Unit - V

[4]

- 5. a) What do you mean by polarization? What are the types of it?
 - b) Define plane wave and uniform plane wave.
 - e) Show that characteristic impedance free space is $120\pi\Omega$.
 - d) Prove that P = E × H where P is Poynting vector in watts/m³; E and H are electric and magnetic field respectively.

OR

The electric field intensity associated with a uniform plane wave travelling in free space is given by $E=10\cos(2\pi\times10^7t-\beta z)a_xV/m$. Find expression for H field. What is direction of propagation of this wave? What is value of β .

Roll No.

EE - 402

B.E. IV Semester

Examination, June 2015

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

- Vote: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- a) Define Gaussian surface.
- b) Write down the values of the electric field intensity in a case of point, line, sheet and volume charge density.
- e) Give physical significance of the term divergence.
- d) Show that the integral of normal component of any vector field over a closed surface is equal to the integral of divergence of this vector field throughout the volume enclosed by the closed surface.

Transform the vector field $F = 2r \cos \Phi \ a_r + a_{\Phi}$ into Cartesian coordinates and evaluate it at P(4, -2, 3). Also find a unit vector a_F at P.

Unit - II

- 2. a) What is an 'electric dipole' and its 'dipole moment'.
 - b) Derive for the Laplace's equation starting from the point form of Gauss's law.
 - c) Determine whether or not following potential field satisfies Laplace's equation. Justify your answer.
 V = 10 σ Φ z volts.
 - d) Show that the energy stored in electric field is given by:

$$W_E = \frac{1}{2} \int_{vol} \rho_* V dv.$$

OR

Find out a capacitance of parallel plate capacitor as shown in the figure contains two dielectric layer where

$$Er_1 = 2$$
, $d_1 = 5$ mm, and $Er_2 = 5$, $d_2 = 10$ mm

Unit - III

- 3. a) State Biot-Savart's law.
 - State ampere circuital law as applied to steady magnetic field.
 - c) Define the term \overline{B} , \overline{H} , current density J and surface current density K.

d) A filamentary current of 10 A is directed in from infinity to origin on the +ve x axis and the back to infinity along the +ve y axis. Use Biot-Savart's law to find H at P(0,0,1).

OR

Derive for the field at any point P due to long current carrying straight conductor.

Unit-IV

- a) Define scalar magnetic potential and explain it simplifies the solution of magnetic fields.
 - b) What is Lorentz force equation.
 - State Maxwell's equation in the differential form for time varying fields.
 - d) What is meant by displacement current density? Derive continuity equation for time varying field.

OR

In the wired square loop as shown below carrying 2mA current and loop is in Z = 0 plane. Calculate total force on the loop due to this.

