R
UNIVERSITY

(‘0 change the world

of RV EDUCATIONAL INSTITUTIONS

Content: R
UNIVERSITY

70, change the world

e Searching,Sorting and Hashing
* Linear Search
* Binary search
* Bubble sort
* Selection sort
* Insertion Sort
* Hashing-Hash tables
e Hash functions
* Strategies to avoid and resolve collisions.

CS1004 Data Structures 2

NIVERSITY

r0, change the world

Searching

» Search is process of finding a value in a list of values
* In other words, searching is the process of locating given value position in a list of values.

e Types of searching

* Linear search

e Binary Search
Interpolation Search
Sublist Search
Exponential Search
Jump Search
Fibonacci Search and etc.

CS1004 Data Structures 3

Qhwd

\4

Linear Search G, HvERSITY

i
an initiat f RV EDUCATIONAL INSTITUTIONS

Linear search algorithm finds a given element in a list of elements with O(n) time
complexity where n is the total number of elements in a list.

Search process starts comparing search element with the first element in the list.
If both are matched then result is element found otherwise search element is
compared with the next element in the list.

Repeat the same until search element is compared with the last element in the list,
if that last element also doesn’t match, then the result is “Element is not found in

the list”.
That means, the search element is compared with element by element in the list.

CS1004 Data Structures 4

UNIVERSITY
(}0, change the world

an initiative of RV EDUCATIONAL INSTITUTIONS

e Step 1- Read the search element from the user.

* Step 2 - Compare the search element with the first element in the list.

» Step 3 - If both are matched, then display "Given element is found!!!" and
terminate the function.

» Step 4 - If both are not matched, then compare search element with the
next element in the list.

* Step 5 - Repeat steps 3 and 4 until search element is compared with last
element in the list.

* Step 6 - If last element in the list also doesn't match, then display
"Element is not found!!!" and terminate the function

CS1004 Data Structures 5

list

65|20

10

55

32

12

50

99

search element 12

Step 1:

search element (12) is compared with first element (65)

Both are not matching. So move to next element

Step 2:

search element (12) is compared with next element (20)

list

55

32

12

50

99

55

32

12

50

99

12

Both are not matching. So move to next element

Step 3:

RY
UNIVERSITY

155(0 change the world

search element (12) is compared with next element (10) c°f iV EPUCATIONAL INSTITUTIONS

list

list

Step 5:

12
Both are not matching. So move to next element
Step 4:
search element (12) is compared with next element (55)

12

Both are not matching. So move to next element

search element (12) is compared with next element (32)

list

Both are not matching. So move to next element

Step 6:

12

search element (12) is compared with next element (12)

list

65|20|10|55

12
Both are matching. So we stop comparing and display
element found at index 5.

CS1004 Data Structures 6

\4
UNIVERSITY

W Go, change the world

s

Program

an initiative of RV EDUCATIONAL INSTITUTIONS

// Reading array elements from the user
#include <stdio.h>

printf("Enter %d elements for the array: \n",

int main) { size); // Output the result of the search
for (i = 0; i < size; i++) { if (found !=-1) {
int size, target, i; NN \
scanf("%d", &arrli]); printf("Element %d found at index
: - : . %d\n", target, found);
int found =-1; // Flag to indicate if the element is } ’ 1 ’
found (-1 means not found) }else {

// Linear Search to find the target
printf("Element %d not found in the

array\n", target);
if (arr[i] == target) { }

// Reading the size of the array from the user for (i = 0; i < size; i++) {

printf("Enter the size of the array: ");

found =i; // Target found at index i return O;

scanf("%d", &size); break;
; }

int arr[size]; // Declare the array with the given } o}
size

CS1004 Data Structures 7

Out P ut UNIVERSITY

Go, change the world

of RV EDUCATIONAL INSTITUTIONS

Output-1

Output-2
Enter the size of the array: 6 Enter the size of the array: 6

Enter 6 elements for the array:

123456

Enter 6 elements for the array:

234567 Enter the element to search: 8

Enter the element to search: 4 Element 8 not found in the array

Element 4 found at index 2 Complexity of algorithm
Complexity Best Case Average Case Worst Case
Time O(1) O(n) O(n)
Space O(1)

CS1004 Data Structures 8

S,

Blnary Sea I"Ch @@5 NIVERSITY
Clnmas™ 7. e

of R

* Finds given element 1n a list of elements with O(logn) time complexity where n 1s the total
number of elements in the list.

* Used with only sorted list of elements.
* Means used only with list of elements that are already arranged in an order.
* Can not be used for list of elements arranged in random order.

 Search process starts comparing the search element with the middle element 1n the list.

CS1004 Data Structures 9

Step 1 - Read the search element from the user.
Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in
the sorted list.

Step 4 - If both are matched, then display "Given element is
found!!!" and terminate the function.

Step 5 - If both are not matched, then check whether the search
element is smaller or larger than the middle element.

Step 6 - If the search element is smaller than middle element,
repeat steps 2, 3, 4 and 5 for the left sublist of the middle element.

Step 7 - If the search element is larger than middle element, repeat
steps 2, 3, 4 and 5 for the right sublist of the middle element.

Step 8 - Repeat the same process until we find the search element
in the list or until sublist contains only one element.

