

CS/BCA/SEM-2/BM-201/2013

2013
 MATHEMATICS

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) A monotonic and bounded sequence is
a) convergent
b) divergent
c) oscillatory
d) none of these.
ii) The sequence $\left\{r^{n}\right\}$ is oscillatory when
a) $r>1$
b) $r<1$
c) $-1<r<1$
d) none of these.
iii) Eliminating A and B from $y=A+B x$, the differential equation is obtained as
a) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=0$
b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-y=0$
c) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$
d) none of these.
iv) The order and degree of the equation $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{\frac{3}{2}}=a \frac{\mathrm{~d} y}{\mathrm{~d} x}$ is
a) 2,2
b) 2,3
c) 3,2
d) 3,3 .
v) The P.I. of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=e^{x}$ is
a) $\frac{e^{x}}{3}$
b) $\frac{e^{x}}{2}$
c) $\frac{e^{x}}{6}$
d) none of these.
vi) The series $\sum_{n=1}^{\infty} n^{\frac{1}{p}}$ is convergent if
a) $p \geq 1$
b) $p<1$
c) $\quad p>1$
d) $\quad p \leq 1$.
vii) If the series $\sum_{n=1}^{\infty} u_{n}$ is convergent, then

a) $\quad \lim _{n \rightarrow \infty} u_{n}=0$
b) $\lim _{n \rightarrow \infty} u_{n}>1$
c) $\quad \lim _{n \rightarrow \infty} u_{n}<1$
d) none of these.
viii) The series $1-1+1-1+\ldots$ is
a) convergent with sum 0
b) convergent with sum 1
c) divergent
d) oscillatory.
ix) The vectors $(1,0,0),(0,1,0),(0,0,1)$ in V_{3} are
a) linearly dependent
b) linearly independent
c) both (a) and (b)
d) none of these.
x) The basis of a vector space contains
a) linearly independent vectors
b) linearly dependent vectors
c) scalars only
d) none of these.
xi) The values of k for which the vectors $(1,2,1),(k, 1,1) \&$ $(1,1,2)$ in R^{3} are linearly independent are
a) $k \neq-\frac{2}{3}$
b) $\quad k \neq \frac{2}{3}$
c) $\quad k \neq-\frac{3}{2}$
d) none of these.
xii) T is a transformation from R^{2} to R^{3} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}^{2}+2,-x_{1}\right)$. Then the image of $(1,2)$ is
a) $(1,1,1)$
b) $(0,3,-1)$
c) $(1,3,-1)$
d) $(0,0,0)$.
xiii) If $(3,1)=x(1,2)+y(0,3)$ then the values of x and y are respectively
a) $(3,-5)$
b) $(3,1)$
c) $\left(3,-\frac{5}{3}\right)$
d) $\left(3,-\frac{5}{2}\right)$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Solve $(x+y) \mathrm{d} y+(x-y) \mathrm{d} x=0$.
3. Find the general and singular solutions of

$$
y-x p+p^{2}=0, p=\frac{\mathrm{d} y}{\mathrm{~d} x} .
$$

4. Test the convergence of the series

$$
x+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}+\ldots, x>0
$$

5. Define monotone sequence. When is a monotone sequence convergent ? Is the following sequence convergent?

$$
\left\{\frac{3 n+1}{n+2}\right\}
$$

6. Prove that the intersection of two subspaces of a vector space is a subspace.
7. Find the space generated by (1, 3, 0), (2, 1, -2). Examine whether $(4,7,-2)$ lies in this space.

GROUP - C

(Long Answer Type Questions)

$$
\text { Answer any three of the following. } \quad 3 \times 15=45
$$

8. a) Find the basis and dimension of the subspace W of R^{3} where $W=\left\{(x, y, z) \in R^{3}: x+y+z=0\right\}$.
b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n} \cdot n!}{n^{n}}$.
c) Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=x^{2} e^{3 x}$.

CS/BCA/SEM-2/BM-201/2013
9. a) Determine the linear mapping $T: R^{3} \rightarrow R^{3}$ which maps the basis vectors $(0,1,1),(1,0,1),(1,1,0)$ of R^{3} to the vectors $(1,2,1),(1,1,2),(2,1,1)$ respectively. Find $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.
b) Solve : $\left(x^{2} D^{2}-x D-3\right) y=x^{2} \log x$.
10. a) Define basis and dimension of a vector space. Find a basis and the dimension of $S \cap T$ where S and T are subspaces of R^{3} defined by

$$
S=\left\{(x, y, z) \in R^{3}: 2 x+y+3 z=0\right\}
$$

$$
T=\left\{(x, y, z) \in R^{3}: x+2 y+z=0\right\} \quad 2+1+6
$$

b) Examine whether the vectors (1, 2, 2), (2, 1, 2), (2, 2, 1) are linearly independent in R^{3}.
11. a) Test the convergence of the following series :
i) $\frac{6}{1.3 .5}+\frac{8}{3.5 .7}+\frac{10}{5.7 .9}+\ldots$
ii) $\sum_{n=1}^{\infty}\left(1+\frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$
b) Show that the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ converges conditionally. 5
12. Solve the following :

a) $(x y \sin x y+\cos x y) y \mathrm{~d} x+(x y \sin x y-\cos x y) x \mathrm{~d} y=0 \quad n$
b) $y=p x+\sqrt{a^{2} p^{2}+b^{2}}, p=\frac{\mathrm{d} y}{\mathrm{~d} x}$
c) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-y=\sin x$
13. a) Solve $\left(x^{3}-3 x y^{2}\right) \mathrm{d} x+\left(y^{3}-3 x^{2} y\right) \mathrm{d} y=0$ 5
b) Find the representative matrix of the linear transformation $T: R^{3} \rightarrow R^{3} \quad$ defined by $T(x, y, z)=(x-2 y, y-2 z, z-2 x)$.
c) Show that $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is a divergent series.

