

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The value of $\lambda t_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is
a) e
b) $\frac{1}{e}$
c) 0
d) $\quad 1$.
ii) The derivative of $x e^{x}$ is
a) e^{x}
b) $\quad e^{x}(x+1)$
c) $\quad e^{x}(x-1)$
d) none of these.
iii) If $y=8 x^{2}$, then $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is

a) 8
b) 0
c) $\quad 16$
d) none of these.
iv) A function $f(x)$ is said to be an even function if $f(-x)$ is equal to
a) $f(x)$
b) $-f(x)$
c) $-f(-x)$
d) none of these.
v) The value of $\int_{0}^{1} 2 e^{x} \mathrm{~d} x$ is
a) $2 e$
b) 2
c) $2(e-1)$
d) none of these.
vi) The co-factor of c is the determinant $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$ is
a) $\quad(-1)^{3+3}\left|\begin{array}{ll}a & h \\ h & b\end{array}\right|$
b) $\quad(-1)^{3+2}\left|\begin{array}{ll}a & h \\ h & b\end{array}\right|$
c) $\quad(-1)^{1+3}\left|\begin{array}{ll}a & h \\ h & b\end{array}\right|$
d) none of these.
vii) The determinant of an orthogonal matrix is
a) 0
b) 1
c) ± 1
d) none of these.
viii) The focus of $y^{2}=36 x$ is
a) $(3,0)$
b) $(9,0)$
c) $(3,9)$
d) none of these.
ix) Rank of the matrix $\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$ is
a) 1
b) 0
c) 2
d) none of these.
x) The integration of $\int 2^{x} d x$ is
a) $\frac{2^{x}}{\log _{e}{ }^{2}}$
b) $x 2^{x-1}$
c) $\quad 2^{x} \log _{e} 2$
d) none of these.
xi) A matrix is said to be orthogonal if
a) $\operatorname{det} A=0$
b) $\quad \operatorname{det} A \neq 0$
c) $\quad A^{T} A=I$
d) none of these.
xii) The curve $y=|x|$ is
a) differentiable everywhere
b) discontinuous at $x=0$
c) not derivable at $x=0$
d) none of these.

CS /BBA (H)/BIRM/BSCM/SEM-2/BBA-202/2011
xiii) The function ($5 x+3$) is increasing in the interyal
a) $(0,5)$
b) $(-1,5)$
c) $(-\infty,-\infty)$
d) none of these.
xiv) The function $u(x, y)=\frac{(x+y)^{2}}{(x-y)^{2}}$ is a homogeneous function of degree
a) 0
b) 1
c) 2
d) none of these.

GROUP - B

(Short Answer Type Guestions)
Answer any three of the following.
$3 \times 5=15$
2. Verify Euler's theorem for the function $f(x, y)=x^{2}+10 x y+y^{2}$.
3. Show that the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ satisfies the equation $A^{2}-2 A-5 I=0$ and hence find A^{-1}.
4. Find the rank of the matrix $A=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2\end{array}\right)$.
5. Find the equation of the parabola whose vertex is ($-2,2$) and focus is $(-6,6)$.
6. Solve the following system of equation by Cramer's rule :
$x+y+z=8$
$x-y+2 z=6$
$3 x+5 y-7 z=14$.
7. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} \mathrm{~d} x$.
8. a) If $x+y+z=0$, then show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ x^{3} & y^{3} & z^{3}\end{array}\right|=0$.
b) Show that the matrix $A=\left(\begin{array}{ccc}2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4\end{array}\right)$ satisfies the equation $A(A-I)(A+2 I)=0$.
c) Compute the inverse of the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right)$.
9. a) Verify whether the following matrix $A=\frac{1}{3}\left(\begin{array}{ccc}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ is orthogonal or not. Find A^{-1}.
b) Solve the following system of equation by matrix inversion method :

$$
\begin{aligned}
& x+y+z=6 \\
& x-y+z=2 \\
& 2 x+y-z=1
\end{aligned}
$$

c) Find the value of t for which the matrix $\left(\begin{array}{lll}2 & 0 & 1 \\ 5 & t & 3 \\ 0 & 3 & 1\end{array}\right)$ is singular.
10. a) Verify whether the function $f(x)$ as defined below is continuous or not at $x=2$.

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+4, & x>2 \\
8, & x=2 \\
3 x^{2}-4 & x<2
\end{array}\right.
$$

b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ if $x=\frac{t^{2}}{1+t} \quad y=\frac{t}{1+t}$.
c) If $y=\sin \left(m \sin ^{-1} x\right)$ then show that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$.
11. a) If $y=a \sin (m x)+b \cos (m x)$ then show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=m^{2} y$.
b) If $A=\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 5 & 1\end{array}\right)$ then verify that $(A B)^{-1}=B^{-1} A^{-1}$.
c) Prove that $\sqrt{3} \sin x+3 \cos x$ has a maximum at $x=\frac{\pi}{6}$.
12. a) If $u=x^{2}+y^{2}+z^{2}$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=2 u$.
b) Find the equation of the ellipse which meets the straight line $\frac{x}{7}+\frac{y}{2}=1$ on the x-axis and the straight line $\frac{x}{3}+\frac{y}{5}=1$ on the y-axis and whose axes lie along the axes of coordinates. Determine the foci of the ellipse.
c) Evaluate $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) \mathrm{d} x$.
13. a) Find the maximum and minimum value of the function $f(x)=x^{3}+\frac{1}{x^{3}}$.
b) Prove that $\left|\begin{array}{lll}1 & b+c & b^{2}+c^{2} \\ 1 & c+a & c^{2}+a^{2} \\ 1 & a+b & a^{2}+b^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
c) Find the area above the X-axis bounded by $x-2 y+4=0, x=1$ and $x=9$.