Step 9 - If that element also doesn’'t match with the search
element, then display "Element is not found in the list!!!" and
terminate the function.

CS1004 Data Structures

NIVERSITY

r0, change the world

search element 80 SN
Step 1: RV
Xa I I l P e search element (80) is compared with middle element (50) S UNIVERSI Y
W Go, change the world
ist 10 12 20 32-55 65 80 99 an initiative of RV EDUCATIONAL INSTITUTIONS
80
st [10]12]20§32]50]55{65]80{99 Both are not matching. And 80 is larger than 50. So we

search only in the right sublist (i.e. 55, 65, 80 & 99).
search element 12

5565|8099

Step 1: ISt
search element (12) is compared with middle element (50)

Step 2:
search element (80) is compared with middle element (65)

10[12[20[32]88]55]65[80[99
12

Both are not matching. And 12 is smaller than 50. So we list 55180 99
search only in the left sublist (i.e. 10, 12, 20 & 32). 80

Both are not matching. And 80 is larger than 65. So we

i+ [1ol12]20132 search only in the right sublist (i.e. 80 & 99).
Step 2: list 80|99
search element (12) is compared with middle element (12)

Step 3:
et 10.20 32 search element (80) is compared with middle element (80)
12
Both are matching. So the result is “Element found at index 1 list .?9
80

Both are not matching. So the result is “Element found at index 7"

CS1004 Data Structures

Program

#include <stdio.h>

int main() {
int size, target, low, high, mid;
// Reading the size of the array from the user
printf("Enter the size of the array: ");
scanf("%d", &size);
int arr[size]; // Declare the array with the given size
// Reading array elements from the user

printf("Enter %d sorted elements for the array (in
ascending order): \n", size);

for (inti=0; i < size; i++) {

scanf("%d", &arrli]);

UNIVERSITY

Go, change the world
low = mid + 1; // Target'is in“the'fight half "

// Reading the target element to search for

printf("Enter the element to search: ");

scanf("%d", &target); } else {

// Binary Search (Iterative) high = mid - 1; // Target is in the left

low =0; high =size - 1; half

int found = -1; // Flag to indicate if the }
element is found (-1 means not found))

while (low <= high) { // Output the result of the search

mid = (low + high) / 2; // Find the middle if (found I= -1) {
index
_ ' printf("Element %d found at index %d\n",
while (low <= high) { target, found);
mid = (low + high) / 2; // Find the middle Yelse {
index

printf("Element %d not found in the
array\n", target);

found = mid; // Target found at index mid }

if (arr[mid] == target) {

break; return O;

} else if (arr[mid] < target) {

CS1004 Data Structures

S,

Output ONIVERSITY
P (0 change the world

of RV EDUCATIONAL INSTITUTIONS

Output: Output:

Enter the size of the array: 5 Enter the size of the array: 6

Enter 5 sorted elements for the Enter 6 sorted elements for the array (in ascending order):
array (in ascending order): 123456

12345 Enter the element to search: 7

Enter the element to search: 5 Element 7 not found in the array

Element 5 found at index 4

CS1004 Data Structures 13

[

Yelnudly @ OMIVERSITY
g (10, change the world

f RV EDUCATIONAL INSTITUTIONS

* Arrange of data in a preferred order.
* By sorting a data, it is easier to search through it quickly and easily.
* Simplex example of sorting is dictionary.

CS1004 Data Structures 14

Bubble Sort @5 NIVERSITY

change the world

of R

* Its simple sorting algorithm

 Comparison based algorithm in which each pair of adjustment elements is
compared and the elements are swapped if they are not in order.

* Not suitable for large datasets as its average and worst case complexity of
O(n?) where n is the number of items.

CS1004 Data Structures 15

RY
UNIVERSITY

v%ow 70,

RV EDUCATIONAL INSTITUTIONS

Bubble Sort Algorithm

change the world

JJ
N9
itiative of

an in

* We assume list is an array of n elements. We further assume that swap
function swaps the values of the given array elements.
Begin BubbleSort(list)
for all elements of list
if list[i]>list[i+1]
swap(list[i], list[i+1])
end if
end for
return list
End BubbleSort

CS1004 Data Structures 16

Bubble Sort Example

145 33 =7 =5 10
Bubbie sort Starts with very first two elements, companng them 1o check which one s greater
14 33 =7 35 10

M
<
g
C
®
W

in thas cas
with 27

14 3 =7 35

IS greater than 14 so 1 1s aready N sorted locatons. Naxt

10

We find thhat 27 s smaller thhan 33 and these two values must be swapped

14 33 =7 35

T he new array should ook ke thas —

15 =7 3 35S

10

10

Next we compare 33 and 35 We hind that both are in aiready sorted positions

14 =T 3 35

T hen we move 1o thWe next two values, 35 and 10

14 =7 3 35

10

10

We know then that 10 is stmalier 35 Hence they are Nnot sorted

14 =7 3 35S

10

We swap these wvalues We find that we have reached the end of the array After

array should ook hike thes —

CS1004 Data Structures

we compare

OoOne

Mmeration

33

the

RY
UNIVERSITY

35(10, change the world

of RV EDUCATIONAL INSTITUTIONS

Bubble Sort Example cont... .

