Code No: 07A4BS04

R07

Set No. 2

II B.Tech II Semester Examinations, APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS Aeronautical Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series.
 - i. about the point z=0
 - ii. about the point z=1

Determine the region of convergence in each case.

iii. if $f(z)=\frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in.

A.
$$0 < |z - 1| < 4$$
 and

B.
$$|z-1| > 4$$
 [8+8]

- 2. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.
 - (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
- 3. (a) When n is a positive integer , Prove that $\frac{d}{dx}\left[x^nJ_n\left(\mathbf{X}\right)\right]=x^nJ_{n-1}\left(\mathbf{X}\right)$ Hence show that $J_{n-1}\left(\mathbf{X}\right)=\frac{n}{x}J_n\left(\mathbf{X}\right)+J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$ Hence show that $J_{n-1}(x) = \frac{n}{x}J_n(x) J'_{n(x)}$. [8+8]
- 4. (a) Evaluate $\int_{c} \frac{e^z dz}{(z^2 + \pi^2)^2}$ where e is the circle |z| = 4 by using Cauchy's integral formula.
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- 5. (a) Discuss the transformation $w = e^z$ and show that the region between the real axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w-plane.
 - (b) Determine bilinear transformation which map the points $z = 0, 1, \infty$ into w = -5, -1, 3 Find the critical and fixed points of the transformation. [8+8]
- 6. (a) write down the the law of transformation for the tensors
 - $i. A_i^{kj}$

- ii. C_{mn}
- (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2\sin^2\theta$ ($d\varphi)^2$, then find the value of [1,22] and [3,13]
- 7. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$.

[5+5+6]

8. (a) Let X be a continuous random variable with probability function

$$f(x) = ax 0 \le x \le 1$$

$$= a 1 \le x \le 1$$

$$= -ax + 3a 2 \le x \le 3$$

$$= 0 elsewhere$$

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.

[8+8]

II B.Tech II Semester Examinations, APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS Aeronautical Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Let X be a continuous random variable with probability function

$$f(x) = ax \qquad 0 \le x \le 1$$

$$= a \qquad 1 \le x \le 1$$

$$= -ax + 3a \quad 2 \le x \le 3$$

$$= 0 \qquad elsewhere$$

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.

[8+8]

- 2. (a) write down the the law of transformation for the tensors
 - i. A_ikj
 - ii. C_{mn}
 - (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2\sin^2\theta$ ($d\varphi)^2$, then find the value of [1 ,22] and [3,13] [8+8]
- 3. (a) When n is a positive integer , Prove that $\frac{d}{dx}\left[x^nJ_n\left(\mathbf{X}\right)\right]=x^nJ_{n-1}\left(\mathbf{X}\right)$ Hence show that $J_{n-1}\left(\mathbf{X}\right)=\frac{n}{x}J_n\left(\mathbf{X}\right)+J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx}\left[x^nJ_n\left(x\right)\right] = x^nJ_{n-1}\left(x\right)$ Hence show that $J_{n-1}\left(x\right) = \frac{n}{x}J_n\left(x\right) J'_{n(x)}$. [8+8]
- 4. (a) Evaluate $\int_{c} \frac{e^z dz}{(z^2 + \pi^2)^2}$ where e is the circle |z| = 4 by using Cauchy's integral formula
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- 5. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.

- (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
- 6. (a) Discuss the transformation $w = e^z$ and show that the region between the real axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w-plane.
 - (b) Determine bilinear transformation which map the points $z=0, 1, \infty$ into w=-5,-1, 3 Find the critical and fixed points of the transformation. [8+8]
- 7. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$.

[5+5+6]

[8+8]

- 8. (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series.
 - i. about the point z=0
 - ii. about the point z=1Determine the region of convergence in each case.
 - iii. if $f(z)=\frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in.

A.
$$0 < |z - 1| < 4$$
 and

B.
$$|z-1| > 4$$

Code No: 07A4BS04

R07

Set No. 1

II B.Tech II Semester Examinations, APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS Aeronautical Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.
 - (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
- 2. (a) Evaluate $\int_{c}^{c} \frac{e^{z}dz}{(z^{2}+\pi^{2})^{2}}$ where e is the circle |z|=4 by using Cauchy's integral formula.
 - (b) Evaluate $\int_c \frac{z \, dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- 3. (a) Let X be a continuous random variable with probability function

$$f(x) = ax \qquad 0 \le x \le 1$$

$$= a \qquad 1 \le x \le 1$$

$$= -ax + 3a \quad 2 \le x \le 3$$

$$= 0 \qquad elsewhere$$

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.

[8+8]

- 4. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$.

[5+5+6]

- 5. (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series.
 - i. about the point z=0
 - ii. about the point z=1

Determine the region of convergence in each case.

