
 Process Synchronization

Operating Systems Page 1

UNIT II

Process Synchronization
Background
 Concurrent access to shared data may result in data inconsistency.
 Maintaining data consistency requires mechanisms to ensure the orderly execution of

cooperating processes.
 Shared-memory solution to bounded-butter problem (Chapter 4) allows at most n – 1 items in

buffer at the same time. A solution, where all N buffers are used is not simple.
 Suppose that we modify the producer-consumer code by adding a variable counter,

initialized to 0 and incremented each time a new item is added to the buffer

Bounded-Buffer
 Shared data

#define BUFFER_SIZE 10
typedef struct {
 . . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Bounded-Buffer
 Producer process

 item nextProduced;

 while (1) {
 while (counter == BUFFER_SIZE)
 ; /* do nothing */
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
 }
Bounded-Buffer
 Consumer process
 item nextConsumed;

 while (1) {
 while (counter == 0)
 ; /* do nothing */
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;
 }

 Process Synchronization

Operating Systems Page 2

Bounded Buffer
 The statements

counter++;
counter--;
must be performed atomically.

 Atomic operation means an operation that completes in its entirety without interruption.
 The statement “count++” may be implemented in machine language as:

register1 = counter
 register1 = register1 + 1

counter = register1
The statement “count—” may be implemented as:
register2 = counter
register2 = register2 – 1
counter = register2

 If both the producer and consumer attempt to update the buffer concurrently, the assembly
language statements may get interleaved.

 Interleaving depends upon how the producer and consumer processes are scheduled.
 Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

 The value of count may be either 4 or 6, where the correct result should be 5.

Race Condition
 Race condition: The situation where several processes access – and manipulate shared data

concurrently. The final value of the shared data depends upon which process finishes last.
 To prevent race conditions, concurrent processes must be synchronized.
The Critical-Section Problem
 n processes all competing to use some shared data
 Each process has a code segment, called critical section, in which the shared data is accessed.
 Problem – ensure that when one process is executing in its critical section, no other process is

allowed to execute in its critical section.

Solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical section, then no other processes
can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and there exist some processes that
wish to enter their critical section, then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its critical

 Process Synchronization

Operating Systems Page 3

section and before that request is granted.
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes.

Initial Attempts to Solve Problem


 Only 2 processes, P0 and P1
 General structure of process Pi (other process Pj)
 do {
 entry section
 critical section
 exit section
 reminder section
 } while (1);

 Processes may share some common variables to synchronize their actions.
Algorithm 1
 Shared variables:

 int turn;

initially turn = 0

 turn - i  Pi can enter its critical section

 Process Pi
 do {
 while (turn != i) ;
 critical section
 turn = j;
 reminder section
 } while (1);

 Satisfies mutual exclusion, but not progress

Algorithm 2
Shared variables

 boolean flag[2];
initially flag [0] = flag [1] = false.

 flag [i] = true  Pi ready to enter its critical section
 Process Pi
 do {
 flag[i] := true;

 while (flag[j]) ;
 critical section
 flag [i] = false;
 remainder section
 } while (1);

 Process Synchronization

Operating Systems Page 4

 Satisfies mutual exclusion, but not progress requirement.

Algorithm 3
 Combined shared variables of algorithms 1 and 2.
 Process Pi
 do {
 flag [i]:= true;

 turn = j;
 while (flag [j] and turn = j) ;

 critical section
 flag [i] = false;
 remainder section
 } while (1);

 Meets all three requirements; solves the critical-section problem for two processes.
Bakery Algorithm

 Before entering its critical section, process receives a number. Holder of the smallest number

enters the critical section.
 If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is served

first.
 The numbering scheme always generates numbers in increasing order of enumeration; i.e.,

1,2,3,3,3,3,4,5...
 Notation < lexicographical order (ticket #, process id #)

 (a,b) < c,d) if a < c or if a = c and b < d
 max (a0,…, an-1) is a number, k, such that k  ai for i - 0,

…, n – 1
 Shared data
 boolean choosing[n];
 int number[n];
 Data structures are initialized to false and 0 respectively
do {
 choosing[i] = true;
 number[i] = max(number[0], number[1], …, number [n – 1])+1;
 choosing[i] = false;
 for (j = 0; j < n; j++) {
 while (choosing[j]) ;
 while ((number[j] != 0) && (number[j,j] < number[i,i])) ;
 }
 critical section
 number[i] = 0;
 remainder section
} while (1);

