B.E. / B.Tech (Part Time) DEGREE END SEMESTER EXAMINATION APR/MAY 2014 Electronics and Communication Engineering Branch Semester - (Regulations 2005/2009) PTEC472/PTEC 9355 – Digital VLSI

Time: 3 HoursMailAnswer ALL questionsPART-A(10)

Max.marks: 100 (10X2=20 marks)

Use following device parameters for calculations.

NMOS: $VTn_0 = 0.4$, $k'_n = 115 \mu A/V^2$, VDSAT = 0.6V, $\lambda = 0.06V^{-1}$, $\gamma = 0.4 V^{1/2}$, $2\Phi_F = -0.6V$ PMOS: $VTp_0 = -0.4V$, $k'_p = -30 \mu A/V^2$, VDSAT = -1V, $\lambda = -0.1V^{-1}$, $\gamma = -0.4V^{1/2}$, $2\Phi_F = 0.6V$

- 1. Find the operating region of NMOS transistor with $V_{GS}=2.5V$, $V_{DS}=1V$, and $V_t = 0.4V$.
- 2. What is the effect on capacitance of MOS device due to fixed voltage scaling?
- 3. Draw the layout of two input NAND gate.
- 4. What is the voltage swing of NMOS pass transistor logic?
- 5. Differentiate latches and registers.
- 6. Draw the circuit of one transistor dynamic RAM cell.
- 7. What is a data path operator?
- 8. What is meant by clock skew in synchronous system?
- 9. Implement a two input AND gate using two input multiplexer.
- 10. What are the features of Full-custom design?

PART-B

11. (i) Implement the Boolean logic Y = A'+ B'+ (CD)' using Static CMOS and Dynamic logic and size the devices such that the equivalent impedance is equal to inverter with size (W/L)p = 3/1 and (W/L)n = 1/1,.

- (ii) Discuss the signal integrity issues of dynamic logic.
- 12.(a) The inverter in figure 1 operates with $V_{DD} = 2.5$ V Find V_M, V_{OH}, V_{OL} and V_{out} for Vin = 0.9V.

(OR)

- 12.(b) i. Discuss the secondary effects of MOS device.
 - ii. Two MOSFETs fabricated in a long channel process (assume $\lambda = 0$) are tested and the measurements are given below. Both devices have W/L = 2 4µm/1 2µm (Vsp = 0 in all cases). Determine the type of

have W/L = $2.4\mu m/1.2\mu m$. (V_{SB} = 0 in all cases): Determine the type of device, V_{T0} and k' for MOSFET A and B.

Condition:	ID - MOSFET A	ID - MOSFET B
VGS = 0V, VDS = 0V	0A	0A
VGS = -1V. VDS = -2V	20µA	0A
VGS = 1V, VDS = IV	0A	45µA
VGS = 1V. VDS = 0.02V	O A	4μΑ
VGS = -2V, VDS = -2V	200µA	0A

13.(a) (i) Find the set-up and clock to output delay of MUX based edge triggered register.(ii) Explain pipelining with an example.

(OR)

- 13.(b) (i) Show that C^2MOS register is insensitive to 0-0 overlap.
 - (ii) Explain the read and write operation of static RAM cell.

(5X16=80 Marks)

14.(a) Find the propagation delay of Manchestor carry chain adder and Carry bypass adder.

(OR)

- (b) Find the critical path of 4 X 4 Wallace tree multiplier.
- 15.(a) Explain briefly about Cell based implementation.

(OR) 15.(b) Explain the architecture of any one type of FPGA.
