

B.E. (Full Time) DEGREE END SEMESTER EXAMINATIONS APRIL/MAY.2014 COLLEGE OF ENGINEERING GUINDY CAMPUS, ANNA UNIVERISTY, CHENNA

BRANCH : ELECTRICAL AND ELECTRONICS ENGINEERING Third Semester EE 8302 Electromagnetic Theory (Regulations 2012)

Time: 3 Hours

Answer ALL questions

Max. Marks: 100

PART - A (10 x 2 = 20 Marks)

- 1. Show that the following vectors are orthogonal. $\overline{A} = 4\overline{a_x} + 6\overline{a_y} - 2\overline{a_z}$ and $\overline{B} = -2\overline{a_x} + 4\overline{a_y} + 8\overline{a_z}$.
- 2. Express in matrix form the unit vector transformation from the rectangular to cylindrical co-ordinate system.
- 3. What is Lorentz's Force?
- 4. Find charge in the volume defined by $0 \le x \le 1m$, $0 \le y \le 1m$ and $0 \le z \le 1m$ if $\rho_v = 60xy^2C/m^3$.
- 5. Two current carrying wires carry I_1 and I_2 in opposite direction, determine the force between them assuming a separation 'd'.
- 6. Give four similarities between electrostatic and magnetic field.
- 7. Define mutual inductance.
- 8. Distinguish between transformer emf and motional emf.
- 9. Can a uniform plane wave exist in real life?
- 10. What are the wavelength and frequency of a wave propagation in free space when $\beta = 2$?

$PART - B (5 \times 16 = 80 Marks)$

- 11. Using fundamental Laws obtain the set of Maxwell's equation in integral and difference form for free space. (16)
- 12. a. (i) State and prove Stoke's theorem. (8) (ii) If $\vec{F} = (2z + 5) a_x + (3x - 2) a_y + (4x - 1)a_z$ verify the Stoke's theorem over the hemisphere $x^2 + y^2 + z^2 = 4$ and $z \ge 0$. (8)

(OR)

b. (i) Show that over the closed surface of a sphere of radius b, $\oint ds = 0$. (6) (ii) Show that the vector $\vec{E} = (6xy + z^3)\vec{a}_x + (3x^2 - z)\vec{a}_y + (3xz^2 - y)\vec{a}_z$ is irrotational and Find its scalar potential. (10)

.....2

- 13. a. (i) A positive point charge 100×10^{-12} C is located in air at x = 0, 0.1m and another such charge at x = 0, y = -0.1m. What is the magnitude and direction of **E**? (6)
 - (ii) Obtain an expression for energy stored in an electric field and hence find the energy density. (10)

(OR)

- b. Explain the polarization and thus obtain electric field intensity and potential of a dipole. (16)
- 14. a. Obtain an expression for magnetic flux density and magnetic field intensity at any point along the axis of circular coil. (16)

(OR)

- b. Obtain an expression for inductances and torque on a long solenoid coil. (16)
- 15. a. (i) State Poynting theorem and thus obtain an expression for instantaneous power density vector associated with electromagnetic field. (12)
 - (ii) A plane wave travelling in air is normally incident on a block of paraffin with $\in_r = 2.2$. Find the reflection coefficient. (4)

(OR)

b. Obtain an expression for electromagnetic wave propagation in lossy dielectrics.

(16)

4