 Process Synchronization

Operating Systems Page 5

Synchronization Hardware

 Test and modify the content of a word atomically
. boolean TestAndSet(boolean &target) {

 boolean rv = target;
 tqrget = true;
 return rv;
 }

Mutual Exclusion with Test-and-Set

 Shared data:
 boolean lock = false;

 Process Pi
 do {
 while (TestAndSet(lock)) ;
 critical section
 lock = false;
 remainder section
 }
 Atomically swap two variables.
 void Swap(boolean &a, boolean &b) {
 boolean temp = a;
 a = b;
 b = temp;
 }
Mutual Exclusion with Swap
 Shared data (initialized to false):

 boolean lock;
 boolean waiting[n];

Process Pi
 do {
 key = true;
 while (key == true)
 Swap(lock,key);
 critical section
 lock = false;
 remainder section
 }
Semaphores
 Synchronization tool that does not require busy waiting.
 Semaphore S – integer variable
 can only be accessed via two indivisible (atomic) operations
 wait (S):
 while S 0 do no-op;

 Process Synchronization

Operating Systems Page 6

 S--;
 signal (S):

 S++;

Critical Section of n Processes

 Shared data:
 semaphore mutex; //initially mutex = 1
 Process Pi:

do {
 wait(mutex);
 critical section

 signal(mutex);
 remainder section
} while (1);

Semaphore Implementation
 Define a semaphore as a record
 typedef struct {
 int value;

 struct process *L;
 } semaphore;

 Assume two simple operations:
 block suspends the process that invokes it.
 wakeup(P) resumes the execution of a blocked process P.

 Semaphore operations now defined as
 wait(S):

 S.value--;
 if (S.value < 0) {

 add this process to S.L;

 block;

 }

 signal(S):

 S.value++;

 if (S.value <= 0) {

 remove a process P from S.L;

 wakeup(P); }

Semaphore as a General Synchronization Tool
 Execute B in Pj only after A executed in Pi
 Use semaphore flag initialized to 0

 Process Synchronization

Operating Systems Page 7

 Code:
 Pi Pj
  
 A wait(flag)
 signal(flag) B

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that can be caused by
only one of the waiting processes.

 Let S and Q be two semaphores initialized to 1
 P0 P1
 wait(S); wait(Q);
 wait(Q); wait(S);
  
 signal(S); signal(Q);
 signal(Q) signal(S);
 Starvation – indefinite blocking. A process may never be removed from the semaphore

queue in which it is suspended.

Two Types of Semaphores

 Counting semaphore – integer value can range over an unrestricted domain.
 Binary semaphore – integer value can range only between 0 and 1; can be simpler to

implement.
 Can implement a counting semaphore S as a binary semaphore.

Implementing S as a Binary Semaphore

 Data structures:
 binary-semaphore S1, S2;
 int C:
 Initialization:
 S1 = 1 & S2 = 0
 C = initial value of semaphore S

Implementing S
 wait operation
 wait(S1);
 C--;
 if (C < 0) {
 signal(S1);
 wait(S2);
 }
 signal(S1);

 Process Synchronization

Operating Systems Page 8

 signal operation
 wait(S1);
 C ++;
 if (C <= 0)
 signal(S2);
 else
 signal(S1);

Classical Problems of Synchronization
 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded-Buffer Problem

 Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Bounded-Buffer Problem Producer Process

 do {
 …
 produce an item in nextp
 …
 wait(empty);
 wait(mutex);
 …
 add nextp to buffer
 …
 signal(mutex);
 signal(full);
 } while (1);

 Bounded-Buffer Problem Consumer Process
 do {
 wait(full)
 wait(mutex);
 …

 Process Synchronization

Operating Systems Page 9

 remove an item from buffer to nextc
 …
 signal(mutex);
 signal(empty);
 …
 consume the item in nextc
 …
 } while (1);

Readers-Writers Problem

 Shared data

semaphore mutex, wrt;
Initially
mutex = 1, wrt = 1, readcount = 0

 Readers-Writers Problem Writer Process
 wait(wrt);
 …
 writing is performed
 …
 signal(wrt);

Readers-Writers Problem Reader Process

 wait(mutex);
 readcount++;
 if (readcount == 1)
 wait(rt);
 signal(mutex);
 …
 reading is performed
 …
 wait(mutex);
 readcount--;
 if (readcount == 0)
 signal(wrt);
 signal(mutex):

 Process Synchronization

Operating Systems Page 10

Dining-Philosophers Problem

 Shared data

 semaphore chopstick[5];

Initially all values are 1

Dining-Philosophers Problem
 Philosopher i:
 do {
 wait(chopstick[i])
 wait(chopstick[(i+1) % 5])
 …
 eat
 …
 signal(chopstick[i]);
 signal(chopstick[(i+1) % 5]);
 …
 think
 …
 } while (1);

Critical Regions

 High-level synchronization construct
 A shared variable v of type T, is declared as:

 v: shared T

 Variable v accessed only inside statement
 region v when B do S

where B is a boolean expression.