UNIVERSITY

G hange th ld
To be precise, we are now showing how an array should look like after each iteration. After the W i A
second iteration, it should look like this - T T

‘ |
14 |(27 || 10 || 33 || 36 |

Notice that after each iteration, at least one value moves at the end

14 |10 || 27 | 33 || 35

And when there's no swap required, bubble sorts learns that an array is completely sorted
10 || 14 || 27 || 33 || 35 ‘

Now we should look into some practical aspects of bubble sort

CS1004 Data Structures

Selection Sort

S,

RY
UNIVERSITY

change the world

s
an initiative of DUCATIONAL INSTITUTIONS

* Its an in-place comparison-based algorithm in which the list is divided into 2
parts, the sorted part at the left end, and the unsorted part at the right end.

* |nitially the sorted part is empty and the unsorted is the entire list.

* The smallest element is selected from the unsorted array and swapped with
the leftmost element, and that element becomes a part of the sorted array.

* This process continues moving unsorted array boundary by one element to
the right.

 This algorithm is not suitable for large dataset as its average and worst case
complexities are of O(n?), where n is the number of items.

CS1004 Data Structures 19

N

Selection Sort Algorithm 5 !ngBhsLTY

* Step1-Set MIN to location O

* Step2-Search the minimum element in the list
* Step3-Swap with value at location MIN

* Step4-Increment MIN to point to next element.
* Step5-Repeat until list is sorted

CS1004 Data Structures 20

Example

Consider the following depicted array as an example

14 | 33 | 27 10 || 36 19 | 42 | 44

For the first position in the sorted list, the whole list is scanned sequentially. The first position where
14 is stored presently, we search the whole list and find that 10 is the lowest value.

14 3 (|27 (|10 || 35 || 19 || 42 || 44

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value in the list,
appears in the first position of the sorted list

10 | 33 | 27 14 | 35 19 | 42 | 44

For the second position, where 33 is residing, we start scanning the rest of the list in a linear
manner

10 3 | 27 14 35 19 42 | 44

We find that 14 is the second lowest value in the list and it should appear at the second place. We
swap these values.

10 || 33 || 27 14 || 35 || 19 || 42 || 44

After two iterations, two least values are positioned at the beginning in a sorted manner.

10 (|14 | 27 | 33 || 35 | 19 || 42 | 44

10

10

10

10

10

10

10

10

10

CS1004 Data Structures

14

14

14

14

14

14

14

14

27

27

19

19

19

19

19

19

19

27

27

27

19

19

27

27 |

42

42

42

42

42

42

42

42

42

QWO
RY
M UNIVERSITY

initiative of RV EDUCATIONAL INSTITUTIONS

Insertion Sort
IVERSITY

* e |ts simple sorting algorithm that works similar to the way you sort Biayinig 'cards'in

your hands.

* The array is virtually split into a sorted and unsorted part

* Values from the unsorted part are picked and placed at the correct position in the
sorted part.

* Its an in-place comparison-based sorting algorithm.

* Here, a sub-list is maintained which is always sorted. For example, the lower part of
an array is maintained to be sorted.

* An element which is to inserted in the sorted sub-list, has to find its appropriate
place and then it has to be inserted there, hence the name insertion sort.

* The array is searched sequentially and unsorted items are moved and inserted into
the sorted sub-list(in the same array).

CS1004 Data Structures 22

Insertion Sort Algorithm i &l
U IVERSITY

lA (}0, nge t w0
e To sort an array of size n in descending order: fm“’,,

* [terate from arr[1] to arr[n] over the array

 Compare the current element (key) do its predecessors.
* If the key element is smaller than its predecessors, compare it to the elements

before. Move the greater elements one position up to mark space for the
swapped element.

CS1004 Data Structures 23

We take an unsorted array for our example.

14 || 33 (|27 |[10 || 35 || 19 || 42 || 44

Insertion sort compares the first two elements.

14 || 33 (| 27 |[10 || 35 |[19 || 42 || 44

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

14 || 33 || 27 |10 || 35 (| 19 || 42 44

Insertion sort moves ahead and compares 33 with 27.

14 (|33 ([27 || 10 || 35 || 19 || 42 || 44

And finds that 33 is not in the correct position.

14 || 33 || 27 | 10 | 35 19 |42 | 4

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the
sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the sorted sub-list
remains sorted after swapping.

14 || 27 || 33 || 10 || 35 (|19 || 42 44

1 RY
@ UNIVERSITY

%%GO. change the world
By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

14 || 27 || 33 || 10 || 35 || 19 || 42 || 44
These values are not in a sorted order.

14 || 27 || 33 || 10 || 35 |[19 || 42 || 44
So we swap them.

14 || 27 || 10 || 33 || 35 || 19 || 42 || 44
However, swapping makes 27 and 10 unsorted.

14 || 27 || 10 || 33 || 35 || 19 || 42 || 44
Hence, we swap them too.

14 10 27 33 35 19 42 44
Again we find 14 and 10 in an unsorted order

14 || 10 || 27 || 33 || 35 |[19 || 42 || 44
We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items

10 | 14 27 33 35 19 | 42 | 44

This process goes on until all the unsorted values are covered in a sorted sub-list.

