Total No. of Questions : 12]	SEAT No. :	
P722	[Total No. of Pages : 4	

[4659] - 8

B.E. (Civil) (Semester - I) ADVANCED GEOTECHNICAL ENGINEERING

(2008 Pattern) (Elective - I(e))

Time: 3 Hours | [Max. Marks: 100

Instructions to the candidates:

- 1) Answer 3 questions from Section I and 3 questions from Section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Your answers will be valued as a whole.
- 5) Use of electronic pocket calculator is allowed & IS codes are not allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

Q1) Explain the following:

 $[4 \times 4 = 16]$

- a) USCS
- b) ISCS
- c) PRA classification
- d) Diffuse Double layer

OR

- **Q2)** a) Following data is obtained from a proposed foundation site:
 - i) Total soil sieved = 250 gms
 - ii) Cum. mass retained on 4 mm sieve = 40 gms
 - iii) Cum. mass retained on 75 μ sieve = 200 gms
 - iv) $D_{10} = 0.07 \text{ mm}, D_{30} = 0.12 \text{ mm}, D_{60} = 1.95 \text{ mm}.$
 - v) LL = 40% & PL = 30%

Classify the soil & comment, whether the soil is suitable for foundation?

b) Enlist different 'soil structures' & 'clay minerals' and explain the role of 'Montmorillonite'. [8]

P.T.O.

[8]

<i>Q3</i>)	a)	A vertical retaining wall 4m high, supported a backfill with β γ = 18 kN/m³, ϕ = 30°, δ = 10°. A footing running parallel to the wall carrying a load of 18 kN/m is to be constructed. Find the safe distance of the footing from the face of the wall, so that there is zero presincrease, on the wall.	all & ance
	b)	Explain, Ka, Kp & Ko giving field examples.	[7]
		OR	
Q4)	Design a gravity retaining wall, 6m high, with, $\theta = 0$, $\gamma = \phi = 30^{\circ}$, dry soil as backfill. Also find the Fos against sliding $\delta' = 30^{\circ}$, the wall is made up of concrete with $\gamma = 24 \text{ kN/m}^3 \& \text{of 1m}$. Use Rankine's theory.		ning
	b)	Compute the embedment depth & pull in anchor rod for the sheet 6 m high backfill with anchor rod 1.5m below the top. The soil of bac & below the dredge line are same, with following properties, $\phi = \phi' = C = 0$, $\gamma_{sat} = 22 \text{ kN/m}^3$, $\gamma = 19 \text{ kN/m}^3$, GWT = 3 m above D.L.	kfill
		Use 'Free Earth Support' method.	[9]
Q5)	a)	Explain the different types of Geosynthetics, with their functions.	[6]
2-7	b)	Explain the properties & functional requirements of geogrid.	[6]
	c)	Discuss the 'Binquet & Lee' theory for reinf. foundationations.	[5]
	-)	OR	r. l
Q6)	a)	Explain components of 'RE wall' with sketch.	[6]
_			

b) Explain 'Soil nailing' with situations applicable. [5]

c) Discuss the user of 'Geosynthetics in Geoenvironment. [6]

SECTION - II

Q7) Explain the following:

 $[4 \times 4 = 16]$

- a) Free & Forced vibrations.
- b) Pressure Bulb concept of Balakrishna & Nagraj.
- c) Barken's method
- d) Pauw's Analysis

- Q8) a) Resonance occurred at a frequency of 25 cycles/sec in a vertical block vibration test on a block of 1 m × 1 m × 1m. Determine Cu if the wt. of oscillator is 700 N & the force produced by it at 15 cycles/sec is 1200 N. Also compute the amplitude in vert. direction at 15 cycles/sec.
 - b) Discuss the design criteria for impact type machines as per IS 2974 (pt II) 1966. [8]
- **Q9)** Explain the following:
 - a) Multi under-reamed pile. [5]
 - b) Bored compaction pile. [4]
 - c) Vibrofloatation. [4]
 - d) Sand drains. [4]

OR

- **Q10)** a) Explain the stages of inserting reinforcement in Vibro-expanded pile.[7]
 - b) A clay layer 5m thick is consolidated with the help of sand drains of dia. 30cm & spaced at 2.7 m c/c. Determine the influence of the drain wells on the Av. degree of consolidation at the time when the degree of consolidation in the clay without wells (Uz) would be 20%.

Arrange the sand drains in square pattern & compute the improvement in U, for the following cases. [10]

- i) Kr = Kz
- ii) Kr = 5 Kz. Use following data,

for
$$Uz = 20\%$$
, $Tv = 0.031$,

$$Tr = 0.070, U = 30\%$$

$$Tr = 0.085, U = 35\%$$

$$Tr = 0.373$$
, $U = 85\%$

$$Tr = 0.455$$
, $U = 90\%$

Q11) Explain the following:

	a)	Hookean & Newtonian model.	[5]		
	b)	Kelvin model.	[4]		
	c)	Burger's model.	[4]		
	d)	Bingham's model.	[4]		
OR					
Q12)	a)	Explain 'Rheology' & simple Rheological models.	[7]		
	b)	Explain 'Saint - Venant's' model.	[5]		
	c)	Discuss 'secondary consolidation' & 'creep', with the help Rheological models.	of [5]		

