are finite number of cells and virtually inexhaustible supply of keys, this is clearly

impossible and thus we seek a hash function that distributes the keys even among the cells.

Cont…

CS1004 Data Structures

30

• If the input keys are integers, then simply returning key mod H_SIZE is generally a reasonable
strategy, unless key happens to have some undesirable properties.

• In this case, the choice of hash function needs to be carefully considered.
• For example, if the table size is 10 and the keys all end in zero, then the standard hash function is

obviously a bad choice.
• For a reasons we shall see later and to avoid situations like the one above, it is usually a good idea

to ensure that the table size is prime.
• When the input keys are random integers, this function is not only very simple to compute but

also distributes the keys evenly.
• Usually, the keys are strings in this case, the ash function needs to be chosen carefully.

Hashing function

CS1004 Data Structures

31

• In this example, john hashes to 3, phil hashes to 4, dave hashes to 6 and mary
hashes to 7

Collision
• The only remaining problems

• Deal with choosing a function
• Deciding what to do when two keys has to the same value(this is known as

collision)
• Deciding on the table size.

Example

CS1004 Data Structures

32

• Consider the following example keys:(16,21,26,20)
• Size of the hash table is 3
• Now will start inserting the keys

• For 16=16%4=0
• 21=21%4=1
• 26=26%4=2
• 20=20%4=0
• For the last key (20) there is already an element where 20 is to be inserted, this is where collision resolution comes

into picture
• Collision resolution technique

• Chaining(Open Hashing)
• Open Addressing)(Closed Hashing)

• Linear probing
• Quadratic probing
• Double hashing

• Keep in mind that two keys can generate the same hash. This phenomenon is known as collision
• Since hash function gets us a small number for a key which is a big integer or string, there is possibility that two keys result

in the same value.
• The situation where a newly inserted key maps to an already occupied slot in the hash table is called collision and must be

handled using some collision handling technique.

Cont…

CS1004 Data Structures

33

• Keep a list of all elements that hash to the same value.
• For convenience our lists have headers.
• If space is tight, it might be preferable to avoid their use
• Open hashing Find and Insert
• To perform find we use hash function to determine which list to traverse.
• Then traverse this list in the normal manner returning the position where the item is found
• To perform an insert we traverse down the appropriate list to check whether element is already in place

• If duplicates are expected an extra field is usually kept and this field would be incremented in the event of
match.

• If the element turns out to be new, it is inserted either at the front of the list or at the end of list,
whichever is easiest.

• This is an issue most easily addressed while the code is being written
• Sometimes new elements are inserted at the front of the list, since it is convenient and also because

frequently it happens that recently inserted elements are the most likely to be addressed in the near future

Open hashing(separate
Chaining)

CS1004 Data Structures

34

Open hashing declarations and Initialization

CS1004 Data Structures

35

Open hashing find routine and insert routine

CS1004 Data Structures

36

• Separate Chaining is a collision handling technique.
• Separate chaining is one of the most popular and commonly used techniques

in order to handle collisions.
• How to handle Collisions?
• There are mainly two methods to handle collision:
• Separate Chaining :

• The idea behind separate chaining is to implement the array as a
linked list called a chain.

• The linked list data structure is used to implement this technique.
So what happens is, when multiple elements are hashed into the
same slot index, then these elements are inserted into a
singly-linked list which is known as a chain.

• Let us consider a simple hash function as “key mod 5” and a
sequence of keys as 12, 22, 15, 25

Open hashing Example

CS1004 Data Structures

37

• Open addressing has the disadvantage of requiring pointer
• Open Addressing is a method for handling collisions.
• In Open Addressing, all elements are stored in the hash table itself.
• So at any point, the size of the table must be greater than or equal to the total

number of keys (Note that we can increase table size by copying old data if
needed). This approach is also known as closed hashing.

• This entire procedure is based upon probing.

Closed Hashing(open
addressing)

CS1004 Data Structures

38

• 3 common collision strategies
• Linear Probing
• Quadratic Probing
• Double Hashing

• Linear Probing
• In linear probing, the hash table is searched sequentially that starts from the original location of the

hash.
• If in case the location that we get is already occupied, then we check for the next location.
• The function used for rehashing is as follows: rehash(key) = (n+1)%table-size.
• Example:The typical gap between two probes is 1 as seen in the example below:
• Let hash(x) be the slot index computed using a hash function and S be the table size
• If slot hash(x) % S is full, then we try (hash(x) + 1) % S
• If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S
• If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S

Collision handling strategies

CS1004 Data Structures

39

• Let us consider a simple hash function as “key mod 5” and a sequence of keys
that are to be inserted are 50, 70, 76, 85, 93.

Linear probing example

CS1004 Data Structures

40

Cont..

CS1004 Data Structures

41

• K

Example

CS1004 Data Structures

42

• If you observe carefully, then you will understand that the interval between probes will increase
proportionally to the hash value.

• Quadratic probing is a method with the help of which we can solve the problem of clustering that was
discussed above.

• This method is also known as the mid-square method.
• In this method, we look for the i2‘th slot in the ith iteration.
• We always start from the original hash location. If only the location is occupied then we check the other

slots.
• let hash(x) be the slot index computed using hash function.
• If slot hash(x) % S is full, then we try (hash(x) + 1*1) % S
• If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S
• If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S

Quadratic Probing

CS1004 Data Structures

43

Quadratic Probing

CS1004 Data Structures

44

Example

CS1004 Data Structures

45

•

Cont..

CS1004 Data Structures

46

Closed hashing –Type declaration and
initialization

CS1004 Data Structures

47

Closed hashing –Find routine with Quadratic
probing

CS1004 Data Structures

Closed hashing –insert routine with
Quadratic probing

48

• The intervals that lie between probes are computed by another hash function.
• Double hashing is a technique that reduces clustering in an optimized way.
• In this technique, the increments for the probing sequence are computed by using another hash function.

We use another hash function hash2(x) and look for the i*hash2(x) slot in the ith rotation.
• let hash(x) be the slot index computed using hash function.
• If slot hash(x) % S is full, then we try (hash(x) + 1*hash2(x)) % S
• If (hash(x) + 1*hash2(x)) % S is also full, then we try (hash(x) + 2*hash2(x)) % S
• If (hash(x) + 2*hash2(x)) % S is also full, then we try (hash(x) + 3*hash2(x)) % S

Double hashing

CS1004 Data Structures

49

• Insert the keys 27, 43, 692, 72 into the Hash Table of size 7. where first hash-function
is h1 (k) = k mod 7 and second hash-function is h2(k) = 1 + (k mod 5)

Example

CS1004 Data Structures

50

Comparison

CS1004 Data Structures

51

• https://www.slideshare.net/jaravles/searching-sorting-and-hashing-techniques

Reference links

CS1004 Data Structures

Thank You