CS1004 Data Structures

Example:2 & Ry

NIVERSITY

W Go, change the world

Insertion Sort Execution Example

2 10 12 1 9) 6

4][3
@ 2][] 2] [1][5][6s
‘g P 10] [12] [1] [5] [e

2 1 [3])[«] KB [2] [1][5][6s6

2 1 [3][4][o] EER[1]([5][6s6
JE EX N KO 2 B (5 G

1] [2][3][4

1] [2][3][4

1] [2][3][4

CS1004 Data Structures

Hashing —Hash Tables %w
UNIVERSITY

* Hashing in data structures is a technique used to map data (like keﬁ?ﬁ?oa”épééfﬁ’cd
location (index) in a hash table using a hash function.

* The hash function computes an index, and the data is stored at that index, making
data retrieval fast and efficient.

* In simple terms: Hashing turns a key into a unique index where the value is stored in
a table.

* It allows for quick access to data, ideally in constant time, O(1).

* Implementation of hash table is frequently called hashing.

* Its technique used for performing insertions, deletions and finds in constant average
time.

* Tree operations that require any ordering information among the elements that are
not supported.

* Thus, operations such as find_min, find_max, and the printing of the entire table in

sorted order in linear time are not cupported

CS1004 Data Structures 26

O

Cont... S

RY
UNIVERSITY

, change the world

e Hashing is process of indexing and retrieving element(data) in a data
structure to provide faster way of finding the element using a hash key or
hash value generated using hash functions.

* Converting a given key into another value. Hash function is used generate
the new value according to a mathematical algorithm. The result of hash

function is known as hash value or simply hash.
Hashing Data Structure

4

Key <-\

Actual Data stored

Hash Value

Ke —> —> Hash Value %
Function

Actual Data to be store) Hash Table

List=[11,12,13,14,15]
HX) =[x%10]

ot \O
n%/w‘x\&\
1 g

\7

sl aElWINI|I—=|O

CS1004 Data Structures

Example 1. Hashing - Phone book Sy

N9
« Hash table 276 i< RV
Hash table size m = 5 @ UNIVERSITY
» Hash function h(k) - (length of the key k) mod 5 Go, cATPEENTRENGT71d

key HASH FUNCTION HASH TABLE an initiative of RV EDUCATIONAL INSTITUTIONS

o[o ke, ooy Example 2 Hashing

* Keys k = 89, 64, 35,100, 47
Allce 1 » Hash table size m = 10 :
o » Hash function h(k) = (key k) mod 10 :

John ;

e an w1 (Sue, 060011223 j

| - (John, 020123456} T 5

35 5 g
100 0 7
8
47 7
9

CS1004 Data Structures

Cont .n S
NIVERSITY

* Here, the central data structure is hash table. We will see —
* Several methods of implementing hash table
* Compare these methods analytically
* Show numerous applications of hashing
* Compare hash table with binary search trees
* The ideal hash table data structure is merely an array of some fixed size, containing the keys.
 Typically, a key is string with an associated value(for example, salary information)
* We will refer to the table size as H_SIZE, with the understanding that this is a part of a hash data
structure and not merely some variable floating around globally.
 The common convention is to have the table run from 0 to H_SIZE -1.
* Each key is mapped into some number in the range 0 to H_SIZE -1 and placed in the appropriate cell
* The mapping is called a hash function, which ideally should be simple to compute and should
ensure that any two distinct keys get different cells.
* Since there are finite number of cells and virtually inexhaustible supply of keys, this is clearly
impossible and thus we seek a hash function that distributes the keys even among the cells.

CS1004 Data Structures

Hashing function ==

* If the input keys are integers, then simply returning key mod H_SIZE is generaly—a’ réasoriable
strategy, unless key happens to have some undesirable properties.

* |In this case, the choice of hash function needs to be carefully considered.

* For example, if the table size is 10 and the keys all end in zero, then the standard hash function is
obviously a bad choice.

* For a reasons we shall see later and to avoid situations like the one above, it is usually a good idea
to ensure that the table size is prime.

 When the input keys are random integers, this function is not only very simple to compute but
also distributes the keys evenly.

» Usually, the keys are strings in this case, the ash function needs to be chosen carefully.

CS1004 Data Structures 30

Example 22

I!
* In this example, john hashes to 3, phil hashes to 4, dave hashes to 6 and 4*?’/ }JN,!VER,ZSITZ
hashes to 7 ox toetttes of 5 35RO e2 O toS

Collision

* The only remaining problems
e Deal with choosing a function

* Deciding what to do when two keys has to the same value(this is known as
collision)
* Deciding on the table size.

\

- ro —_—

2 : john 25000
l 4 phil 31250
Key 1 f N p |
| — 6 | dave 27500
_} Same 7 ary 28200
Hash Hash /| mary 282
Function]

Key 2

CS1004 Data Structures

Cont... S

RV
* Consider the following example keys:(16,21,26,20) 16 |, NS UNIVERSITY
. . W Go, change the world
* Size of the hash table is 3 ” .
* Now will start inserting the keys 1
* For 16=16%4=0 26
e 21=21%4=1 2
* 26=26%4=2)
e 20=20%4=0
* For the last key (20) there is already an element where 20 is to be inserted, this is where collision resolution comes
into picture

* Collision resolution technique
* Chaining(Open Hashing)
* Open Addressing)(Closed Hashing)
* Linear probing
* Quadratic probing
* Double hashing
* Keep in mind that two keys can generate the same hash. This phenomenon is known as collision
* Since hash function gets us a small number for a key which is a big integer or string, there is possibility that two keys result
in the same value.
* The situation where a newly inserted key maps to an already occupied slot in the hash table is called collision and must be
handled using some collision handling technique.