 Process Synchronization

Operating Systems Page 11

 While statement S is being executed, no other process can access variable v.

 Regions referring to the same shared variable exclude each other in time.

 When a process tries to execute the region statement, the Boolean expression B is evaluated.
If B is true, statement S is executed. If it is false, the process is delayed until B becomes true
and no other process is in the region associated with v.

Example – Bounded Buffer

 Shared data:

 struct buffer {
 int pool[n];
 int count, in, out;
 }

Bounded Buffer Producer Process

 Producer process inserts nextp into the shared buffer

 region buffer when(count < n) {
 pool[in] = nextp;
 in:= (in+1) % n;
 count++;
 }

Bounded Buffer Consumer Process

 Consumer process removes an item from the shared buffer and puts it in nextc

 region buffer when (count > 0)
{ nextc = pool[out];

 out = (out+1) % n;
 count--;
 }

Implementation region x when B do S

 Associate with the shared variable x, the following variables:
 semaphore mutex, first-delay, second-delay;

 int first-count, second-count;
 Mutually exclusive access to the critical section is provided by mutex.
 If a process cannot enter the critical section because the Boolean expression B is false, it

initially waits on the first-delay semaphore; moved to the second-delay semaphore before it
is allowed to reevaluate B.

 Process Synchronization

Operating Systems Page 12

Implementation

 Keep track of the number of processes waiting on first-delay and second-delay, with first-

count and second-count respectively. The algorithm assumes a FIFO ordering in the queuing
of processes for a semaphore.
For an arbitrary queuing discipline, a more complicated implementation is required.

Monitors

 High-level synchronization construct that allows the safe sharing of an abstract data type
among concurrent processes.
 monitor monitor-name

 {
 shared variable declarations
 procedure body P1 (…) {
 . . .
 }
 procedure body P2 (…) {
 . . .
 }
 procedure body Pn (…) {
 . . .
 }
 {
 initialization code
 }
 }

 To allow a process to wait within the monitor, a condition variable must be declared, as
 condition x, y;
 Condition variable can only be used with the operations wait and signal.

 The operation
 x.wait();

means that the process invoking this operation is suspended until another process invokes.
 x.signal();

 The x.signal operation resumes exactly one suspended process. If no process is suspended,

then the signal operation has no effect.

 Process Synchronization

Operating Systems Page 13

Schematic View of a Monitor

Monitor With Condition Variables

 Process Synchronization

Operating Systems Page 14

Dining Philosophers Example
 monitor dp
 {
 enum {thinking, hungry, eating} state[5];
 condition self[5];
 void pickup(int i) // following slides
 void putdown(int i) // following slides
 void test(int i) // following slides
 void init() {
 for (int i = 0; i < 5; i++)
 state[i] = thinking;
 }
 }
 void pickup(int i) {
 state[i] = hungry;
 test[i];
 if (state[i] != eating)
 self[i].wait();
 }
 void putdown(int i) {
 state[i] = thinking;
 // test left and right neighbors
 test((i+4) % 5);
 test((i+1) % 5);
 }
 void test(int i) { if ((state[(I + 4) % 5] != eating) &&
 (state[i] == hungry) &&
 (state[(i + 1) % 5] != eating)) {
 state[i] = eating;
 self[i].signal();
 }}
 Monitor Implementation Using Semaphores
 Variables
 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next-count = 0;
 Each external procedure F will be replaced by
 wait(mutex);
 …
 body of F;
 …
 if (next-count > 0)
 signal(next)
 else
 signal(mutex);
 Mutual exclusion within a monitor is ensured.