Code No: 07A4BS04

R07

Set No. 1

- iii. if $f(z)=\frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in.
 - A. 0 < |z 1| < 4 and

B.
$$|z-1| > 4$$
 [8+8]

- 6. (a) write down the law of transformation for the tensors
 - i. A_i
 - ii. C_{mn}
 - (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2\sin^2\theta$ ($d\varphi)^2$, then find the value of [1 ,22] and [3,13] [8+8]
- 7. (a) When n is a positive integer , Prove that $\frac{d}{dx}\left[x^nJ_n\left(\mathbf{X}\right)\right]=x^nJ_{n-1}\left(\mathbf{X}\right)$ Hence show that $J_{n-1}\left(\mathbf{X}\right)=\frac{n}{x}J_n\left(\mathbf{X}\right)+J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx}\left[x^{n}J_{n}\left(x\right)\right]=x^{n}J_{n-1}\left(x\right)$ Hence show that $J_{n-1}\left(x\right)=\frac{n}{x}J_{n}\left(x\right)-J_{n}'\left(x\right)$. [8+8]
- 8. (a) Discuss the transformation $w = e^z$ and show that the region between the real axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w-plane.
 - (b) Determine bilinear transformation which map the points $z = 0, 1, \infty$ into w = -5, -1, 3 Find the critical and fixed points of the transformation. [8+8]

II B.Tech II Semester Examinations, APRIL 2011 MATHEMATICS FOR AEROSPACE ENGINEERS Aeronautical Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Two dice are thrown together. Find the probability that
 - i. the sum of numbers on their faces is 9
 - ii. the numbers on their faces are both odd
 - iii. the numbers on their faces are same.
 - (b) A distributor receives 20%, 15%, 35% and 30% of eggs from four poultries A,B,C,D which contains rotten eggs of 1%, 2%, 2% and 1% in the supplies from A,B,C,D respectively. A randomly chosen egg was found to be rotten. What is the probability that such egg came from the poultry C? [8+8]
- 2. (a) When n is a positive integer, Prove that $\frac{d}{dx}\left[x^{n}J_{n}\left(\mathbf{X}\right)\right]=x^{n}J_{n-1}\left(\mathbf{X}\right)$ Hence show that $J_{n-1}\left(\mathbf{X}\right)=\frac{n}{x}J_{n}\left(\mathbf{X}\right)+J'_{n(x)}$
 - (b) Prove that $\frac{d}{dx}\left[x^{n}J_{n}\left(x\right)\right]=x^{n}J_{n-1}\left(x\right)$ Hence show that $J_{n-1}\left(x\right)=\frac{n}{x}J_{n}\left(x\right)-J_{n}'\left(x\right)$. [8+8]
- 3. (a) write down the law of transformation for the tensors
 - i. A_i^{kj}
 - ii. C_{mn}
 - (b) Define Christoffel symbol of second kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2\sin^2\theta$ $(d\varphi)^2$, then find the value of [1,22] and [3,13]
- 4. (a) Let X be a continuous random variable with probability function

$$f(x) = ax 0 \le x \le 1$$

$$= a 1 \le x \le 1$$

$$= -ax + 3a 2 \le x \le 3$$

$$= 0 elsewhere$$

Determine a and compute $P(X \le 1.5)$

- (b) The average life of a bulb is 1000 hours and standard deviation is 300 hours. If X is the life period of a bulb which is distributed normally, find the probability that a randomly picked bulb will last
 - i. less than 500 hours
 - ii. more than 600 hours
 - iii. between 700 and 800 hours.

[8+8]

5. (a) Discuss the transformation $w = e^z$ and show that the region between the real axis and the line $y = \pi$ in the z- plane is transformed to upper half of the w-plane.

- (b) Determine bilinear transformation which map the points $z=0, 1, \infty$ into w=-5,-1, 3 Find the critical and fixed points of the transformation. [8+8]
- 6. (a) Evaluate $\int_{c} \frac{e^z dz}{(z^2 + \pi^2)^2}$ where e is the circle |z| = 4 by using Cauchy's integral formula.
 - (b) Evaluate $\int_c \frac{z dz}{(z^2 6z + 25)^2}$ where C is |z (3 + 4i)| = 9 using Cauchys integral formula. [8+8]
- 7. (a) Find all values of K such that $f(z) = e^x (\cos ky + i \sin ky)$ is analytic
 - (b) Find the analytic function whose real part is $\frac{x}{x^2+y^2}$
 - (c) Find all the roots of the equation $\cos z = 2$.

[5+5+6]

- 8. (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series.
 - i. about the point z=0
 - ii. about the point z=1Determine the region of convergence in each case.
 - iii. if $f(z) = \frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expansions in.

A.
$$0 < |z - 1| < 4$$
 and

B.
$$|z-1| > 4$$
 [8+8]