CS1004 Data Structures 32

\\1Y)~)
m S .S

RY
UNIVERSITY

(0 change the world

* Keep a list of all elernents that hash to the same value.
* For convenience our lists have headers.

* If space is tight, it might be preferable to avoid their use
* Open hashing Find and Insert
* To perform find we use hash function to determine which list to traverse.
* Then traverse this list in the normal manner returning the position where the item is found
* To perform an insert we traverse down the appropriate list to check whether element is already in place
* If duplicates are expected an extra field is usually kept and this field would be incremented in the event of
match.
* |f the element turns out to be new, it is inserted either at the front of the list or at the end of list,
whichever is easiest.

* This is an issue most easily addressed while the code is being written
* Sometimes new elements are inserted at the front of the list, since it is convenient and also because
frequently it happens that recently inserted elements are the most likely to be addressed in the near future

CS1004 Data Structures

Open hashing declarations and Initialization

struct list_node

{

element_type element;
node_ptr next;

b

typedef node_ptr LIST;

typedef node_ptr position;

/* LIST *the_list will be an array of lists, allocated later */
/* The lists will use headers, allocated later */

struct hash_tbl
{

unsigned int table_size;
LIST *the_lists;

b

typedef struct hash_tbl *HASH_TABLE;

DT — . RV
HASH_TABLE initialize_table(unsigned int table_size
(o i e e UNIVERSITY
HASH_TABLE H; Go, change the world
Int i; an initiative of RV EDUCATIONAL INSTITUTIONS
/*1*/ if(table size < MIN_TABLE_SIZE)
{

/*2*/ error("Table size too small");

/*3*/ return NULL;

}

/* Allocate table */

/*4*/ H = (HASH_TABLE) malloc (sizeof (struct hash_tbl));
/*5*/ if(H == NULL)

/*6*/ fatal_error("Out of space!!!");

/*7*/ H->table_size = next_prime(table_size);

/* Allocate list pointers */

/*8%*/ H->the_lists = (position *) malloc(sizeof (LIST) * H->table_size);
/*9*/ if(H->the_lists == NULL)

/*10*/ fatal_error("Out of space!!!");

/* Allocate list headers */

/*11%*/ for(i=0; i<H->table_size; i++)

{

/*12*/ H->the_lists[i] = (LIST) malloc(sizeof (struct list_node));
/*13*/ if(H->the_lists[i] == NULL)

/*14*/ fatal_error("Out of space!!!");

else

/*15*/ H->the_lists[i]->next = NULL;

}

/*16*/ return H;

1

CS1004 Data Structures

Open hashing find routine and insert routine

position find(element_type key, HASH TABLE H)
{

position p;

LIST L

/*¥1*/ L = H->the_lists[hash(key, H->table_size) |;
[¥2*/ p = L->next;

/*3*/ while((p != NULL) && (p->element != key))
/* Probably need stremp!! */

[*4* [p = p->next;

/*¥5*/ return p;

}

void insert(element_type key, HASH TABLE H)

{

position pos, new_cell;

LIST L;

/*1*/ pos = find(key, H);

/*2*/ if(pos == NULL)

{

/*3*/ new_cell = (position) malloc(sizeof(struct list_node));
/*4*/ if(new_cell == NULL)

/*5*/ fatal_error("Out of space!!!");

else

{

/*6*/ L = H->the_lists[hash(key, H->table size) |;

/*7*/ new_cell->next = L->next;

/*8*/ new_cell->element = key; /* Probably need strcpy!! */
/*9*/ L->next = new_cell;

}

}

}

CS1004 Data Structures

Open hashing Example Sl

» Separate Chaining is a collision handling technique. R‘I(IIVERSITY
e Separate chaining is one of the most popular and commonly used techniques PRPYT. Tveewery
in order to handle collisions. Sk
* How to handle Collisions?
* There are mainly two methods to handle collision: v Step O1
* Separate Chaining : : el e
 The idea behind separate chaining is to implement the array as a : hash function provided.
linked list called a chain. 4
* The linked list data structure is used to implement this technique. e

So what happens is, when multiple elements are hashed into the
same slot index, then these elements are inserted into a i -p 02 | | o
singly-linked list which is known as a chain. oot liciig ot et

2 12 mapped to slot 2 (12%5=2).
° ° M 13 bh)
Let us consider a simple hash function as “key mod 5" and a 3
sequence of keys as 12, 22, 15, 25 g
Step 03
y P : o o 15 Step 04 ol 18 —| 28 Step 05
The next key is 22 which is mapped to . e The next key is 25 which is mapped to
! slot 2 (22%5=2) but slot 2is already ! s 39635;‘?_';)‘5‘”“”“ Smense 1 slot 0 (256%5=0). But slot O is already
2 12— 2 occupied by key 12. Separate chaining | 49 |_,| 29 e ks occupied by key 25. Again, Separate
will handle collision by creating a linked 2 12 — 22 chaining will handle collision by
8 list to slot 2. 3 3 creating a linked list to slot 2.