 Process Synchronization

Operating Systems Page 15

Monitor Implementation
 For each condition variable x, we have:
 semaphore x-sem; // (initially = 0)
 int x-count = 0;

The operation x.wait can be implemented as:
 x-count++;
 if (next-count > 0)
 signal(next);
 else
 signal(mutex);
 wait(x-sem);
 x-count--;
 The operation x.signal can be implemented as:

 if (x-count > 0) {
 next-count++;
 signal(x-sem);
 wait(next);
 next-count--;
 }
 Conditional-wait construct: x.wait(c);

 c – integer expression evaluated when the wait operation is executed.
 value of c (a priority number) stored with the name of the process that is suspended.
 when x.signal is executed, process with smallest associated priority number is resumed

next.
 Check two conditions to establish correctness of system:

 User processes must always make their calls on the monitor in a correct sequence.
 Must ensure that an uncooperative process does not ignore the mutual-exclusion gateway

provided by the monitor, and try to access the shared resource directly, without using the
access protocols.

Solaris 2 Synchronization

 Implements a variety of locks to support multitasking, multithreading (including real-time
threads), and multiprocessing.

 Uses adaptive mutexes for efficiency when protecting data from short code segments.
Uses condition variables and readers-writers locks when longer sections of code need access
to data.

 Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or
reader-writer lock.

Windows 2000 Synchronization
 Uses interrupt masks to protect access to global resources on uniprocessor systems.
 Uses spinlocks on multiprocessor systems.
 Also provides dispatcher objects which may act as wither mutexes and semaphores.
 Dispatcher objects may also provide events. An event acts much like a condition variable.

 Process Synchronization

Operating Systems Page 16

Deadlocks
The Deadlock Problem
 A set of blocked processes each holding a resource and waiting to acquire a resource held by

another process in the set.
 Example

 System has 2 tape drives.
 P1 and P2 each hold one tape drive and each needs another one.

 Example
 semaphores A and B, initialized to 1

 P0 P1
wait (A); wait(B)
wait (B); wait(A)

Bridge Crossing Example

 Traffic only in one direction.
 Each section of a bridge can be viewed as a resource.
 If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).
 Several cars may have to be backed up if a deadlock occurs.
 Starvation is possible.

System Model


 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
 Each resource type Ri has Wi instances.
 Each process utilizes a resource as follows:

 request
 use
 release

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource.
 Hold and wait: a process holding at least one resource is waiting to acquire additional

resources held by other processes.
 No preemption: a resource can be released only voluntarily by the process holding it, after

that process has completed its task.

 Process Synchronization

Operating Systems Page 17

 Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting
for a resource that is held by P1, P1 is waiting for a resource that is held by

 P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Resource-Allocation Graph

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.
 request edge – directed edge P1  Rj
 assignment edge – directed edge Rj  Pi

 Process

 Resource
 Resource Type with 4 instances
 Pi requests instance of Rj

 Pi is holding an instance of Rj

Example of a Resource Allocation Graph

 Process Synchronization

Operating Systems Page 18

Resource Allocation Graph With

Resource Allocation Graph With A Cycle But No Deadlock

Basic Facts
 If graph contains no cycles  no deadlock.

 If graph contains a cycle 

 if only one instance per resource type, then deadlock.

 if several instances per resource type, possibility of deadlock.

Methods for Handling Deadlocks

 Process Synchronization

Operating Systems Page 19

 Ensure that the system will never enter a deadlock state.

 Allow the system to enter a deadlock state and then recover.
 Ignore the problem and pretend that deadlocks never occur in the system; used by most

operating systems, including UNIX.

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources; must hold for nonsharable resources.

 Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold
any other resources.
 Require process to request and be allocated all its resources before it begins execution, or

allow process to request resources only when the process has none.
 Low resource utilization; starvation possible.

 No Preemption –
 If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released.
 Preempted resources are added to the list of resources for which the process is waiting.
 Process will be restarted only when it can regain its old resources, as well as the new ones

that it is requesting.
 Circular Wait – impose a total ordering of all resource types, and require that each process

requests resources in an increasing order of enumeration.

Deadlock Avoidance

 Simplest and most useful model requires that each process declare the maximum number of
resources of each type that it may need.

 The deadlock-avoidance algorithm dynamically examines the resource-allocation state to
ensure that there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of available and allocated resources, and
the maximum demands of the processes.

Safe State
 When a process requests an available resource, system must decide if immediate allocation

leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can still request can be
satisfied by currently available resources + resources held by all the Pj, with j<I.
 If Pi resource needs are not immediately available, then Pi can wait until all Pj have

finished.
 When Pj is finished, Pi can obtain needed resources, execute, return allocated resources,

 Process Synchronization

Operating Systems Page 20

and terminate.
 When Pi terminates, Pi+1 can obtain its needed resources, and so on.

Basic Facts

 If a system is in safe state  no deadlocks.

 If a system is in unsafe state  possibility of deadlock.

