B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

ELECTRICALS AND ELECTRONICS ENGINEERING

		Paper - II : Network Analysis - I	
Time: 3 Hours		3 Hours	Maximum Marks : 75
		Answer question No.1 compulsory	$(15 \times 1 = 15m)$
		Answer any ONE question from each unit	$(4 \times 15 = 60m)$
1)	a)	Define Current.	
	b)	Define KVL.	
	c)	Draw VI Characteristics of Inductor.	
	d)	Write equation for energy stored in capacitor.	
	e)	Define Reciprocity Theorem.	
	f)	Define Thevenin's Theorem.	
	g)	Define Form Factor	
	h)	Define RMS value.	
	i)	What is Power Factor?	
	j)	Write expression for Complex Power.	
	k)	Define Resonance.	
	1)	Define Bandwidth.	

n) Write expression for current response of series RL circuit.

Write initial conditions for series RC circuit.

o) Write the command for end statement.

m)

- 2) a) What are the passive and active elements? Explain the volt current relationship of passive elements with examples?
 - b) In the figure below find the value of R such that the power dissipated in the 5 ohm resistor is 100 W. Assume the internal resistance of the battery of 50 V to be 1 ohm.

- 3) a) Derive the expressions for n capacitors connected in series.
 - b) In the figure below, find ' V_1 ' using Kirchoff's laws if v = 100 volts.

- 4) a) Define the following terms:
 - i) Admittance
 - ii) Conductance
 - iii) Susceptance
 - b) A 50Hz sinusoidal voltage applied to a single phase circuit has its RMS value of 200V. Its value at t=0 is 28.3 volt positive. The current drawn by the circuit is 5A RMS and lags behind the voltage by one sixth of a cycle. Write the expressions for instantaneous values of voltage and current.

OR

- 5) a) State and explain Norton's Theorem.
 - b) Find Current through 15 Ω resistor using Thevenin's Theorem.

UNIT - III

- 6) a) What is resonance? Sketch the resonance curves for a series resonant circuit with variable frequency and constant R, L and C.
 - b) A series circuit comprising R, L and C is supplied at 220V, 50 HZ. At resonance, the voltage across the capacitor is 550V. The current at resonance is 1A. Determine the circuit parameters R, L and C.

OR

- 7) a) Derive the expressions for ac through series RC circuit.
 - b) Calculate the resistance and inductance or capacitance in series for each of the following impedances assumes the frequency to be 60 Hz.
 - i) 12+j30 ohms,
- ii) j60 ohms
- iii) $20 \angle 60^{\circ}$ ohms..

UNIT - IV

- 8) a) Derive the expression for transient response of RLC Series circuit with unit step input.
 - b) In a series RLC circuit, R=5ohms, L=1H and C=1F. A DC voltage of 20V is applied at t=0, obtain i(t).

OR

9) Write a PSPICE program to find Thevenin's circuit for circuit shown in figure.