CS1004 Data Structures

Q7
XX 7). o . RY
= Jpern aaaressing has ui2/disadvantage of requiring pointer NIVERSITY
o o o o o %ﬁ’ 70, change e world
* Open Addressing is a method for handling collisions. = i
an initiative of RV EDUCATIONAL INSTITUTIONS

In Open Addressing, all elements are stored in the hash table itself.

So at any point, the size of the table must be greater than or equal to the total
number of keys (Note that we can increase table size by copying old data if
needed). This approach is also known as closed hashing.

This entire procedure is based upon probing.

CS1004 Data Structures

Collision handling strateqies

\\.9)
RY
e 3 common collision strategies g@ NIVERSITY
Ve

L Linear PrObing Go, change the world
e Quadratic Probing
* Double Hashing

e Linear Probing

* In linear probing, the hash table is searched sequentially that starts from the original location of the
hash.

* If in case the location that we get is already occupied, then we check for the next location.
e The function used for rehashing is as follows: rehash(key) = (n+1)%table-size.

e Example:The typical gap between two probes is 1 as seen in the example below:

e Let hash(x) be the slot index computed using a hash function and S be the table size

 If slot hash(x) % S is full, then we try (hash(x) + 1) % S

e If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S

e If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S

CS1004 Data Structures

Linear probing example

R
* Let us consider a simple hash function as “key mod 5” and a sequence of keys UNIVERSITY

that are to be inserted are 50, 70, 76, 85, 93. Go, change the worid
Linear Probing (open Addressing) S'ot initiative of RV EDUCATIONAL INSTITUTIONS
lot
slo o B0 Step 02
= Step O1 1 The first key to be inserted is 50 which
1 Empty hash table with range of hash is mapped to slot 0 (50%5=0)
values from O to 4 according to the 2
= hash function provided.
- 3
a
Slot Slot
°© 50 Step 03 °© 50 Step 04
1 70 The next key is 70 which is mapped to 1. 70 The next key is 76 which is mapped to
slot 0 (70%5=0) but 50 is already at slot 1 (76%5=1) but 70 is already at slot 1
Z slot O so, search for the next empty = 76 so, search for the next empty slot and
3 slot and insert it. 3 insert it.
a a
Slot Slot
Step 05 Step 06
o 50 i ° 50 P)))
The next key is 85 which is mapped to . The next key is 93 which is mapped to slot 3
' 70 slot O (85%5=0), but 50 is already at 70 (93%5=3), but 85 is already at slot 3 so,
= 76 slot number O so, search for the next 2 76 search for the next empty slot and insert it.
empty slot and insert it. So insert it So insert it into slot number 4.
3 85 into slot number 3. 3 85

CS1004 Data Structures

\.7)
ﬁ@ RY
* |In linear probing, f is a linear function of i, typically f(i) = i. 55U !VER,LSITZ
* This amounts to trying cells sequentially (with wraparound) in omoemen s

search of an empty cell.

* Figure shows in next slide the result of inserting keys {89, 18, 49, 58,
69} into a closed table using the same hash function as before and
the collision resolution strategy, (i) = i.

* The first collision occurs when 49 is inserted; it is put in the next
available spot, namely spot 0, which is open.

* 58 collides with 18, 89, and then 49 before an empty cell is found
three away. The collision for 69 is handled in a similar manner.

* As long as the table is big enough, a free cell can always be found,
but the time to do so can get quite large.

* Worse, even if the table is relatively empty, blocks of occupied
cells start forming.

* This effect, known as primary clustering, means that any key that
hashes into the cluster will require several attempts to resolve the
collision, and then it will add to the cluster.

CS1004 Data Structures

IEEj}n{;Ei I-I-‘ ® I ‘E! SN%

* Although we will not perform the calculations B‘I{IIVERSITY
here, it can be shown that the expected BT e s
number of probes using linear probing is
roughly

—1/2(1 + 1/(1 - A)?) for insertions and unsuccessful
searches and

—1/2(1 + 1/ (1- A)) for successful searches.

Empty Table After 89 After 18 After 49 After S8 After 69
0 49 49 49
1 58 S8
2 | 69
3
4
5
6
= 18 18 18 | 18
9 89 89 ' R9 89 | 89

CS1004 Data Structures

Quadratic Probing Sy

* If you observe carefully, then you will understand that the interval between pro 'LUN'NER@q'Y
proportionally to the hash value. Go, < LOMEENTke G0 ia

« Quadratic probing is a method with the help of which we can solve the problem of clistering that was
discussed above.

* This method is also known as the mid-square method.
* In this method, we look for the i2‘th slot in the ith iteration.

 We always start from the original hash location. If only the location is occupied then we check the other
slots.

* let hash(x) be the slot index computed using hash function.