 Avoidance  ensure that a system will never enter an unsafe state.

Safe, Unsafe , Deadlock State

Resource-Allocation Graph Algorithm
 Claim edge Pi  Rj indicated that process Pj may request resource Rj; represented by a dashed

line.
 Claim edge converts to request edge when a process requests a resource.
 When a resource is released by a process, assignment edge reconverts to a claim edge.
 Resources must be claimed a priori in the system.

Resource-Allocation Graph For Deadlock Avoidance

 Process Synchronization

Operating Systems Page 21

Unsafe State In Resource-Allocation Graph

Banker’s Algorithm

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to wait.

 When a process gets all its resources it must return them in a finite amount of time.

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj

available.
 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of

resource type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj.
 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its

task.
Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi

 Process Synchronization

Operating Systems Page 22

Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of

resource type Rj.

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since process has
exceeded its maximum claim.

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since resources are not
available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
 Available = Available = Requesti;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;;

• If safe  the resources are allocated to Pi.
• If unsafe  Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

 5 processes P0 through P4; 3 resource types A

(10 instances),
B (5instances, and C (7 instances).

 Snapshot at time T0:
 Allocation Max Available
 A B C A B C A B C
 P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2
 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3
 The conte
 nt of the matrix. Need is defined to be Max – Allocation.
 Need
 A B C
 P0 7 4 3
 P1 1 2 2
 P2 6 0 0
 P3 0 1 1
 P4 4 3 1
 The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

Example P1 Request (1,0,2) (Cont.)

 Process Synchronization

Operating Systems Page 23

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true.
 Allocation Need Available
 A B C A B C A B C
 P0 0 1 0 7 4 3 2 3 0
 P1 3 0 2 0 2 0
 P2 3 0 1 6 0 0
 P3 2 1 1 0 1 1
 P4 0 0 2 4 3 1
 Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

requirement.
 Can request for (3,3,0) by P4 be granted?
 Can request for (0,2,0) by P0 be granted?

Deadlock Detection

 Allow system to enter deadlock state
 Detection algorithm
 Recovery scheme

Single Instance of Each Resource Type

 Maintain wait-for graph
 Nodes are processes.
 Pi  Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle in the graph.
 An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the

number of vertices in the graph.

Resource-Allocation Graph and Wait-for Graph

 Process Synchronization

Operating Systems Page 24

Several Instances of a Resource Type
 Available: A vector of length m indicates the number of available resources of each type.

 Allocation: An n x m matrix defines the number of resources of each type currently allocated

to each process.

 Request: An n x m matrix indicates the current request of each process. If Request [ij] = k,
then process Pi is requesting k more instances of resource type. Rj.

Detection Algorithm
1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false;otherwise, Finish[i] = true.
2. Find an index i such that both:

(a) Finish[i] == false
(b) Requesti  Work

If no such i exists, go to step 4.
3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1  i  n, then the system is in deadlock state. Moreover, if
Finish[i] == false, then Pi is deadlocked.

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).
 Snapshot at time T0:
 Allocation Request Available
 A B C A B C A B C
 P0 0 1 0 0 0 0 0 0 0
 P1 2 0 0 2 0 2
 P2 3 0 3 0 0 0
 P3 2 1 1 1 0 0
 P4 0 0 2 0 0 2
 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.
 P2 requests an additional instance of type C.
 Request
 A B C
 P0 0 0 0
 P1 2 0 1
 P2 0 0 1

 P3 1 0 0
 P4 0 0 2

 Process Synchronization

Operating Systems Page 25

 State of system?
 Can reclaim resources held by process P0, but insufficient resources to fulfill other

processes; requests.
 Deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

 one for each disjoint cycle
 If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph

and so we would not be able to tell which of the many deadlocked processes “caused” the
deadlock.

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes.
 Abort one process at a time until the deadlock cycle is eliminated.
 In which order should we choose to abort?

 Priority of the process.
 How long process has computed, and how much longer to completion.
 Resources the process has used.
 Resources process needs to complete.
 How many processes will need to be terminated.
 Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.
 Rollback – return to some safe state, restart process for that state.
 Starvation – same process may always be picked as victim, include number of rollback in

cost factor.

Combined Approach to Deadlock Handling

 Combine the three basic approaches

 Prevention

 Avoidance

 Detection

 allowing the use of the optimal approach for each of resources in the system.

 Process Synchronization

Operating Systems Page 26

 Partition resources into hierarchically ordered classes.

 Use most appropriate technique for handling deadlocks within each class.