* |f slot hash(x) % S is full, then we try (hash(x) + 1*1) % S

* If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S
* If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S

CS1004 Data Structures

Quadratic Probing T,

UNIVERSITY

* Quadratic probing is a collision resolution method that eliminates the primary ————
clustering problem B Go. change the vorld

" of linear probing. in initiative of RV EDUCATIONAL INSTITUTIONS
* Quadratic probing is what you would expect-the collision function is quadratic.
* The popular choice is f(i) = i2.
* Figure shows the resulting closed table with this collision function on the same
input used in the linear probing example.

* When 49 collides with 89, the next position attempted is one cell away. This cell is
empty, so 49 is placed there.

* Next 58 collides at position 8. Then the cell one away is tried but another collision
occurs. A vacant cell is found at the next cell tried, which is 22 = 4 away. 58 is thus
placed in cell 2.

* The same thing happens for 69.

* For linear probing it is a bad idea to let the hash table get nearly full, because
performance degrades.

* For quadratic probing, the situation is even more drastic: There is no guarantee of
finding an empty cell once the table gets more than half full, or even before the
table gets half full if the table size is not prime.

 This is because at most half of the table can be used as alternate locations to
resolve collisions.

* Indeed, we prove now that if the table is half empty and the table size is prime,
then we are always guaranteed to be able to insert a new element.

CS1004 Data Structures

Examle SN

: \4
Empty Table After 89 After 18 After 49 2 After 58 After 69 UNIVERSITY
o | 49 49 49 Go, change the world
" i | | | | an initiative of RV EDUCATIONAL INSTITUTIONS
2 | S8 S8
3 554
3
S
(3
B 18 | §.3 | 4 18
9 89 ’| 89 ‘; 89 89 | 89 E

e Although quadratic probing eliminates primary
clustering, elements that hash to the same
position will probe the same alternate cells. This
is known as secondary clustering.

* Secondary clustering is a slight theoretical
blemish.

« Simulation results suggest that it generally causes
less than an extra probe per search.

* Double hashing technique eliminates this, but
does so at the cost of extra multiplications and
divisions.

CS1004 Data Structures 44

NI
RV
e Let us consider table Size = 7, hash function as Hash(x) = x % 7 and collisionresolution strategy UNIVERSITY
; ; NS T
tobe f(i) = i%. Insert=22, 30, and 50. Gy Go. change the vorld
Quad rotic Probing (open Addressing) SIOt an initiative of RV EDUCATIONAL INSTITUTIONS
Slot
N | 22 Step 02
l e £ = The first key to be inserted is 22 which is
2 Empty hash table with range of hash mapped to slot 1 (222%7=1)
= values from O to 6 according to the 3
hash function provided. a

Slot Slot
o o
' 22 Step 03 1 22 - 140 Step O4
= 30 The next key is 30 which is mapped to 2 30 —— 1412 The next key is 50 which is mapped to slot 1
5 slot 2 (30%7=2) Ik (50%%7=1) but slot 1 is already occupied. So,

we will search slot 1+1A2, ie. 1+1 = 2. Again slot 2

= 4 is occupied, so we will search cell 1+2A2 je.1+4 = 5,
= s BO < - 1+22
S: <

CS1004 Data Structures

enum kind_of _entry { legitimate, empty, deleted };
struct hash_entry

{

element_type element;

enum kind_of _entry info;

b

typedef INDEX position;

typedef struct hash_entry cell;

/* the_cells is an array of hash_entry cells, allocated later */
struct hash_tbl

{

unsigned int table_size;

cell *the_cells;

%

typedef struct hash_tbl *HASH_TABLE;

1 RY
@@ UNIVERSITY

ange the world

HASH_TABLE initialize_table(unsigned int table_size)
HASH_TABLE H;

inti;

/*1*/ if(table_size < MIN_TABLE_SIZE)

{

/*2*/ error("Table size too small");

/*3*/ return NULL;

}

/* Allocate table */

/*4*/ H = (HASH_TABLE) malloc(sizeof (struct hash_tbl));
/*5*/ if(H==NULL)

/*6*/ fatal_error("Out of space!!!");

/*7*/ H->table_size = next_prime(table_size);

/* Allocate cells */

/*8*/ H->the cells = (cell *) malloc (sizeof (cell) * H->table_size);
/*9*/ if(H->the_cells == NULL)

/*10%*/ fatal_error("Out of space!!!");

/*11*/ for(i=0; i<H->table_size; i++)

/*12*/ H->the_cells[i].info = empty;

/*¥13*/ return H;

}

CS1004 Data Structures

position find(element_type key, HASH_TABLE H)

{
position i, current_pos;
(*1*fi=0;

/*2*/ current_pos = hash(key, H->table_size);

/* Probably need strcmp! */

/*3*/ while((H->the_cells[current_pos].element != key) &&
(H->the_cells[current_pos].info !=empty))

{

[*4*/ current_pos += 2*(++i) - 1;

/*5*/ if(current_pos >= H->table_size)

/*6*/ current_pos -= H->table_size;

}

/*7*/ return current_pos;

}

CS1004 Data Structures

NIVERSITY

, change the world

void

insert(element_type key, HASH _TABLE H)
{

position pos;

pos = find(key, H);

if(H->the cells[pos].info != legitimate)
{/* ok to insert here */
H->the_cells[pos].info = legitimate;
H->the cells[pos].element = key;

/* Probably need strcpy!! */

}
}

Double hashinc Sy

RY
* The intervals that lie between probes are computed by another hash function. NIVERSITY
o(locanetewar
* Double hashing is a technique that reduces clustering in an optimized way. ’ ”‘ . " e lﬁd

 In this technique, the increments for the probing sequence are computed by using another hash function.
We use another hash function hash2(x) and look for the i*hash2(x) slot in the ith rotation.

* let hash(x) be the slot index computed using hash function.

* If slot hash(x) % S is full, then we try (hash(x) + 1*hash2(x)) % S

* If (hash(x) + 1*hash2(x)) % S is also full, then we try (hash(x) + 2*hash2(x)) % S
 If (hash(x) + 2*hash2(x)) % S is also full, then we try (hash(x) + 3*hash2(x)) % S

CS1004 Data Structures

Example

* Insert the keys 27, 43, 692, 72 into the Hash Table of size 7. where first hash-function UNIVERSITY

is hl(k) = k mod 7 and second hash-function is h2(k) = 1 + (k mod 5) Go, il the world
Double Hashing (Oper\ Addressing) Slot "ONAL INSTITUTIONS
Slot
Step O1 . Step 02
Empty hash table with range of hash
values from O to 6 according to the - The first key to be inserted is 27 which is

hash function provided.

mapped to slot 6 (22%7=6).

o0 b W N =0

Slot s 27
1 a3 Step 03 Slot
- The next key is 43 which is mapped to 5
" slot 1 (A32%67=1). Step 04
0
. ' 43 The next key is 692 whit.:h is mcpped to slot 6
s 27 (692 % 7 = 6), but location 6 is already occupied.
2 692 Using double hashing,
— . hnew = [h1(692) +i* (h2(692)] % 7
=[6+1*(1+692%5)] %7
i Step 05 * =9%7
' 43 The next key is 72 which is mapped to slot 2 5 =2
(72 % 7 = 2), but location 2 is already occupied. .)
2 692 Using double hashing, el 27 Now, as 2 is an empty slot, so we can insert
3 hnew = [h1(72) +i* (h2(72)] % 7 692 into 2nd slot.
¥ =[2+1* (O +72%5)] %7
=5%7
S 72 =5,
s 27 Now, as 5 is an empty slot, so we can insert 72

into 5th slot.

CS1004 Data Structures

Comparison

Feawurs

Collision
Resolution

Probe

Seguence

Clhustenng

Efficiency

Hash Functions
Used

NMemory

Reguirements

Load Factor

CTomplexity

Performance

Space
Efficiency

Linear Probing

Resolves collsions by
checking the next
s=quental slot (insar

iNnCrement).

hik)_h(k) +
A (k) +2,...

Primary dustering {Jong

sequencss of fillad slots).

Simple but can d=grade
performance with high
load factors.

Cne hash function (for
th= inmtial positiconl

MMinimal meamory
overh=ad.

Degrades == load factor
increaseas. leadeng to
clustering.

Simple o implsmant.

Can become inseflicant
writh hagh load factors
dous to cdustenng.

Does not regquire exra
space. just the tabls=.

CQuadratic Probing

Res=ofves collisions by using
a quadratic funcion to find
the next sliot{eg.. i)

B{E), R{Ek) + 12_h(k)

—pn

S=scondary clustering
(=malier cdusters but =ol
soms Jdusteringl.

Better than Enaar probang in
terms of clustering but can
still have performancs
issu=s.

On= hash function (for the
initial positon) and a
guadraric funcoon for the

probs segquencsa.

PMMinimal memory ovaerhead.

Cegradss laess rapidhy than
linear probing with
increasing load factor.

More complex tham linear

probing due to ths guadratic

probang functon.

Better performance than
linear probing under
moderate load factors. but
still prons to cdustenng.

Coes=s not reqguirs extra
space. just the =ble.

04 Data Structures

Double Hashing

Reszobvas collisions by uss
a second hash functicn o
calculate the next prob=
positicon

R{k), R{Ek) =
(k). R(k) + 2-
) -~

Minimal clustering (du= o
the uss of a2 s=cond hash
function).

Most efficent vwath respact
o clustering. thhough the
sscond hash functicon adds
overhead.

Two hash functions: ones for
the initial positon and
anothar Tor thes probe
SEguUSnce.

Reguires two hash functons,

but otharwis=s minimal
meEmory overhaad.

Can handle higher lcad
factors more efficenty with
less degradaton.

PMore complex tham linear

probang and guadratic

probang due to the s=cond
ash function

Best performancs for larger
lcoad facrors a3s it reducss
clustenng significanthy.

Reguires an additional hash
function. but otharvass=
space-=hcent

1 RY
@ UNIVERSITY

. Go, change the world

vinitiative of RV EDUCATIONAL INSTITUTIONS

Reference links T,

UNIVERSITY
e https://www.slideshare.net/jaravles/searching-sorting-and-hashing-techniques Go, . T,

an initiative of RV EDUCATIONAL INSTITUTIONS

CS1004 Data Structures

R
UNIVERSITY
G”~ change the world

an initiative of RV EDUCATIONAL INSTITUTIONS

Thant You

